Startseite Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases

  • Yifan Zhu ORCID logo , Fangsheng Wang , Yu Xia , Lijuan Wang , Haihong Lin , Tianyu Zhong EMAIL logo und Xiaoling Wang EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles – both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.


Corresponding authors: Tianyu Zhong and Xiaoling Wang, The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China; and Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China, E-mail: (T. Zhong), (X. Wang)
Yifan Zhu and Fangsheng Wang contributed equally to this work.

Funding source: Municipal level scientific research plan project of Ganzhou Municipal Health Commission

Award Identifier / Grant number: 2022-2-62

Funding source: Science and Technology Plan of Jiangxi Provincial Health Commission

Award Identifier / Grant number: 202210863

Funding source: Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine

Award Identifier / Grant number: 2022B495

Acknowledgments

We thanks everyone who contributed this manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: WX and ZT conceived the idea of this review. ZY and WF drafted the manuscript and created the figures. LH, XY, and WL performed the literature search and reviewed the content of this manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors declare no competing interests.

  4. Research funding: This work was supported by the Science and Technology Plan of Jiangxi Provincial Health Commission (202210863), Municipal level scientific research plan project of Ganzhou Municipal Health Commission (2022-2-62), Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine (2022B495).

  5. Data availability: Not applicable.

References

Akers, J.C., Gonda, D., Kim, R., Carter, B.S., and Chen, C.C. (2013). Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 113: 1–11, https://doi.org/10.1007/s11060-013-1084-8.Suche in Google Scholar PubMed PubMed Central

Alami, N.H., Smith, R.B., Carrasco, M.A., Williams, L.A., Winborn, C.S., Han, S.S.W., Kiskinis, E., Winborn, B., Freibaum, B.D., Kanagaraj, A., et al.. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81: 536–543, https://doi.org/10.1016/j.neuron.2013.12.018.Suche in Google Scholar PubMed PubMed Central

Alterman, J.F., Hall, L.M., Coles, A.H., Hassler, M.R., Didiot, M.C., Chase, K., Abraham, J., Sottosanti, E., Johnson, E., Sapp, E., et al.. (2015). Hydrophobically modified siRNAs silence huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4: e266, https://doi.org/10.1038/mtna.2015.38.Suche in Google Scholar PubMed PubMed Central

Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J., and Cooper, J.M. (2011a). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42: 360–367, https://doi.org/10.1016/j.nbd.2011.01.029.Suche in Google Scholar PubMed PubMed Central

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011b). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29: 341–345, https://doi.org/10.1038/nbt.1807.Suche in Google Scholar PubMed

Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H., Robitaille, R., and Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron 81: 728–739, https://doi.org/10.1016/j.neuron.2014.02.007.Suche in Google Scholar PubMed PubMed Central

Arima, K., Hirai, S., Sunohara, N., Aoto, K., Izumiyama, Y., Uéda, K., Ikeda, K., and Kawai, M. (1999). Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 843: 53–61, https://doi.org/10.1016/s0006-8993(99)01848-x.Suche in Google Scholar PubMed

Bachiller, S., Jiménez-Ferrer, I., Paulus, A., Yang, Y., Swanberg, M., Deierborg, T., and Boza-Serrano, A. (2018). Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front. Cell Neurosci. 12: 488, https://doi.org/10.3389/fncel.2018.00488.Suche in Google Scholar PubMed PubMed Central

Basso, M., Pozzi, S., Tortarolo, M., Fiordaliso, F., Bisighini, C., Pasetto, L., Spaltro, G., Lidonnici, D., Gensano, F., Battaglia, E., et al.. (2013). Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J. Biol. Chem. 288: 15699–15711, https://doi.org/10.1074/jbc.m112.425066.Suche in Google Scholar PubMed PubMed Central

Belloir, B., Kövari, E., Surini-Demiri, M., and Savioz, A. (2001). Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J. Neurosci. Res. 64: 61–69, https://doi.org/10.1002/jnr.1054.Suche in Google Scholar PubMed

Bianco, F., Perrotta, C., Novellino, L., Francolini, M., Riganti, L., Menna, E., Saglietti, L., Schuchman, E.H., Furlan, R., Clementi, E., et al.. (2009). Acid sphingomyelinase activity triggers microparticle release from glial cells. Embo J. 28: 1043–1054, https://doi.org/10.1038/emboj.2009.45.Suche in Google Scholar PubMed PubMed Central

Bieberich, E., MacKinnon, S., Silva, J., Noggle, S., and Condie, B.G. (2003). Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J. Cell Biol. 162: 469–479, https://doi.org/10.1083/jcb.200212067.Suche in Google Scholar PubMed PubMed Central

Bieberich, E., Silva, J., Wang, G., Krishnamurthy, K., and Condie, B.G. (2004). Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J. Cell Biol. 167: 723–734, https://doi.org/10.1083/jcb.200405144.Suche in Google Scholar PubMed PubMed Central

Bradford, J., Shin, J.Y., Roberts, M., Wang, C.E., Li, X.J., and Li, S. (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. U. S. A. 106: 22480–22485, https://doi.org/10.1073/pnas.0911503106.Suche in Google Scholar PubMed PubMed Central

Brites, D. and Fernandes, A. (2015). Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell Neurosci. 9: 476, https://doi.org/10.3389/fncel.2015.00476.Suche in Google Scholar PubMed PubMed Central

Brunet, N., Tarabal, O., Portero-Otín, M., Oppenheim, R.W., Esquerda, J.E., and Calderó, J. (2007). Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J. Comp. Neurol. 501: 669–690, https://doi.org/10.1002/cne.21157.Suche in Google Scholar PubMed

Budnik, V., Ruiz-Cañada, C., and Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17: 160–172, https://doi.org/10.1038/nrn.2015.29.Suche in Google Scholar PubMed PubMed Central

Caroni, P. and Grandes, P. (1990). Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J. Cell Biol. 110: 1307–1317, https://doi.org/10.1083/jcb.110.4.1307.Suche in Google Scholar PubMed PubMed Central

Chaudhuri, A.D., Dastgheyb, R.M., Yoo, S.W., Trout, A., Talbot, C.C.Jr., Hao, H., Witwer, K.W., and Haughey, N.J. (2018). TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis. 9: 363, https://doi.org/10.1038/s41419-018-0369-4.Suche in Google Scholar PubMed PubMed Central

Chen, C.C., Liu, L., Ma, F., Wong, C.W., Guo, X.E., Chacko, J.V., Farhoodi, H.P., Zhang, S.X., Zimak, J., Ségaliny, A., et al.. (2016). Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol. Bioeng. 9: 509–529, https://doi.org/10.1007/s12195-016-0458-3.Suche in Google Scholar PubMed PubMed Central

Chen, P.C., Wu, D., Hu, C.J., Chen, H.Y., Hsieh, Y.C., and Huang, C.C. (2020). Exosomal TAR DNA-binding protein-43 and neurofilaments in plasma of amyotrophic lateral sclerosis patients: a longitudinal follow-up study. J. Neurol. Sci. 418: 117070, https://doi.org/10.1016/j.jns.2020.117070.Suche in Google Scholar PubMed

