Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
Abstract
Neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles – both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Funding source: Municipal level scientific research plan project of Ganzhou Municipal Health Commission
Award Identifier / Grant number: 2022-2-62
Funding source: Science and Technology Plan of Jiangxi Provincial Health Commission
Award Identifier / Grant number: 202210863
Funding source: Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine
Award Identifier / Grant number: 2022B495
Acknowledgments
We thanks everyone who contributed this manuscript.
-
Research ethics: Not applicable.
-
Author contributions: WX and ZT conceived the idea of this review. ZY and WF drafted the manuscript and created the figures. LH, XY, and WL performed the literature search and reviewed the content of this manuscript. All authors read and approved the final manuscript.
-
Competing interests: The authors declare no competing interests.
-
Research funding: This work was supported by the Science and Technology Plan of Jiangxi Provincial Health Commission (202210863), Municipal level scientific research plan project of Ganzhou Municipal Health Commission (2022-2-62), Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine (2022B495).
-
Data availability: Not applicable.
References
Akers, J.C., Gonda, D., Kim, R., Carter, B.S., and Chen, C.C. (2013). Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 113: 1–11, https://doi.org/10.1007/s11060-013-1084-8.Search in Google Scholar PubMed PubMed Central
Alami, N.H., Smith, R.B., Carrasco, M.A., Williams, L.A., Winborn, C.S., Han, S.S.W., Kiskinis, E., Winborn, B., Freibaum, B.D., Kanagaraj, A., et al.. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81: 536–543, https://doi.org/10.1016/j.neuron.2013.12.018.Search in Google Scholar PubMed PubMed Central
Alterman, J.F., Hall, L.M., Coles, A.H., Hassler, M.R., Didiot, M.C., Chase, K., Abraham, J., Sottosanti, E., Johnson, E., Sapp, E., et al.. (2015). Hydrophobically modified siRNAs silence huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4: e266, https://doi.org/10.1038/mtna.2015.38.Search in Google Scholar PubMed PubMed Central
Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J., and Cooper, J.M. (2011a). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42: 360–367, https://doi.org/10.1016/j.nbd.2011.01.029.Search in Google Scholar PubMed PubMed Central
Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011b). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29: 341–345, https://doi.org/10.1038/nbt.1807.Search in Google Scholar PubMed
Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H., Robitaille, R., and Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron 81: 728–739, https://doi.org/10.1016/j.neuron.2014.02.007.Search in Google Scholar PubMed PubMed Central
Arima, K., Hirai, S., Sunohara, N., Aoto, K., Izumiyama, Y., Uéda, K., Ikeda, K., and Kawai, M. (1999). Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 843: 53–61, https://doi.org/10.1016/s0006-8993(99)01848-x.Search in Google Scholar PubMed
Bachiller, S., Jiménez-Ferrer, I., Paulus, A., Yang, Y., Swanberg, M., Deierborg, T., and Boza-Serrano, A. (2018). Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front. Cell Neurosci. 12: 488, https://doi.org/10.3389/fncel.2018.00488.Search in Google Scholar PubMed PubMed Central
Basso, M., Pozzi, S., Tortarolo, M., Fiordaliso, F., Bisighini, C., Pasetto, L., Spaltro, G., Lidonnici, D., Gensano, F., Battaglia, E., et al.. (2013). Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J. Biol. Chem. 288: 15699–15711, https://doi.org/10.1074/jbc.m112.425066.Search in Google Scholar PubMed PubMed Central
Belloir, B., Kövari, E., Surini-Demiri, M., and Savioz, A. (2001). Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J. Neurosci. Res. 64: 61–69, https://doi.org/10.1002/jnr.1054.Search in Google Scholar PubMed
Bianco, F., Perrotta, C., Novellino, L., Francolini, M., Riganti, L., Menna, E., Saglietti, L., Schuchman, E.H., Furlan, R., Clementi, E., et al.. (2009). Acid sphingomyelinase activity triggers microparticle release from glial cells. Embo J. 28: 1043–1054, https://doi.org/10.1038/emboj.2009.45.Search in Google Scholar PubMed PubMed Central
Bieberich, E., MacKinnon, S., Silva, J., Noggle, S., and Condie, B.G. (2003). Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J. Cell Biol. 162: 469–479, https://doi.org/10.1083/jcb.200212067.Search in Google Scholar PubMed PubMed Central
Bieberich, E., Silva, J., Wang, G., Krishnamurthy, K., and Condie, B.G. (2004). Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J. Cell Biol. 167: 723–734, https://doi.org/10.1083/jcb.200405144.Search in Google Scholar PubMed PubMed Central
Bradford, J., Shin, J.Y., Roberts, M., Wang, C.E., Li, X.J., and Li, S. (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. U. S. A. 106: 22480–22485, https://doi.org/10.1073/pnas.0911503106.Search in Google Scholar PubMed PubMed Central