Chen, Y., Gao, C., Sun, Q., Pan, H., Huang, P., Ding, J., and Chen, S. (2017). MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front. Aging Neurosci. 9: 232, https://doi.org/10.3389/fnagi.2017.00232.Suche in Google Scholar PubMed PubMed Central

Chistiakov, D.A. and Chistiakov, A.A. (2017). α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters. Acta Neurol. Belg. 117: 43–51, https://doi.org/10.1007/s13760-016-0679-1.Suche in Google Scholar PubMed

Cicardi, M.E., Marrone, L., Azzouz, M., and Trotti, D. (2021). Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. Embo J. 40: e106389, https://doi.org/10.15252/embj.2020106389.Suche in Google Scholar PubMed PubMed Central

Clark, C.M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Morris, J.C., McKeel, D.W.Jr., Farlow, M., Weitlauf, S.L., et al.. (2003). Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 60: 1696–1702, https://doi.org/10.1001/archneur.60.12.1696.Suche in Google Scholar PubMed

Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A. (2018). Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U. S. A. 115: E1896–e905, https://doi.org/10.1073/pnas.1800165115.Suche in Google Scholar PubMed PubMed Central

Coleman, B.M. and Hill, A.F. (2015). Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol. 40: 89–96, https://doi.org/10.1016/j.semcdb.2015.02.007.Suche in Google Scholar PubMed

Cooper, J.M., Wiklander, P.B., Nordin, J.Z., Al-Shawi, R., Wood, M.J., Vithlani, M., Schapira, A.H., Simons, J.P., El-Andaloussi, S., and Alvarez-Erviti, L. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29: 1476–1485, https://doi.org/10.1002/mds.25978.Suche in Google Scholar PubMed PubMed Central

Costanzo, M., Abounit, S., Marzo, L., Danckaert, A., Chamoun, Z., Roux, P., and Zurzolo, C. (2013). Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126: 3678–3685, https://doi.org/10.1242/jcs.126086.Suche in Google Scholar PubMed

Coulson, N.S., Buchanan, H., and Aubeeluck, A. (2007). Social support in cyberspace: a content analysis of communication within a Huntington’s disease online support group. Patient Educ. Couns. 68: 173–178, https://doi.org/10.1016/j.pec.2007.06.002.Suche in Google Scholar PubMed

Crescitelli, R., Lässer, C., Szabó, T.G., Kittel, A., Eldh, M., Dianzani, I., Buzás, E.I., and Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2, https://doi.org/10.3402/jev.v2i0.20677.Suche in Google Scholar PubMed PubMed Central

Cunha, C., Santos, C., Gomes, C., Fernandes, A., Correia, A.M., Sebastião, A.M., Vaz, A.R., and Brites, D. (2018). Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. Mol. Neurobiol. 55: 4207–4224, https://doi.org/10.1007/s12035-017-0631-2.Suche in Google Scholar PubMed

Dal Prà, I., Chiarini, A., Gui, L., Chakravarthy, B., Pacchiana, R., Gardenal, E., Whitfield, J.F., and Armato, U. (2015). Do astrocytes collaborate with neurons in spreading the “infectious” aβ and Tau drivers of Alzheimer’s disease? Neuroscientist 21: 9–29, https://doi.org/10.1177/1073858414529828.Suche in Google Scholar PubMed

Danzer, K.M., Kranich, L.R., Ruf, W.P., Cagsal-Getkin, O., Winslow, A.R., Zhu, L., Vanderburg, C.R., and McLean, P.J. (2012). Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7: 42, https://doi.org/10.1186/1750-1326-7-42.Suche in Google Scholar PubMed PubMed Central

Dassati, S., Waldner, A., and Schweigreiter, R. (2014). Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol. Aging 35: 1632–1642, https://doi.org/10.1016/j.neurobiolaging.2014.01.148.Suche in Google Scholar PubMed PubMed Central

Datta Chaudhuri, A., Dasgheyb, R.M., DeVine, L.R., Bi, H., Cole, R.N., and Haughey, N.J. (2020). Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. Glia 68: 128–144, https://doi.org/10.1002/glia.23708.Suche in Google Scholar PubMed

Dayalu, P. and Albin, R.L. (2015). Huntington disease: pathogenesis and treatment. Neurol. Clin. 33: 101–114, https://doi.org/10.1016/j.ncl.2014.09.003.Suche in Google Scholar PubMed

Delpech, J.C., Herron, S., Botros, M.B., and Ikezu, T. (2019). Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci. 42: 361–372, https://doi.org/10.1016/j.tins.2019.02.007.Suche in Google Scholar PubMed PubMed Central

Deng, J., Koutras, C., Donnelier, J., Alshehri, M., Fotouhi, M., Girard, M., Casha, S., McPherson, P.S., Robbins, S.M., and Braun, J.E.A. (2017). Neurons export extracellular vesicles enriched in cysteine string protein and misfolded protein cargo. Sci. Rep. 7: 956, https://doi.org/10.1038/s41598-017-01115-6.Suche in Google Scholar PubMed PubMed Central

Desplats, P., Lee, H.J., Bae, E.J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S.J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. U. S. A. 106: 13010–13015, https://doi.org/10.1073/pnas.0903691106.Suche in Google Scholar PubMed PubMed Central

Díez-Planelles, C., Sánchez-Lozano, P., Crespo, M.C., Gil-Zamorano, J., Ribacoba, R., González, N., Suárez, E., Martínez-Descals, A., Martínez-Camblor, P., Álvarez, V., et al.. (2016). Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment. Pharmacol. Res. 108: 102–110, https://doi.org/10.1016/j.phrs.2016.05.005.Suche in Google Scholar PubMed

Ding, L., Yang, X., Xia, X., Li, Y., Wang, Y., Li, C., Sun, Y., Gao, G., Zhao, S., Sheng, S., et al.. (2022). Exosomes mediate APP dysregulation via APP-miR-185-5p axis. Front. Cell Dev. Biol. 10: 793388, https://doi.org/10.3389/fcell.2022.793388.Suche in Google Scholar PubMed PubMed Central

Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 35: 1792–1800, https://doi.org/10.1016/j.neurobiolaging.2014.02.012.Suche in Google Scholar PubMed PubMed Central

Dobrowolny, G., Martini, M., Scicchitano, B.M., Romanello, V., Boncompagni, S., Nicoletti, C., Pietrangelo, L., De Panfilis, S., Catizone, A., Bouchè, M., et al.. (2018). Muscle expression of SOD1(G93A) triggers the dismantlement of neuromuscular junction via PKC-theta. Antioxid Redox Signal 28: 1105–1119, https://doi.org/10.1089/ars.2017.7054.Suche in Google Scholar PubMed

Dorsey, E.R., Sherer, T., Okun, M.S., and Bloem, B.R. (2018). The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis. 8: S3–s8, https://doi.org/10.3233/jpd-181474.Suche in Google Scholar PubMed PubMed Central