Brites, D. and Fernandes, A. (2015). Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell Neurosci. 9: 476, https://doi.org/10.3389/fncel.2015.00476.Search in Google Scholar PubMed PubMed Central
Brunet, N., Tarabal, O., Portero-Otín, M., Oppenheim, R.W., Esquerda, J.E., and Calderó, J. (2007). Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J. Comp. Neurol. 501: 669–690, https://doi.org/10.1002/cne.21157.Search in Google Scholar PubMed
Budnik, V., Ruiz-Cañada, C., and Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17: 160–172, https://doi.org/10.1038/nrn.2015.29.Search in Google Scholar PubMed PubMed Central
Caroni, P. and Grandes, P. (1990). Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J. Cell Biol. 110: 1307–1317, https://doi.org/10.1083/jcb.110.4.1307.Search in Google Scholar PubMed PubMed Central
Chaudhuri, A.D., Dastgheyb, R.M., Yoo, S.W., Trout, A., Talbot, C.C.Jr., Hao, H., Witwer, K.W., and Haughey, N.J. (2018). TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis. 9: 363, https://doi.org/10.1038/s41419-018-0369-4.Search in Google Scholar PubMed PubMed Central
Chen, C.C., Liu, L., Ma, F., Wong, C.W., Guo, X.E., Chacko, J.V., Farhoodi, H.P., Zhang, S.X., Zimak, J., Ségaliny, A., et al.. (2016). Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol. Bioeng. 9: 509–529, https://doi.org/10.1007/s12195-016-0458-3.Search in Google Scholar PubMed PubMed Central
Chen, P.C., Wu, D., Hu, C.J., Chen, H.Y., Hsieh, Y.C., and Huang, C.C. (2020). Exosomal TAR DNA-binding protein-43 and neurofilaments in plasma of amyotrophic lateral sclerosis patients: a longitudinal follow-up study. J. Neurol. Sci. 418: 117070, https://doi.org/10.1016/j.jns.2020.117070.Search in Google Scholar PubMed
Chen, Y., Gao, C., Sun, Q., Pan, H., Huang, P., Ding, J., and Chen, S. (2017). MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front. Aging Neurosci. 9: 232, https://doi.org/10.3389/fnagi.2017.00232.Search in Google Scholar PubMed PubMed Central
Chistiakov, D.A. and Chistiakov, A.A. (2017). α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters. Acta Neurol. Belg. 117: 43–51, https://doi.org/10.1007/s13760-016-0679-1.Search in Google Scholar PubMed
Cicardi, M.E., Marrone, L., Azzouz, M., and Trotti, D. (2021). Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. Embo J. 40: e106389, https://doi.org/10.15252/embj.2020106389.Search in Google Scholar PubMed PubMed Central
Clark, C.M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Morris, J.C., McKeel, D.W.Jr., Farlow, M., Weitlauf, S.L., et al.. (2003). Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 60: 1696–1702, https://doi.org/10.1001/archneur.60.12.1696.Search in Google Scholar PubMed
Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A. (2018). Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U. S. A. 115: E1896–e905, https://doi.org/10.1073/pnas.1800165115.Search in Google Scholar PubMed PubMed Central
Coleman, B.M. and Hill, A.F. (2015). Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol. 40: 89–96, https://doi.org/10.1016/j.semcdb.2015.02.007.Search in Google Scholar PubMed
Cooper, J.M., Wiklander, P.B., Nordin, J.Z., Al-Shawi, R., Wood, M.J., Vithlani, M., Schapira, A.H., Simons, J.P., El-Andaloussi, S., and Alvarez-Erviti, L. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29: 1476–1485, https://doi.org/10.1002/mds.25978.Search in Google Scholar PubMed PubMed Central
Costanzo, M., Abounit, S., Marzo, L., Danckaert, A., Chamoun, Z., Roux, P., and Zurzolo, C. (2013). Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126: 3678–3685, https://doi.org/10.1242/jcs.126086.Search in Google Scholar PubMed
Coulson, N.S., Buchanan, H., and Aubeeluck, A. (2007). Social support in cyberspace: a content analysis of communication within a Huntington’s disease online support group. Patient Educ. Couns. 68: 173–178, https://doi.org/10.1016/j.pec.2007.06.002.Search in Google Scholar PubMed
Crescitelli, R., Lässer, C., Szabó, T.G., Kittel, A., Eldh, M., Dianzani, I., Buzás, E.I., and Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2, https://doi.org/10.3402/jev.v2i0.20677.Search in Google Scholar PubMed PubMed Central
Cunha, C., Santos, C., Gomes, C., Fernandes, A., Correia, A.M., Sebastião, A.M., Vaz, A.R., and Brites, D. (2018). Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. Mol. Neurobiol. 55: 4207–4224, https://doi.org/10.1007/s12035-017-0631-2.Search in Google Scholar PubMed
Dal Prà, I., Chiarini, A., Gui, L., Chakravarthy, B., Pacchiana, R., Gardenal, E., Whitfield, J.F., and Armato, U. (2015). Do astrocytes collaborate with neurons in spreading the “infectious” aβ and Tau drivers of Alzheimer’s disease? Neuroscientist 21: 9–29, https://doi.org/10.1177/1073858414529828.Search in Google Scholar PubMed
Danzer, K.M., Kranich, L.R., Ruf, W.P., Cagsal-Getkin, O., Winslow, A.R., Zhu, L., Vanderburg, C.R., and McLean, P.J. (2012). Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7: 42, https://doi.org/10.1186/1750-1326-7-42.Search in Google Scholar PubMed PubMed Central
Dassati, S., Waldner, A., and Schweigreiter, R. (2014). Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol. Aging 35: 1632–1642, https://doi.org/10.1016/j.neurobiolaging.2014.01.148.Search in Google Scholar PubMed PubMed Central
Datta Chaudhuri, A., Dasgheyb, R.M., DeVine, L.R., Bi, H., Cole, R.N., and Haughey, N.J. (2020). Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability. Glia 68: 128–144, https://doi.org/10.1002/glia.23708.Search in Google Scholar PubMed
Dayalu, P. and Albin, R.L. (2015). Huntington disease: pathogenesis and treatment. Neurol. Clin. 33: 101–114, https://doi.org/10.1016/j.ncl.2014.09.003.Search in Google Scholar PubMed
Delpech, J.C., Herron, S., Botros, M.B., and Ikezu, T. (2019). Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci. 42: 361–372, https://doi.org/10.1016/j.tins.2019.02.007.Search in Google Scholar PubMed PubMed Central
Deng, J., Koutras, C., Donnelier, J., Alshehri, M., Fotouhi, M., Girard, M., Casha, S., McPherson, P.S., Robbins, S.M., and Braun, J.E.A. (2017). Neurons export extracellular vesicles enriched in cysteine string protein and misfolded protein cargo. Sci. Rep. 7: 956, https://doi.org/10.1038/s41598-017-01115-6.Search in Google Scholar PubMed PubMed Central
Desplats, P., Lee, H.J., Bae, E.J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S.J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. U. S. A. 106: 13010–13015, https://doi.org/10.1073/pnas.0903691106.Search in Google Scholar PubMed PubMed Central
Díez-Planelles, C., Sánchez-Lozano, P., Crespo, M.C., Gil-Zamorano, J., Ribacoba, R., González, N., Suárez, E., Martínez-Descals, A., Martínez-Camblor, P., Álvarez, V., et al.. (2016). Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment. Pharmacol. Res. 108: 102–110, https://doi.org/10.1016/j.phrs.2016.05.005.Search in Google Scholar PubMed
Ding, L., Yang, X., Xia, X., Li, Y., Wang, Y., Li, C., Sun, Y., Gao, G., Zhao, S., Sheng, S., et al.. (2022). Exosomes mediate APP dysregulation via APP-miR-185-5p axis. Front. Cell Dev. Biol. 10: 793388, https://doi.org/10.3389/fcell.2022.793388.Search in Google Scholar PubMed PubMed Central
Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 35: 1792–1800, https://doi.org/10.1016/j.neurobiolaging.2014.02.012.Search in Google Scholar PubMed PubMed Central
Dobrowolny, G., Martini, M., Scicchitano, B.M., Romanello, V., Boncompagni, S., Nicoletti, C., Pietrangelo, L., De Panfilis, S., Catizone, A., Bouchè, M., et al.. (2018). Muscle expression of SOD1(G93A) triggers the dismantlement of neuromuscular junction via PKC-theta. Antioxid Redox Signal 28: 1105–1119, https://doi.org/10.1089/ars.2017.7054.Search in Google Scholar PubMed
Dorsey, E.R., Sherer, T., Okun, M.S., and Bloem, B.R. (2018). The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis. 8: S3–s8, https://doi.org/10.3233/jpd-181474.Search in Google Scholar PubMed PubMed Central
Dutta, S., Hornung, S., Kruayatidee, A., Maina, K.N., Del Rosario, I., Paul, K.C., Wong, D.Y., Duarte Folle, A., Markovic, D., Palma, J.A., et al.. (2021). α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy. Acta Neuropathol. 142: 495–511, https://doi.org/10.1007/s00401-021-02324-0.Search in Google Scholar PubMed PubMed Central
Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S.D., Ntzouni, M., Margaritis, L.H., Stefanis, L., and Vekrellis, K. (2010). Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30: 6838–6851, https://doi.org/10.1523/jneurosci.5699-09.2010.Search in Google Scholar
Escartin, C., Pierre, K., Colin, A., Brouillet, E., Delzescaux, T., Guillermier, M., Dhenain, M., Déglon, N., Hantraye, P., Pellerin, L., et al.. (2007). Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J. Neurosci. 27: 7094–7104, https://doi.org/10.1523/jneurosci.0174-07.2007.Search in Google Scholar PubMed PubMed Central
Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., et al.. (2006). Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31: 642–648, https://doi.org/10.1016/j.mcn.2005.12.003.Search in Google Scholar PubMed
Feiler, M.S., Strobel, B., Freischmidt, A., Helferich, A.M., Kappel, J., Brewer, B.M., Li, D., Thal, D.R., Walther, P., Ludolph, A.C., et al.. (2015). TDP-43 is intercellularly transmitted across axon terminals. J. Cell Biol. 211: 897–911, https://doi.org/10.1083/jcb.201504057.Search in Google Scholar PubMed PubMed Central
Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., Abner, E.L., Petersen, R.C., Federoff, H.J., Miller, B.L., et al.. (2015). Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11: 600–607.e1, https://doi.org/10.1016/j.jalz.2014.06.008.Search in Google Scholar PubMed PubMed Central
Fontana, A.C. (2015). Current approaches to enhance glutamate transporter function and expression. J. Neurochem. 134: 982–1007, https://doi.org/10.1111/jnc.13200.Search in Google Scholar PubMed