Dutta, S., Hornung, S., Kruayatidee, A., Maina, K.N., Del Rosario, I., Paul, K.C., Wong, D.Y., Duarte Folle, A., Markovic, D., Palma, J.A., et al.. (2021). α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol. 142: 495–511, https://doi.org/10.1007/s00401-021-02324-0.Suche in Google Scholar PubMed PubMed Central

Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S.D., Ntzouni, M., Margaritis, L.H., Stefanis, L., and Vekrellis, K. (2010). Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30: 6838–6851, https://doi.org/10.1523/jneurosci.5699-09.2010.Suche in Google Scholar

Escartin, C., Pierre, K., Colin, A., Brouillet, E., Delzescaux, T., Guillermier, M., Dhenain, M., Déglon, N., Hantraye, P., Pellerin, L., et al.. (2007). Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J. Neurosci. 27: 7094–7104, https://doi.org/10.1523/jneurosci.0174-07.2007.Suche in Google Scholar PubMed PubMed Central

Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., et al.. (2006). Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31: 642–648, https://doi.org/10.1016/j.mcn.2005.12.003.Suche in Google Scholar PubMed

Feiler, M.S., Strobel, B., Freischmidt, A., Helferich, A.M., Kappel, J., Brewer, B.M., Li, D., Thal, D.R., Walther, P., Ludolph, A.C., et al.. (2015). TDP-43 is intercellularly transmitted across axon terminals. J. Cell Biol. 211: 897–911, https://doi.org/10.1083/jcb.201504057.Suche in Google Scholar PubMed PubMed Central

Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., Abner, E.L., Petersen, R.C., Federoff, H.J., Miller, B.L., et al.. (2015). Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11: 600–607.e1, https://doi.org/10.1016/j.jalz.2014.06.008.Suche in Google Scholar PubMed PubMed Central

Fontana, A.C. (2015). Current approaches to enhance glutamate transporter function and expression. J. Neurochem. 134: 982–1007, https://doi.org/10.1111/jnc.13200.Suche in Google Scholar PubMed

Fraser, K.B., Moehle, M.S., Alcalay, R.N., West, A.B., Bressman, S., Giladi, N., Marder, K., Marti Masso, J.F., Tolosa, E., Aasly, J., et al.. (2016a). Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86: 994–999, https://doi.org/10.1212/wnl.0000000000002436.Suche in Google Scholar

Fraser, K.B., Rawlins, A.B., Clark, R.G., Alcalay, R.N., Standaert, D.G., Liu, N., and West, A.B. (2016b). Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov. Disord 31: 1543–1550, https://doi.org/10.1002/mds.26686.Suche in Google Scholar PubMed PubMed Central

Fraser, K.B., Moehle, M.S., Daher, J.P., Webber, P.J., Williams, J.Y., Stewart, C.A., Yacoubian, T.A., Cowell, R.M., Dokland, T., Ye, T., et al.. (2013). LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22: 4988–5000, https://doi.org/10.1093/hmg/ddt346.Suche in Google Scholar PubMed PubMed Central

Frühbeis, C., Fröhlich, D., Kuo, W.P., Amphornrat, J., Thilemann, S., Saab, A.S., Kirchhoff, F., Möbius, W., Goebbels, S., Nave, K.A., et al.. (2013). Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 11: e1001604, https://doi.org/10.1371/journal.pbio.1001604.Suche in Google Scholar PubMed PubMed Central

Gilks, W.P., Abou-Sleiman, P.M., Gandhi, S., Jain, S., Singleton, A., Lees, A.J., Shaw, K., Bhatia, K.P., Bonifati, V., Quinn, N.P., et al.. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365: 415–416, https://doi.org/10.1016/s0140-6736(05)17830-1.Suche in Google Scholar PubMed

Gosselin, R.D., Meylan, P., and Decosterd, I. (2013). Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front. Cell Neurosci. 7: 251, https://doi.org/10.3389/fncel.2013.00251.Suche in Google Scholar PubMed PubMed Central

Grad, L.I., Yerbury, J.J., Turner, B.J., Guest, W.C., Pokrishevsky, E., O’Neill, M.A., Yanai, A., Silverman, J.M., Zeineddine, R., Corcoran, L., et al.. (2014). Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. U. S. A. 111: 3620–3625, https://doi.org/10.1073/pnas.1312245111.Suche in Google Scholar PubMed PubMed Central

Guescini, M., Genedani, S., Stocchi, V., and Agnati, L.F. (2010). Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural. Transm. 117: 1–4, https://doi.org/10.1007/s00702-009-0288-8.Suche in Google Scholar PubMed

Gui, Y., Liu, H., Zhang, L., Lv, W., and Hu, X. (2015). Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6: 37043–37053, https://doi.org/10.18632/oncotarget.6158.Suche in Google Scholar PubMed PubMed Central

Guitart, K., Loers, G., Buck, F., Bork, U., Schachner, M., and Kleene, R. (2016). Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 64: 896–910, https://doi.org/10.1002/glia.22963.Suche in Google Scholar PubMed

Guix, F.X., Corbett, G.T., Cha, D.J., Mustapic, M., Liu, W., Mengel, D., Chen, Z., Aikawa, E., Young-Pearse, T., Kapogiannis, D., et al.. (2018). Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int. J. Mol. Sci. 19: 663, https://doi.org/10.3390/ijms19030663.Suche in Google Scholar PubMed PubMed Central

Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40: 25–40, https://doi.org/10.1016/s0896-6273(03)00594-4.Suche in Google Scholar PubMed

Guo, M., Wang, J., Zhao, Y., Feng, Y., Han, S., Dong, Q., Cui, M., and Tieu, K. (2020). Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 143: 1476–1497, https://doi.org/10.1093/brain/awaa090.Suche in Google Scholar PubMed PubMed Central

Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A.V., et al.. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control Release 207: 18–30, https://doi.org/10.1016/j.jconrel.2015.03.033.Suche in Google Scholar PubMed PubMed Central

Hansen, C., Angot, E., Bergström, A.L., Steiner, J.A., Pieri, L., Paul, G., Outeiro, T.F., Melki, R., Kallunki, P., Fog, K., et al.. (2011). α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121: 715–725, https://doi.org/10.1172/jci43366.Suche in Google Scholar

Hantaï, D., Akaaboune, M., Lagord, C., Murawsky, M., Houenou, L.J., Festoff, B.W., Vaught, J.L., Rieger, F., and Blondet, B. (1995). Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J. Neurol. Sci. 129: 122–126, https://doi.org/10.1016/0022-510x(95)00081-c.Suche in Google Scholar PubMed

Harischandra, D.S., Ghaisas, S., Rokad, D., Zamanian, M., Jin, H., Anantharam, V., Kimber, M., Kanthasamy, A., and Kanthasamy, A.G. (2018). Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: relevance to α-synuclein misfolding in metal neurotoxicity. Neurotoxicology 64: 267–277, https://doi.org/10.1016/j.neuro.2017.04.007.Suche in Google Scholar PubMed PubMed Central