Fraser, K.B., Moehle, M.S., Alcalay, R.N., West, A.B., Bressman, S., Giladi, N., Marder, K., Marti Masso, J.F., Tolosa, E., Aasly, J., et al.. (2016a). Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86: 994–999, https://doi.org/10.1212/wnl.0000000000002436.Search in Google Scholar
Fraser, K.B., Rawlins, A.B., Clark, R.G., Alcalay, R.N., Standaert, D.G., Liu, N., and West, A.B. (2016b). Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov. Disord 31: 1543–1550, https://doi.org/10.1002/mds.26686.Search in Google Scholar PubMed PubMed Central
Fraser, K.B., Moehle, M.S., Daher, J.P., Webber, P.J., Williams, J.Y., Stewart, C.A., Yacoubian, T.A., Cowell, R.M., Dokland, T., Ye, T., et al.. (2013). LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22: 4988–5000, https://doi.org/10.1093/hmg/ddt346.Search in Google Scholar PubMed PubMed Central
Frühbeis, C., Fröhlich, D., Kuo, W.P., Amphornrat, J., Thilemann, S., Saab, A.S., Kirchhoff, F., Möbius, W., Goebbels, S., Nave, K.A., et al.. (2013). Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 11: e1001604, https://doi.org/10.1371/journal.pbio.1001604.Search in Google Scholar PubMed PubMed Central
Gilks, W.P., Abou-Sleiman, P.M., Gandhi, S., Jain, S., Singleton, A., Lees, A.J., Shaw, K., Bhatia, K.P., Bonifati, V., Quinn, N.P., et al.. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365: 415–416, https://doi.org/10.1016/s0140-6736(05)17830-1.Search in Google Scholar PubMed
Gosselin, R.D., Meylan, P., and Decosterd, I. (2013). Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front. Cell Neurosci. 7: 251, https://doi.org/10.3389/fncel.2013.00251.Search in Google Scholar PubMed PubMed Central
Grad, L.I., Yerbury, J.J., Turner, B.J., Guest, W.C., Pokrishevsky, E., O’Neill, M.A., Yanai, A., Silverman, J.M., Zeineddine, R., Corcoran, L., et al.. (2014). Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. U. S. A. 111: 3620–3625, https://doi.org/10.1073/pnas.1312245111.Search in Google Scholar PubMed PubMed Central
Guescini, M., Genedani, S., Stocchi, V., and Agnati, L.F. (2010). Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural. Transm. 117: 1–4, https://doi.org/10.1007/s00702-009-0288-8.Search in Google Scholar PubMed
Gui, Y., Liu, H., Zhang, L., Lv, W., and Hu, X. (2015). Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6: 37043–37053, https://doi.org/10.18632/oncotarget.6158.Search in Google Scholar PubMed PubMed Central
Guitart, K., Loers, G., Buck, F., Bork, U., Schachner, M., and Kleene, R. (2016). Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 64: 896–910, https://doi.org/10.1002/glia.22963.Search in Google Scholar PubMed
Guix, F.X., Corbett, G.T., Cha, D.J., Mustapic, M., Liu, W., Mengel, D., Chen, Z., Aikawa, E., Young-Pearse, T., Kapogiannis, D., et al.. (2018). Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int. J. Mol. Sci. 19: 663, https://doi.org/10.3390/ijms19030663.Search in Google Scholar PubMed PubMed Central
Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40: 25–40, https://doi.org/10.1016/s0896-6273(03)00594-4.Search in Google Scholar PubMed
Guo, M., Wang, J., Zhao, Y., Feng, Y., Han, S., Dong, Q., Cui, M., and Tieu, K. (2020). Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 143: 1476–1497, https://doi.org/10.1093/brain/awaa090.Search in Google Scholar PubMed PubMed Central
Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A.V., et al.. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control Release 207: 18–30, https://doi.org/10.1016/j.jconrel.2015.03.033.Search in Google Scholar PubMed PubMed Central
Hansen, C., Angot, E., Bergström, A.L., Steiner, J.A., Pieri, L., Paul, G., Outeiro, T.F., Melki, R., Kallunki, P., Fog, K., et al.. (2011). α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121: 715–725, https://doi.org/10.1172/jci43366.Search in Google Scholar
Hantaï, D., Akaaboune, M., Lagord, C., Murawsky, M., Houenou, L.J., Festoff, B.W., Vaught, J.L., Rieger, F., and Blondet, B. (1995). Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J. Neurol. Sci. 129: 122–126, https://doi.org/10.1016/0022-510x(95)00081-c.Search in Google Scholar PubMed
Harischandra, D.S., Ghaisas, S., Rokad, D., Zamanian, M., Jin, H., Anantharam, V., Kimber, M., Kanthasamy, A., and Kanthasamy, A.G. (2018). Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: relevance to α-synuclein misfolding in metal neurotoxicity. Neurotoxicology 64: 267–277, https://doi.org/10.1016/j.neuro.2017.04.007.Search in Google Scholar PubMed PubMed Central
Harischandra, D.S., Rokad, D., Neal, M.L., Ghaisas, S., Manne, S., Sarkar, S., Panicker, N., Zenitsky, G., Jin, H., Lewis, M., et al.. (2019). Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Sci. Signal 12: eaau4543, https://doi.org/10.1126/scisignal.aau4543.Search in Google Scholar PubMed PubMed Central
Herrera, F., Tenreiro, S., Miller-Fleming, L., and Outeiro, T.F. (2011). Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr. 3: Rrn1210, https://doi.org/10.1371/currents.rrn1210.Search in Google Scholar PubMed PubMed Central
Hill, A.F. (2019). Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39: 9269–9273, https://doi.org/10.1523/jneurosci.0147-18.2019.Search in Google Scholar
Hira, K., Ueno, Y., Tanaka, R., Miyamoto, N., Yamashiro, K., Inaba, T., Urabe, T., Okano, H., and Hattori, N. (2018). Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D(2) synthase. Stroke 49: 2483–2494, https://doi.org/10.1161/strokeaha.118.021272.Search in Google Scholar
Hong, Y., Zhao, T., Li, X.J., and Li, S. (2017). Mutant huntingtin inhibits αB-crystallin expression and impairs exosome secretion from astrocytes. J. Neurosci. 37: 9550–9563, https://doi.org/10.1523/jneurosci.1418-17.2017.Search in Google Scholar PubMed PubMed Central
Hopp, S.C., Lin, Y., Oakley, D., Roe, A.D., DeVos, S.L., Hanlon, D., and Hyman, B.T. (2018). The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J. Neuroinflammation 15: 269, https://doi.org/10.1186/s12974-018-1309-z.Search in Google Scholar PubMed PubMed Central
Hu, G., Liao, K., Niu, F., Yang, L., Dallon, B.W., Callen, S., Tian, C., Shu, J., Cui, J., Sun, Z., et al.. (2018). Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol. Ther. Nucleic Acids 13: 450–463, https://doi.org/10.1016/j.omtn.2018.09.019.Search in Google Scholar PubMed PubMed Central
Huang, D., Chen, J., Hu, D., Xie, F., Yang, T., Li, Z., Wang, X., Xiao, Y., Zhong, J., Jiang, Y., et al.. (2021). Advances in biological function and clinical application of small extracellular vesicle membrane proteins. Front. Oncol. 11: 675940, https://doi.org/10.3389/fonc.2021.675940.Search in Google Scholar PubMed PubMed Central
Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., et al.. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 1739: 198–210, https://doi.org/10.1016/j.bbadis.2004.09.008.Search in Google Scholar PubMed
Izco, M., Blesa, J., Schleef, M., Schmeer, M., Porcari, R., Al-Shawi, R., Ellmerich, S., de Toro, M., Gardiner, C., Seow, Y., et al.. (2019). Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol. Ther. 27: 2111–2122, https://doi.org/10.1016/j.ymthe.2019.08.010.Search in Google Scholar PubMed PubMed Central
Jeon, I., Cicchetti, F., Cisbani, G., Lee, S., Li, E., Bae, J., Lee, N., Li, L., Im, W., Kim, M., et al.. (2016). Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 132: 577–592, https://doi.org/10.1007/s00401-016-1582-9.Search in Google Scholar PubMed PubMed Central
Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., and Verderio, C. (2015). Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int. J. Mol. Sci. 16: 4800–4813, https://doi.org/10.3390/ijms16034800.Search in Google Scholar PubMed PubMed Central
Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P.J., Smith, M.A., et al.. (2002). Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 16: 601–603, https://doi.org/10.1096/fj.01-0530fje.Search in Google Scholar PubMed
Kalluri, R. and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science 367: eaau6977, https://doi.org/10.1126/science.aau6977.Search in Google Scholar PubMed PubMed Central
Kaspar, B.K., Lladó, J., Sherkat, N., Rothstein, J.D., and Gage, F.H. (2003). Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301: 839–842, https://doi.org/10.1126/science.1086137.Search in Google Scholar PubMed
Kells, A.P., Henry, R.A., and Connor, B. (2008). AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther. 15: 966–977, https://doi.org/10.1038/gt.2008.23.Search in Google Scholar PubMed
Kempuraj, D., Thangavel, R., Natteru, P.A., Selvakumar, G.P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S.S., and Zaheer, A. (2016). Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 1: 966.Search in Google Scholar
Khakh, B.S., Beaumont, V., Cachope, R., Munoz-Sanjuan, I., Goldman, S.A., and Grantyn, R. (2017). Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci. 40: 422–437, https://doi.org/10.1016/j.tins.2017.05.002.Search in Google Scholar PubMed PubMed Central
Khongkow, M., Yata, T., Boonrungsiman, S., Ruktanonchai, U.R., Graham, D., and Namdee, K. (2019). Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep. 9: 8278, https://doi.org/10.1038/s41598-019-44569-6.Search in Google Scholar PubMed PubMed Central
Kobayashi, K., Hayashi, M., Nakano, H., Fukutani, Y., Sasaki, K., Shimazaki, M., and Koshino, Y. (2002). Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white matter lesions in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 28: 238–251, https://doi.org/10.1046/j.1365-2990.2002.00390.x.Search in Google Scholar PubMed
Konovalova, J., Gerasymchuk, D., Parkkinen, I., Chmielarz, P., and Domanskyi, A. (2019). Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int. J. Mol. Sci. 20: 6055, https://doi.org/10.3390/ijms20236055.Search in Google Scholar PubMed PubMed Central