Harischandra, D.S., Rokad, D., Neal, M.L., Ghaisas, S., Manne, S., Sarkar, S., Panicker, N., Zenitsky, G., Jin, H., Lewis, M., et al.. (2019). Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Sci. Signal 12: eaau4543, https://doi.org/10.1126/scisignal.aau4543.Suche in Google Scholar PubMed PubMed Central

Herrera, F., Tenreiro, S., Miller-Fleming, L., and Outeiro, T.F. (2011). Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr. 3: Rrn1210, https://doi.org/10.1371/currents.rrn1210.Suche in Google Scholar PubMed PubMed Central

Hill, A.F. (2019). Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39: 9269–9273, https://doi.org/10.1523/jneurosci.0147-18.2019.Suche in Google Scholar

Hira, K., Ueno, Y., Tanaka, R., Miyamoto, N., Yamashiro, K., Inaba, T., Urabe, T., Okano, H., and Hattori, N. (2018). Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D(2) synthase. Stroke 49: 2483–2494, https://doi.org/10.1161/strokeaha.118.021272.Suche in Google Scholar

Hong, Y., Zhao, T., Li, X.J., and Li, S. (2017). Mutant huntingtin inhibits αB-crystallin expression and impairs exosome secretion from astrocytes. J. Neurosci. 37: 9550–9563, https://doi.org/10.1523/jneurosci.1418-17.2017.Suche in Google Scholar PubMed PubMed Central

Hopp, S.C., Lin, Y., Oakley, D., Roe, A.D., DeVos, S.L., Hanlon, D., and Hyman, B.T. (2018). The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J. Neuroinflammation 15: 269, https://doi.org/10.1186/s12974-018-1309-z.Suche in Google Scholar PubMed PubMed Central

Hu, G., Liao, K., Niu, F., Yang, L., Dallon, B.W., Callen, S., Tian, C., Shu, J., Cui, J., Sun, Z., et al.. (2018). Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol. Ther. Nucleic Acids 13: 450–463, https://doi.org/10.1016/j.omtn.2018.09.019.Suche in Google Scholar PubMed PubMed Central

Huang, D., Chen, J., Hu, D., Xie, F., Yang, T., Li, Z., Wang, X., Xiao, Y., Zhong, J., Jiang, Y., et al.. (2021). Advances in biological function and clinical application of small extracellular vesicle membrane proteins. Front. Oncol. 11: 675940, https://doi.org/10.3389/fonc.2021.675940.Suche in Google Scholar PubMed PubMed Central

Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., et al.. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 1739: 198–210, https://doi.org/10.1016/j.bbadis.2004.09.008.Suche in Google Scholar PubMed

Izco, M., Blesa, J., Schleef, M., Schmeer, M., Porcari, R., Al-Shawi, R., Ellmerich, S., de Toro, M., Gardiner, C., Seow, Y., et al.. (2019). Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol. Ther. 27: 2111–2122, https://doi.org/10.1016/j.ymthe.2019.08.010.Suche in Google Scholar PubMed PubMed Central

Jeon, I., Cicchetti, F., Cisbani, G., Lee, S., Li, E., Bae, J., Lee, N., Li, L., Im, W., Kim, M., et al.. (2016). Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 132: 577–592, https://doi.org/10.1007/s00401-016-1582-9.Suche in Google Scholar PubMed PubMed Central

Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., and Verderio, C. (2015). Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int. J. Mol. Sci. 16: 4800–4813, https://doi.org/10.3390/ijms16034800.Suche in Google Scholar PubMed PubMed Central

Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P.J., Smith, M.A., et al.. (2002). Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 16: 601–603, https://doi.org/10.1096/fj.01-0530fje.Suche in Google Scholar PubMed

Kalluri, R. and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science 367: eaau6977, https://doi.org/10.1126/science.aau6977.Suche in Google Scholar PubMed PubMed Central

Kaspar, B.K., Lladó, J., Sherkat, N., Rothstein, J.D., and Gage, F.H. (2003). Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301: 839–842, https://doi.org/10.1126/science.1086137.Suche in Google Scholar PubMed

Kells, A.P., Henry, R.A., and Connor, B. (2008). AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther. 15: 966–977, https://doi.org/10.1038/gt.2008.23.Suche in Google Scholar PubMed

Kempuraj, D., Thangavel, R., Natteru, P.A., Selvakumar, G.P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S.S., and Zaheer, A. (2016). Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 1: 966.Suche in Google Scholar

Khakh, B.S., Beaumont, V., Cachope, R., Munoz-Sanjuan, I., Goldman, S.A., and Grantyn, R. (2017). Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci. 40: 422–437, https://doi.org/10.1016/j.tins.2017.05.002.Suche in Google Scholar PubMed PubMed Central

Khongkow, M., Yata, T., Boonrungsiman, S., Ruktanonchai, U.R., Graham, D., and Namdee, K. (2019). Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep. 9: 8278, https://doi.org/10.1038/s41598-019-44569-6.Suche in Google Scholar PubMed PubMed Central

Kobayashi, K., Hayashi, M., Nakano, H., Fukutani, Y., Sasaki, K., Shimazaki, M., and Koshino, Y. (2002). Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 28: 238–251, https://doi.org/10.1046/j.1365-2990.2002.00390.x.Suche in Google Scholar PubMed

Konovalova, J., Gerasymchuk, D., Parkkinen, I., Chmielarz, P., and Domanskyi, A. (2019). Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int. J. Mol. Sci. 20: 6055, https://doi.org/10.3390/ijms20236055.Suche in Google Scholar PubMed PubMed Central

Kostuk, E.W., Cai, J., and Iacovitti, L. (2019). Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson’s disease models in culture. Glia 67: 1542–1557, https://doi.org/10.1002/glia.23627.Suche in Google Scholar PubMed PubMed Central

Koval, E.D., Shaner, C., Zhang, P., du Maine, X., Fischer, K., Tay, J., Chau, B.N., Wu, G.F., and Miller, T.M. (2013). Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. 22: 4127–4135, https://doi.org/10.1093/hmg/ddt261.Suche in Google Scholar PubMed PubMed Central

Kwon, H.S. and Koh, S.H. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9: 42, https://doi.org/10.1186/s40035-020-00221-2.Suche in Google Scholar PubMed PubMed Central

Lai, C.P. and Breakefield, X.O. (2012). Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front. Physiol. 3: 228, https://doi.org/10.3389/fphys.2012.00228.Suche in Google Scholar PubMed PubMed Central

Lee, M., Liu, T., Im, W., and Kim, M. (2016). Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci. 44: 2114–2119, https://doi.org/10.1111/ejn.13275.Suche in Google Scholar PubMed

Leggio, L., L’Episcopo, F., Magrì, A., Ulloa-Navas, M.J., Paternò, G., Vivarelli, S., Bastos, C.A.P., Tirolo, C., Testa, N., Caniglia, S., et al.. (2022). Small extracellular vesicles secreted by nigrostriatal astrocytes rescue cell death and preserve mitochondrial function in Parkinson’s disease. Adv. Healthc. Mater. 11: e2201203, https://doi.org/10.1002/adhm.202201203.Suche in Google Scholar PubMed PubMed Central