Kostuk, E.W., Cai, J., and Iacovitti, L. (2019). Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson’s disease models in culture. Glia 67: 1542–1557, https://doi.org/10.1002/glia.23627.Search in Google Scholar PubMed PubMed Central
Koval, E.D., Shaner, C., Zhang, P., du Maine, X., Fischer, K., Tay, J., Chau, B.N., Wu, G.F., and Miller, T.M. (2013). Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. 22: 4127–4135, https://doi.org/10.1093/hmg/ddt261.Search in Google Scholar PubMed PubMed Central
Kwon, H.S. and Koh, S.H. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9: 42, https://doi.org/10.1186/s40035-020-00221-2.Search in Google Scholar PubMed PubMed Central
Lai, C.P. and Breakefield, X.O. (2012). Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front. Physiol. 3: 228, https://doi.org/10.3389/fphys.2012.00228.Search in Google Scholar PubMed PubMed Central
Lee, M., Liu, T., Im, W., and Kim, M. (2016). Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci. 44: 2114–2119, https://doi.org/10.1111/ejn.13275.Search in Google Scholar PubMed
Leggio, L., L’Episcopo, F., Magrì, A., Ulloa-Navas, M.J., Paternò, G., Vivarelli, S., Bastos, C.A.P., Tirolo, C., Testa, N., Caniglia, S., et al.. (2022). Small extracellular vesicles secreted by nigrostriatal astrocytes rescue cell death and preserve mitochondrial function in Parkinson’s disease. Adv. Healthc. Mater. 11: e2201203, https://doi.org/10.1002/adhm.202201203.Search in Google Scholar PubMed PubMed Central
Leng, B., Sun, H., Zhao, J., Liu, Y., Shen, T., Liu, W., Liu, X., Tan, M., Li, F., Zhang, J., et al.. (2020). Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neurosci. Lett. 723: 134866, https://doi.org/10.1016/j.neulet.2020.134866.Search in Google Scholar PubMed
L’Episcopo, F., Tirolo, C., Peruzzotti-Jametti, L., Serapide, M.F., Testa, N., Caniglia, S., Balzarotti, B., Pluchino, S., and Marchetti, B. (2018). Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells 36: 1179–1197, https://doi.org/10.1002/stem.2827.Search in Google Scholar PubMed
L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Cossetti, C., D’Adamo, P., Zardini, E., Andreoni, L., Ihekwaba, A.E., et al.. (2011). Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol. Dis. 41: 508–527, https://doi.org/10.1016/j.nbd.2010.10.023.Search in Google Scholar PubMed PubMed Central
L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Deleidi, M., Serapide, M.F., Pluchino, S., and Marchetti, B. (2012). Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J. Neurosci. 32: 2062–2085, https://doi.org/10.1523/jneurosci.5259-11.2012.Search in Google Scholar
L’Episcopo, F., Tirolo, C., Testa, N., Caniglia, S., Morale, M.C., Serapide, M.F., Pluchino, S., and Marchetti, B. (2014). Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 32: 2147–2163, https://doi.org/10.1002/stem.1708.Search in Google Scholar PubMed PubMed Central
Lewczuk, P., Kornhuber, J., Vanmechelen, E., Peters, O., Heuser, I., Maier, W., Jessen, F., Bürger, K., Hampel, H., Frölich, L., et al.. (2010). Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp. Neurol. 223: 366–370, https://doi.org/10.1016/j.expneurol.2009.07.024.Search in Google Scholar PubMed
Li, C., Wei, Q., Gu, X., Chen, Y., Chen, X., Cao, B., Ou, R., and Shang, H. (2019). Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front. Mol. Neurosci. 12: 114, https://doi.org/10.3389/fnmol.2019.00114.Search in Google Scholar PubMed PubMed Central
Liu, T., Im, W., Mook-Jung, I., and Kim, M. (2015). MicroRNA-124 slows down the progression of Huntington’s disease by promoting neurogenesis in the striatum. Neural Regen. Res. 10: 786–791, https://doi.org/10.4103/1673-5374.156978.Search in Google Scholar PubMed PubMed Central
Liu, W., Bai, X., Zhang, A., Huang, J., Xu, S., and Zhang, J. (2019). Role of exosomes in central nervous system diseases. Front. Mol. Neurosci. 12: 240, https://doi.org/10.3389/fnmol.2019.00240.Search in Google Scholar PubMed PubMed Central
Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Róg, T., Orłowski, A., Vattulainen, I., Ekroos, K., and Sandvig, K. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831: 1302–1309, https://doi.org/10.1016/j.bbalip.2013.04.011.Search in Google Scholar PubMed
Lu, Mei, Shao, Wanxuan, Xing, Haonan, and Huang, Yuanyu (2023). Extracellular vesicle-based nucleic acid delivery. Interdiscip. Med. 1: e20220007, https://doi.org/10.1002/inmd.20220007.Search in Google Scholar
Ma, Y., Wang, K., Pan, J., Fan, Z., Tian, C., Deng, X., Ma, K., Xia, X., Huang, Y., and Zheng, J.C. (2019). Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol. Dis. 124: 322–334, https://doi.org/10.1016/j.nbd.2018.12.003.Search in Google Scholar PubMed PubMed Central
Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9: 995–1007, https://doi.org/10.1016/s1474-4422(10)70195-2.Search in Google Scholar
Maheshwari, R., Tekade, M., Gondaliya, P., Kalia, K., D’Emanuele, A., and Tekade, R.K. (2017). Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine 12: 2653–2675, https://doi.org/10.2217/nnm-2017-0210.Search in Google Scholar PubMed
Marchetti, B. (2020). Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol. 36: 101664, https://doi.org/10.1016/j.redox.2020.101664.Search in Google Scholar PubMed PubMed Central
Marchetti, B., Tirolo, C., L’Episcopo, F., Caniglia, S., Testa, N., Smith, J.A., Pluchino, S., and Serapide, M.F. (2020). Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 19: e13101, https://doi.org/10.1111/acel.13101.Search in Google Scholar PubMed PubMed Central
Matarredona, E.R. and Pastor, A.M. (2019). Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment. Cells 9: 96, https://doi.org/10.3390/cells9010096.Search in Google Scholar PubMed PubMed Central
Mayor, S. and Pagano, R.E. (2007). Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8: 603–612, https://doi.org/10.1038/nrm2216.Search in Google Scholar PubMed
McColgan, P. and Tabrizi, S.J. (2018). Huntington’s disease: a clinical review. Eur. J. Neurol. 25: 24–34, https://doi.org/10.1111/ene.13413.Search in Google Scholar PubMed
McMillan, K.J., Murray, T.K., Bengoa-Vergniory, N., Cordero-Llana, O., Cooper, J., Buckley, A., Wade-Martins, R., Uney, J.B., O’Neill, M.J., Wong, L.F., et al.. (2017). Loss of MicroRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol. Ther. 25: 2404–2414, https://doi.org/10.1016/j.ymthe.2017.08.017.Search in Google Scholar PubMed PubMed Central
Mezey, E., Dehejia, A., Harta, G., Papp, M.I., Polymeropoulos, M.H., and Brownstein, M.J. (1998). Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat. Med. 4: 755–757, https://doi.org/10.1038/nm0798-755.Search in Google Scholar PubMed
Minakaki, G., Menges, S., Kittel, A., Emmanouilidou, E., Schaeffner, I., Barkovits, K., Bergmann, A., Rockenstein, E., Adame, A., Marxreiter, F., et al.. (2018). Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14: 98–119, https://doi.org/10.1080/15548627.2017.1395992.Search in Google Scholar PubMed PubMed Central
Moidunny, S., Vinet, J., Wesseling, E., Bijzet, J., Shieh, C.H., van Ijzendoorn, S.C., Bezzi, P., Boddeke, H.W., and Biber, K. (2012). Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J. Neuroinflammation 9: 198, https://doi.org/10.1186/1742-2094-9-198.Search in Google Scholar PubMed PubMed Central
Morel, L., Regan, M., Higashimori, H., Ng, S.K., Esau, C., Vidensky, S., Rothstein, J., and Yang, Y. (2013). Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 288: 7105–7116, https://doi.org/10.1074/jbc.m112.410944.Search in Google Scholar PubMed PubMed Central
Mouser, P.E., Head, E., Ha, K.H., and Rohn, T.T. (2006). Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am. J. Pathol. 168: 936–946, https://doi.org/10.2353/ajpath.2006.050798.Search in Google Scholar PubMed PubMed Central
Murakami, T., Ilieva, H., Shiote, M., Nagata, T., Nagano, I., Shoji, M., and Abe, K. (2003). Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res. 989: 231–237, https://doi.org/10.1016/s0006-8993(03)03374-2.Search in Google Scholar PubMed
Navarro, A., Rioseras, B., Del Valle, E., Martínez-Pinilla, E., Astudillo, A., and Tolivia, J. (2018). Expression pattern of myelin-related apolipoprotein D in human multiple sclerosis lesions. Front. Aging Neurosci. 10: 254, https://doi.org/10.3389/fnagi.2018.00254.Search in Google Scholar PubMed PubMed Central
Ngolab, J., Trinh, I., Rockenstein, E., Mante, M., Florio, J., Trejo, M., Masliah, D., Adame, A., Masliah, E., and Rissman, R.A. (2017). Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol Commun 5: 46, https://doi.org/10.1186/s40478-017-0445-5.Search in Google Scholar PubMed PubMed Central
Nilsen, L.H., Rae, C., Ittner, L.M., Götz, J., and Sonnewald, U. (2013). Glutamate metabolism is impaired in transgenic mice with tau hyperphosphorylation. J. Cereb. Blood Flow Metab. 33: 684–691, https://doi.org/10.1038/jcbfm.2012.212.Search in Google Scholar PubMed PubMed Central
Nonaka, T., Masuda-Suzukake, M., Arai, T., Hasegawa, Y., Akatsu, H., Obi, T., Yoshida, M., Murayama, S., Mann, D.M., Akiyama, H., et al.. (2013). Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4: 124–134, https://doi.org/10.1016/j.celrep.2013.06.007.Search in Google Scholar PubMed
Novoselova, T.V., Margulis, B.A., Novoselov, S.S., Sapozhnikov, A.M., van der Spuy, J., Cheetham, M.E., and Guzhova, I.V. (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J. Neurochem. 94: 597–606, https://doi.org/10.1111/j.1471-4159.2005.03119.x.Search in Google Scholar PubMed
Park, J.E., Tan, H.S., Datta, A., Lai, R.C., Zhang, H., Meng, W., Lim, S.K., and Sze, S.K. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9: 1085–1099, https://doi.org/10.1074/mcp.m900381-mcp200.Search in Google Scholar
Parnetti, L., Lanari, A., Amici, S., Gallai, V., Vanmechelen, E., and Hulstaert, F. (2001). CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol. Sci. 22: 77–78, https://doi.org/10.1007/s100720170055.Search in Google Scholar PubMed