Leng, B., Sun, H., Zhao, J., Liu, Y., Shen, T., Liu, W., Liu, X., Tan, M., Li, F., Zhang, J., et al.. (2020). Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neurosci. Lett. 723: 134866, https://doi.org/10.1016/j.neulet.2020.134866.Suche in Google Scholar PubMed

L’Episcopo, F., Tirolo, C., Peruzzotti-Jametti, L., Serapide, M.F., Testa, N., Caniglia, S., Balzarotti, B., Pluchino, S., and Marchetti, B. (2018). Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells 36: 1179–1197, https://doi.org/10.1002/stem.2827.Suche in Google Scholar PubMed

L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Cossetti, C., D’Adamo, P., Zardini, E., Andreoni, L., Ihekwaba, A.E., et al.. (2011). Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol. Dis. 41: 508–527, https://doi.org/10.1016/j.nbd.2010.10.023.Suche in Google Scholar PubMed PubMed Central

L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Deleidi, M., Serapide, M.F., Pluchino, S., and Marchetti, B. (2012). Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J. Neurosci. 32: 2062–2085, https://doi.org/10.1523/jneurosci.5259-11.2012.Suche in Google Scholar

L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Serapide, M.F., Pluchino, S., and Marchetti, B. (2014). Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 32: 2147–2163, https://doi.org/10.1002/stem.1708.Suche in Google Scholar PubMed PubMed Central

Lewczuk, P., Kornhuber, J., Vanmechelen, E., Peters, O., Heuser, I., Maier, W., Jessen, F., Bürger, K., Hampel, H., Frölich, L., et al.. (2010). Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp. Neurol. 223: 366–370, https://doi.org/10.1016/j.expneurol.2009.07.024.Suche in Google Scholar PubMed

Li, C., Wei, Q., Gu, X., Chen, Y., Chen, X., Cao, B., Ou, R., and Shang, H. (2019). Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front. Mol. Neurosci. 12: 114, https://doi.org/10.3389/fnmol.2019.00114.Suche in Google Scholar PubMed PubMed Central

Liu, T., Im, W., Mook-Jung, I., and Kim, M. (2015). MicroRNA-124 slows down the progression of Huntington’s disease by promoting neurogenesis in the striatum. Neural Regen. Res. 10: 786–791, https://doi.org/10.4103/1673-5374.156978.Suche in Google Scholar PubMed PubMed Central

Liu, W., Bai, X., Zhang, A., Huang, J., Xu, S., and Zhang, J. (2019). Role of exosomes in central nervous system diseases. Front. Mol. Neurosci. 12: 240, https://doi.org/10.3389/fnmol.2019.00240.Suche in Google Scholar PubMed PubMed Central

Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Róg, T., Orłowski, A., Vattulainen, I., Ekroos, K., and Sandvig, K. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831: 1302–1309, https://doi.org/10.1016/j.bbalip.2013.04.011.Suche in Google Scholar PubMed

Lu, Mei, Shao, Wanxuan, Xing, Haonan, and Huang, Yuanyu (2023). Extracellular vesicle-based nucleic acid delivery. Interdiscip. Med. 1: e20220007, https://doi.org/10.1002/inmd.20220007.Suche in Google Scholar

Ma, Y., Wang, K., Pan, J., Fan, Z., Tian, C., Deng, X., Ma, K., Xia, X., Huang, Y., and Zheng, J.C. (2019). Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol. Dis. 124: 322–334, https://doi.org/10.1016/j.nbd.2018.12.003.Suche in Google Scholar PubMed PubMed Central

Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9: 995–1007, https://doi.org/10.1016/s1474-4422(10)70195-2.Suche in Google Scholar

Maheshwari, R., Tekade, M., Gondaliya, P., Kalia, K., D’Emanuele, A., and Tekade, R.K. (2017). Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine 12: 2653–2675, https://doi.org/10.2217/nnm-2017-0210.Suche in Google Scholar PubMed

Marchetti, B. (2020). Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol. 36: 101664, https://doi.org/10.1016/j.redox.2020.101664.Suche in Google Scholar PubMed PubMed Central

Marchetti, B., Tirolo, C., L’Episcopo, F., Caniglia, S., Testa, N., Smith, J.A., Pluchino, S., and Serapide, M.F. (2020). Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 19: e13101, https://doi.org/10.1111/acel.13101.Suche in Google Scholar PubMed PubMed Central

Matarredona, E.R. and Pastor, A.M. (2019). Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment. Cells 9: 96, https://doi.org/10.3390/cells9010096.Suche in Google Scholar PubMed PubMed Central

Mayor, S. and Pagano, R.E. (2007). Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8: 603–612, https://doi.org/10.1038/nrm2216.Suche in Google Scholar PubMed

McColgan, P. and Tabrizi, S.J. (2018). Huntington’s disease: a clinical review. Eur. J. Neurol. 25: 24–34, https://doi.org/10.1111/ene.13413.Suche in Google Scholar PubMed

McMillan, K.J., Murray, T.K., Bengoa-Vergniory, N., Cordero-Llana, O., Cooper, J., Buckley, A., Wade-Martins, R., Uney, J.B., O’Neill, M.J., Wong, L.F., et al.. (2017). Loss of MicroRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol. Ther. 25: 2404–2414, https://doi.org/10.1016/j.ymthe.2017.08.017.Suche in Google Scholar PubMed PubMed Central

Mezey, E., Dehejia, A., Harta, G., Papp, M.I., Polymeropoulos, M.H., and Brownstein, M.J. (1998). Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat. Med. 4: 755–757, https://doi.org/10.1038/nm0798-755.Suche in Google Scholar PubMed

Minakaki, G., Menges, S., Kittel, A., Emmanouilidou, E., Schaeffner, I., Barkovits, K., Bergmann, A., Rockenstein, E., Adame, A., Marxreiter, F., et al.. (2018). Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14: 98–119, https://doi.org/10.1080/15548627.2017.1395992.Suche in Google Scholar PubMed PubMed Central

Moidunny, S., Vinet, J., Wesseling, E., Bijzet, J., Shieh, C.H., van Ijzendoorn, S.C., Bezzi, P., Boddeke, H.W., and Biber, K. (2012). Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J. Neuroinflammation 9: 198, https://doi.org/10.1186/1742-2094-9-198.Suche in Google Scholar PubMed PubMed Central

Morel, L., Regan, M., Higashimori, H., Ng, S.K., Esau, C., Vidensky, S., Rothstein, J., and Yang, Y. (2013). Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 288: 7105–7116, https://doi.org/10.1074/jbc.m112.410944.Suche in Google Scholar PubMed PubMed Central

Mouser, P.E., Head, E., Ha, K.H., and Rohn, T.T. (2006). Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am. J. Pathol. 168: 936–946, https://doi.org/10.2353/ajpath.2006.050798.Suche in Google Scholar PubMed PubMed Central

Murakami, T., Ilieva, H., Shiote, M., Nagata, T., Nagano, I., Shoji, M., and Abe, K. (2003). Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res. 989: 231–237, https://doi.org/10.1016/s0006-8993(03)03374-2.Suche in Google Scholar PubMed

Navarro, A., Rioseras, B., Del Valle, E., Martínez-Pinilla, E., Astudillo, A., and Tolivia, J. (2018). Expression pattern of myelin-related apolipoprotein D in human multiple sclerosis lesions. Front. Aging Neurosci. 10: 254, https://doi.org/10.3389/fnagi.2018.00254.Suche in Google Scholar PubMed PubMed Central

Ngolab, J., Trinh, I., Rockenstein, E., Mante, M., Florio, J., Trejo, M., Masliah, D., Adame, A., Masliah, E., and Rissman, R.A. (2017). Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol Commun 5: 46, https://doi.org/10.1186/s40478-017-0445-5.Suche in Google Scholar PubMed PubMed Central

Nilsen, L.H., Rae, C., Ittner, L.M., Götz, J., and Sonnewald, U. (2013). Glutamate metabolism is impaired in transgenic mice with tau hyperphosphorylation. J. Cereb. Blood Flow Metab. 33: 684–691, https://doi.org/10.1038/jcbfm.2012.212.Suche in Google Scholar PubMed PubMed Central

Nonaka, T., Masuda-Suzukake, M., Arai, T., Hasegawa, Y., Akatsu, H., Obi, T., Yoshida, M., Murayama, S., Mann, D.M., Akiyama, H., et al.. (2013). Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4: 124–134, https://doi.org/10.1016/j.celrep.2013.06.007.Suche in Google Scholar PubMed

Novoselova, T.V., Margulis, B.A., Novoselov, S.S., Sapozhnikov, A.M., van der Spuy, J., Cheetham, M.E., and Guzhova, I.V. (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J. Neurochem. 94: 597–606, https://doi.org/10.1111/j.1471-4159.2005.03119.x.Suche in Google Scholar PubMed

Park, J.E., Tan, H.S., Datta, A., Lai, R.C., Zhang, H., Meng, W., Lim, S.K., and Sze, S.K. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9: 1085–1099, https://doi.org/10.1074/mcp.m900381-mcp200.Suche in Google Scholar

Parnetti, L., Lanari, A., Amici, S., Gallai, V., Vanmechelen, E., and Hulstaert, F. (2001). CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol. Sci. 22: 77–78, https://doi.org/10.1007/s100720170055.Suche in Google Scholar PubMed

Pascua-Maestro, R., González, E., Lillo, C., Ganfornina, M.D., Falcón-Pérez, J.M., and Sanchez, D. (2018). Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front. Cell Neurosci. 12: 526, https://doi.org/10.3389/fncel.2018.00526.Suche in Google Scholar PubMed PubMed Central

Pasinelli, P. and Brown, R.H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7: 710–723, https://doi.org/10.1038/nrn1971.Suche in Google Scholar PubMed

Peng, D., Wang, Y., Xiao, Y., Peng, M., Mai, W., Hu, B., Jia, Y., Chen, H., Yang, Y., Xiang, Q., et al.. (2022). Extracellular vesicles derived from astrocyte-treated with haFGF(14-154) attenuate Alzheimer phenotype in AD mice. Theranostics 12: 3862–3881, https://doi.org/10.7150/thno.70951.Suche in Google Scholar PubMed PubMed Central

Perneczky, R., Tsolakidou, A., Arnold, A., Diehl-Schmid, J., Grimmer, T., Förstl, H., Kurz, A., and Alexopoulos, P. (2011). CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology 77: 35–38, https://doi.org/10.1212/wnl.0b013e318221ad47.Suche in Google Scholar

Pinnell, J.R., Cui, M., and Tieu, K. (2021). Exosomes in Parkinson disease. J. Neurochem. 157: 413–428, https://doi.org/10.1111/jnc.15288.Suche in Google Scholar PubMed PubMed Central

Pinto, S., Cunha, C., Barbosa, M., Vaz, A.R., and Brites, D. (2017). Exosomes from NSC-34 cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations in microglia phenotype. Front. Neurosci. 11: 273, https://doi.org/10.3389/fnins.2017.00273.Suche in Google Scholar PubMed PubMed Central

Pistono, C., Bister, N., Stanová, I., and Malm, T. (2020). Glia-derived extracellular vesicles: role in central nervous system communication in health and disease. Front. Cell Dev. Biol. 8: 623771, https://doi.org/10.3389/fcell.2020.623771.Suche in Google Scholar PubMed PubMed Central

Polanco, J.C., Li, C., Durisic, N., Sullivan, R., and Götz, J. (2018). Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol. Commun. 6: 10, https://doi.org/10.1186/s40478-018-0514-4.Suche in Google Scholar PubMed PubMed Central

Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al.. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047, https://doi.org/10.1126/science.276.5321.2045.Suche in Google Scholar PubMed

Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M., Santoro, G., Savettieri, G., and Di Liegro, I. (2008). Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int. J. Mol. Med. 21: 63–67, https://doi.org/10.3892/ijmm.21.1.63.Suche in Google Scholar

Qu, M., Lin, Q., Huang, L., Fu, Y., Wang, L., He, S., Fu, Y., Yang, S., Zhang, Z., Zhang, L., et al.. (2018). Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control Release 287: 156–166, https://doi.org/10.1016/j.jconrel.2018.08.035.Suche in Google Scholar PubMed

Rabinovsky, E.D., Gelir, E., Gelir, S., Lui, H., Kattash, M., DeMayo, F.J., Shenaq, S.M., and Schwartz, R.J. (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. 17: 53–55, https://doi.org/10.1096/fj.02-0183fje.Suche in Google Scholar PubMed

Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., and Simons, K. (2006). Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. U. S. A. 103: 11172–11177, https://doi.org/10.1073/pnas.0603838103.Suche in Google Scholar PubMed PubMed Central

Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200: 373–383, https://doi.org/10.1083/jcb.201211138.Suche in Google Scholar PubMed PubMed Central

Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., and Ratajczak, M.Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20: 847–856, https://doi.org/10.1038/sj.leu.2404132.Suche in Google Scholar PubMed

Rawlins, M.D., Wexler, N.S., Wexler, A.R., Tabrizi, S.J., Douglas, I., Evans, S.J., and Smeeth, L. (2016). The prevalence of Huntington’s disease. Neuroepidemiology 46: 144–153, https://doi.org/10.1159/000443738.Suche in Google Scholar PubMed

Record, M., Subra, C., Silvente-Poirot, S., and Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 81: 1171–1182, https://doi.org/10.1016/j.bcp.2011.02.011.Suche in Google Scholar PubMed

Reed, E.R., Latourelle, J.C., Bockholt, J.H., Bregu, J., Smock, J., Paulsen, J.S., Myers, R.H., De Soriano, I., Hobart, C., Miller, A., et al.. (2018). MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 90: e264–e72, https://doi.org/10.1212/wnl.0000000000004844.Suche in Google Scholar

Ricci, C., Marzocchi, C., and Battistini, S. (2018). MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells 7: 219, https://doi.org/10.3390/cells7110219.Suche in Google Scholar PubMed PubMed Central

Ridolfi, B. and Abdel-Haq, H. (2017). Neurodegenerative disorders treatment: the MicroRNA role. Curr. Gene Ther. 17: 327–363, https://doi.org/10.2174/1566523218666180119120726.Suche in Google Scholar PubMed

Robinson, M.B., Tidwell, J.L., Gould, T., Taylor, A.R., Newbern, J.M., Graves, J., Tytell, M., and Milligan, C.E. (2005). Extracellular heat shock protein 70: a critical component for motoneuron survival. J. Neurosci. 25: 9735–9745, https://doi.org/10.1523/jneurosci.1912-05.2005.Suche in Google Scholar

Ross, C.A., Aylward, E.H., Wild, E.J., Langbehn, D.R., Long, J.D., Warner, J.H., Scahill, R.I., Leavitt, B.R., Stout, J.C., Paulsen, J.S., et al.. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10: 204–216, https://doi.org/10.1038/nrneurol.2014.24.Suche in Google Scholar PubMed

Rowe, C.C., Ellis, K.A., Rimajova, M., Bourgeat, P., Pike, K.E., Jones, G., Fripp, J., Tochon-Danguy, H., Morandeau, L., O’Keefe, G., et al.. (2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging, 31: 1275-1283, https://doi.org/10.1016/j.neurobiolaging.2010.04.007.Suche in Google Scholar PubMed

Salvany, S., Casanovas, A., Piedrafita, L., Gras, S., Calderó, J., and Esquerda, J.E. (2022). Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Pathol. 32: e13078, https://doi.org/10.1111/bpa.13078.Suche in Google Scholar PubMed PubMed Central

Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, N.C., et al.. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287: 3842–3849, https://doi.org/10.1074/jbc.m111.277061.Suche in Google Scholar PubMed PubMed Central

Sanchez, I.I., Nguyen, T.B., England, W.E., Lim, R.G., Vu, A.Q., Miramontes, R., Byrne, L.M., Markmiller, S., Lau, A.L., Orellana, I., et al.. (2021). Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J. Clin. Invest. 131 e140723, https://doi.org/10.1172/jci140723.Suche in Google Scholar

Santavanond, J.P., Rutter, S.F., Atkin-Smith, G.K., and Poon, I.K.H. (2021). Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell Biochem. 97: 61–88, https://doi.org/10.1007/978-3-030-67171-6_4.Suche in Google Scholar PubMed

Sastre, M., Klockgether, T., and Heneka, M.T. (2006). Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci. 24: 167–176, https://doi.org/10.1016/j.ijdevneu.2005.11.014.Suche in Google Scholar PubMed

Schiera, G., Di Liegro, C.M., and Di Liegro, I. (2015). Extracellular membrane vesicles as vehicles for brain cell-to-cell interactions in physiological as well as pathological conditions. Biomed. Res. Int. 2015: 152926, https://doi.org/10.1155/2015/152926.Suche in Google Scholar PubMed PubMed Central

Schoonenboom, N.S., Pijnenburg, Y.A., Mulder, C., Rosso, S.M., Van Elk, E.J., Van Kamp, G.J., Van Swieten, J.C., and Scheltens, P. (2004). Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 62: 1580–1584, https://doi.org/10.1212/01.wnl.0000123249.58898.e0.Suche in Google Scholar PubMed

Schrag, A., Zhelev, S.S., Hotham, S., Merritt, R.D., Khan, K., and Graham, L. (2019). Heterogeneity in progression of prodromal features in Parkinson’s disease. Parkinsonism Relat. Disord 64: 275–279, https://doi.org/10.1016/j.parkreldis.2019.05.013.Suche in Google Scholar PubMed

Scotter, E.L., Chen, H.J., and Shaw, C.E. (2015). TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12: 352–363, https://doi.org/10.1007/s13311-015-0338-x.Suche in Google Scholar PubMed PubMed Central

Scuderi, C., Facchinetti, R., Steardo, L., and Valenza, M. (2020). Neuroinflammation in Alzheimer’s disease: friend or foe? Faseb. J. 34: 1, https://doi.org/10.1096/fasebj.2020.34.s1.00381.Suche in Google Scholar

Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., Li, Y., Aro, P., Dator, R., He, C., et al.. (2014). Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 128: 639–650, https://doi.org/10.1007/s00401-014-1314-y.Suche in Google Scholar PubMed PubMed Central

Sidoryk-Węgrzynowicz, M. and Strużyńska, L. (2019). Astroglial contribution to tau-dependent neurodegeneration. Biochem. J. 476: 3493–3504, https://doi.org/10.1042/bcj20190506.Suche in Google Scholar

Silverman, J.M., Christy, D., Shyu, C.C., Moon, K.M., Fernando, S., Gidden, Z., Cowan, C.M., Ban, Y., Stacey, R.G., Grad, L.I., et al.. (2019). CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J. Biol. Chem. 294: 3744–3759, https://doi.org/10.1074/jbc.ra118.004825.Suche in Google Scholar

Skotland, T., Sandvig, K., and Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66: 30–41, https://doi.org/10.1016/j.plipres.2017.03.001.Suche in Google Scholar PubMed

Song, J.X., Malampati, S., Zeng, Y., Durairajan, S.S.K., Yang, C.B., Tong, B.C., Iyaswamy, A., Shang, W.B., Sreenivasmurthy, S.G., Zhu, Z., et al.. (2020). A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 19: e13069, https://doi.org/10.1111/acel.13069.Suche in Google Scholar PubMed PubMed Central

Sproviero, D., La Salvia, S., Giannini, M., Crippa, V., Gagliardi, S., Bernuzzi, S., Diamanti, L., Ceroni, M., Pansarasa, O., Poletti, A., et al.. (2018). Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front. Neurosci. 12: 487, https://doi.org/10.3389/fnins.2018.00487.Suche in Google Scholar PubMed PubMed Central

Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.P., Appelmans, S., Oh, H., Van Damme, P., Rutten, B., Man, W.Y., De Mol, M., et al.. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8: 85–92, https://doi.org/10.1038/nn1360.Suche in Google Scholar PubMed

Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K.M., Mollenhauer, B., and Schneider, A. (2016). Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139: 481–494, https://doi.org/10.1093/brain/awv346.Suche in Google Scholar PubMed PubMed Central

Sun, Y., Luo, Z.M., Guo, X.M., Su, D.F., and Liu, X. (2015). An updated role of microRNA-124 in central nervous system disorders: a review. Front. Cell Neurosci. 9: 193, https://doi.org/10.3389/fncel.2015.00193.Suche in Google Scholar PubMed PubMed Central

Tabrizi, S.J., Flower, M.D., Ross, C.A., and Wild, E.J. (2020). Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16: 529–546, https://doi.org/10.1038/s41582-020-0389-4.Suche in Google Scholar PubMed

Takeuchi, T. (2021). Pathogenic and protective roles of extracellular vesicles in neurodegenerative diseases. J. Biochem. 169: 181–186, https://doi.org/10.1093/jb/mvaa131.Suche in Google Scholar PubMed

Taylor, A.R., Robinson, M.B., Gifondorwa, D.J., Tytell, M., and Milligan, C.E. (2007). Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev. Neurobiol. 67: 1815–1829, https://doi.org/10.1002/dneu.20559.Suche in Google Scholar PubMed

Tengteng, W., Mengchao, Y., Li, Z., Xi Chen, and Zhong, P. (2018). I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of huntington’s disease. J. Neurol., Neurosurg. Psychiatry 89: A88.10.1136/jnnp-2018-EHDN.238Suche in Google Scholar

Terrisse, L., Poirier, J., Bertrand, P., Merched, A., Visvikis, S., Siest, G., Milne, R., and Rassart, E. (1998). Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer’s patients. J. Neurochem. 71: 1643–1650, https://doi.org/10.1046/j.1471-4159.1998.71041643.x.Suche in Google Scholar PubMed

Théry, C. (2011). Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep. 3: 15, https://doi.org/10.3410/b3-15.Suche in Google Scholar

Tolosa, L., Mir, M., Asensio, V.J., Olmos, G., and Lladó, J. (2008). Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J. Neurochem. 105: 1080–1090, https://doi.org/10.1111/j.1471-4159.2007.05206.x.Suche in Google Scholar PubMed

Trotta, T., Panaro, M.A., Cianciulli, A., Mori, G., Di Benedetto, A., and Porro, C. (2018). Microglia-derived extracellular vesicles in Alzheimer’s Disease: a double-edged sword. Biochem. Pharmacol. 148: 184–192, https://doi.org/10.1016/j.bcp.2017.12.020.Suche in Google Scholar PubMed

Upadhya, R., Zingg, W., Shetty, S., and Shetty, A.K. (2020). Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control Release 323: 225–239, https://doi.org/10.1016/j.jconrel.2020.04.017.Suche in Google Scholar PubMed PubMed Central

Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., and Lötvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659, https://doi.org/10.1038/ncb1596.Suche in Google Scholar PubMed

Vandenberg, R.J. and Ryan, R.M. (2013). Mechanisms of glutamate transport. Physiol. Rev. 93: 1621–1657, https://doi.org/10.1152/physrev.00007.2013.Suche in Google Scholar PubMed

Van Den Bosch, L., Storkebaum, E., Vleminckx, V., Moons, L., Vanopdenbosch, L., Scheveneels, W., Carmeliet, P., and Robberecht, W. (2004). Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiol. Dis. 17: 21–28, https://doi.org/10.1016/j.nbd.2004.06.004.Suche in Google Scholar PubMed

Vanderstichele, H., De Vreese, K., Blennow, K., Andreasen, N., Sindic, C., Ivanoiu, A., Hampel, H., Bürger, K., Parnetti, L., Lanari, A., et al.. (2006). Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin. Chem. Lab. Med. 44: 1472–1480, https://doi.org/10.1515/cclm.2006.258.Suche in Google Scholar

Vella, L.J., Hill, A.F., and Cheng, L. (2016). Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 17: 173, https://doi.org/10.3390/ijms17020173.Suche in Google Scholar PubMed PubMed Central

Vidal, M. (2019). Exosomes: revisiting their role as “garbage bags”. Traffic 20: 815–828, https://doi.org/10.1111/tra.12687.Suche in Google Scholar PubMed

Waller, R., Wyles, M., Heath, P.R., Kazoka, M., Wollff, H., Shaw, P.J., and Kirby, J. (2017). Small RNA sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neural and glial activity. Front. Neurosci. 11: 731, https://doi.org/10.3389/fnins.2017.00731.Suche in Google Scholar PubMed PubMed Central

Wang, G., Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., and Bieberich, E. (2012). Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J. Biol. Chem. 287: 21384–21395, https://doi.org/10.1074/jbc.m112.340513.Suche in Google Scholar

Wang, S., Cesca, F., Loers, G., Schweizer, M., Buck, F., Benfenati, F., Schachner, M., and Kleene, R. (2011). Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31: 7275–7290, https://doi.org/10.1523/jneurosci.6476-10.2011.Suche in Google Scholar PubMed PubMed Central

Winston, C.N., Goetzl, E.J., Schwartz, J.B., Elahi, F.M., and Rissman, R.A. (2019). Complement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer’s disease dementia. Alzheimers Dement 11: 61–66, https://doi.org/10.1016/j.dadm.2018.11.002.Suche in Google Scholar PubMed PubMed Central

Wood, T.E., Barry, J., Yang, Z., Cepeda, C., Levine, M.S., and Gray, M. (2019). Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet. 28: 487–500, https://doi.org/10.1093/hmg/ddy363.Suche in Google Scholar PubMed PubMed Central

Woodbury, M.E. and Ikezu, T. (2014). Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 9: 92–101, https://doi.org/10.1007/s11481-013-9501-5.Suche in Google Scholar PubMed PubMed Central

Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C., and Husemann, J. (2003). Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9: 453–457, https://doi.org/10.1038/nm838.Suche in Google Scholar PubMed

Xia, X., Wang, Y., Huang, Y., Zhang, H., Lu, H., and Zheng, J.C. (2019). Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog. Neurobiol. 183: 101694, https://doi.org/10.1016/j.pneurobio.2019.101694.Suche in Google Scholar PubMed PubMed Central

Xu, L., Cao, H., Xie, Y., Zhang, Y., Du, M., Xu, X., Ye, R., and Liu, X. (2019). Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res. 1717: 66–73, https://doi.org/10.1016/j.brainres.2019.04.009.Suche in Google Scholar PubMed

Xu, Q., Zhao, Y., Zhou, X., Luan, J., Cui, Y., and Han, J. (2018). Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients. Intractable Rare Dis. Res. 7: 13–18, https://doi.org/10.5582/irdr.2017.01091.Suche in Google Scholar PubMed PubMed Central

Yang, W., Dunlap, J.R., Andrews, R.B., and Wetzel, R. (2002). Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11: 2905–2917, https://doi.org/10.1093/hmg/11.23.2905.Suche in Google Scholar PubMed

Zheng, C., Nennesmo, I., Fadeel, B., and Henter, J.I. (2004). Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 56: 564–567, https://doi.org/10.1002/ana.20223.Suche in Google Scholar PubMed

Zhou, Q., He, L., Hu, J., Gao, Y., Shen, D., Ni, Y., Qin, Y., Liang, H., Liu, J., Le, W., et al.. (2022). Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front. Med. 16: 723–735, https://doi.org/10.1007/s11684-021-0905-y.Suche in Google Scholar PubMed

Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R.C., Ju, S., Mu, J., Zhang, L., Steinman, L., et al.. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19: 1769–1779, https://doi.org/10.1038/mt.2011.164.Suche in Google Scholar PubMed PubMed Central

Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al.. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601–607, https://doi.org/10.1016/j.neuron.2004.11.005.Suche in Google Scholar PubMed

Received: 2024-03-26
Accepted: 2024-05-24
Published Online: 2024-06-19
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0043/html?lang=de
Button zum nach oben scrollen