Pascua-Maestro, R., González, E., Lillo, C., Ganfornina, M.D., Falcón-Pérez, J.M., and Sanchez, D. (2018). Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front. Cell Neurosci. 12: 526, https://doi.org/10.3389/fncel.2018.00526.Search in Google Scholar PubMed PubMed Central
Pasinelli, P. and Brown, R.H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7: 710–723, https://doi.org/10.1038/nrn1971.Search in Google Scholar PubMed
Peng, D., Wang, Y., Xiao, Y., Peng, M., Mai, W., Hu, B., Jia, Y., Chen, H., Yang, Y., Xiang, Q., et al.. (2022). Extracellular vesicles derived from astrocyte-treated with haFGF(14-154) attenuate Alzheimer phenotype in AD mice. Theranostics 12: 3862–3881, https://doi.org/10.7150/thno.70951.Search in Google Scholar PubMed PubMed Central
Perneczky, R., Tsolakidou, A., Arnold, A., Diehl-Schmid, J., Grimmer, T., Förstl, H., Kurz, A., and Alexopoulos, P. (2011). CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology 77: 35–38, https://doi.org/10.1212/wnl.0b013e318221ad47.Search in Google Scholar
Pinnell, J.R., Cui, M., and Tieu, K. (2021). Exosomes in Parkinson disease. J. Neurochem. 157: 413–428, https://doi.org/10.1111/jnc.15288.Search in Google Scholar PubMed PubMed Central
Pinto, S., Cunha, C., Barbosa, M., Vaz, A.R., and Brites, D. (2017). Exosomes from NSC-34 cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations in microglia phenotype. Front. Neurosci. 11: 273, https://doi.org/10.3389/fnins.2017.00273.Search in Google Scholar PubMed PubMed Central
Pistono, C., Bister, N., Stanová, I., and Malm, T. (2020). Glia-derived extracellular vesicles: role in central nervous system communication in health and disease. Front. Cell Dev. Biol. 8: 623771, https://doi.org/10.3389/fcell.2020.623771.Search in Google Scholar PubMed PubMed Central
Polanco, J.C., Li, C., Durisic, N., Sullivan, R., and Götz, J. (2018). Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol. Commun. 6: 10, https://doi.org/10.1186/s40478-018-0514-4.Search in Google Scholar PubMed PubMed Central
Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al.. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047, https://doi.org/10.1126/science.276.5321.2045.Search in Google Scholar PubMed
Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M., Santoro, G., Savettieri, G., and Di Liegro, I. (2008). Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int. J. Mol. Med. 21: 63–67, https://doi.org/10.3892/ijmm.21.1.63.Search in Google Scholar
Qu, M., Lin, Q., Huang, L., Fu, Y., Wang, L., He, S., Fu, Y., Yang, S., Zhang, Z., Zhang, L., et al.. (2018). Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control Release 287: 156–166, https://doi.org/10.1016/j.jconrel.2018.08.035.Search in Google Scholar PubMed
Rabinovsky, E.D., Gelir, E., Gelir, S., Lui, H., Kattash, M., DeMayo, F.J., Shenaq, S.M., and Schwartz, R.J. (2003). Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J. 17: 53–55, https://doi.org/10.1096/fj.02-0183fje.Search in Google Scholar PubMed
Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., and Simons, K. (2006). Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. U. S. A. 103: 11172–11177, https://doi.org/10.1073/pnas.0603838103.Search in Google Scholar PubMed PubMed Central
Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200: 373–383, https://doi.org/10.1083/jcb.201211138.Search in Google Scholar PubMed PubMed Central
Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., and Ratajczak, M.Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20: 847–856, https://doi.org/10.1038/sj.leu.2404132.Search in Google Scholar PubMed
Rawlins, M.D., Wexler, N.S., Wexler, A.R., Tabrizi, S.J., Douglas, I., Evans, S.J., and Smeeth, L. (2016). The prevalence of Huntington’s disease. Neuroepidemiology 46: 144–153, https://doi.org/10.1159/000443738.Search in Google Scholar PubMed
Record, M., Subra, C., Silvente-Poirot, S., and Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 81: 1171–1182, https://doi.org/10.1016/j.bcp.2011.02.011.Search in Google Scholar PubMed
Reed, E.R., Latourelle, J.C., Bockholt, J.H., Bregu, J., Smock, J., Paulsen, J.S., Myers, R.H., De Soriano, I., Hobart, C., Miller, A., et al.. (2018). MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 90: e264–e72, https://doi.org/10.1212/wnl.0000000000004844.Search in Google Scholar
Ricci, C., Marzocchi, C., and Battistini, S. (2018). MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells 7: 219, https://doi.org/10.3390/cells7110219.Search in Google Scholar PubMed PubMed Central
Ridolfi, B. and Abdel-Haq, H. (2017). Neurodegenerative disorders treatment: the MicroRNA role. Curr. Gene Ther. 17: 327–363, https://doi.org/10.2174/1566523218666180119120726.Search in Google Scholar PubMed
Robinson, M.B., Tidwell, J.L., Gould, T., Taylor, A.R., Newbern, J.M., Graves, J., Tytell, M., and Milligan, C.E. (2005). Extracellular heat shock protein 70: a critical component for motoneuron survival. J. Neurosci. 25: 9735–9745, https://doi.org/10.1523/jneurosci.1912-05.2005.Search in Google Scholar
Ross, C.A., Aylward, E.H., Wild, E.J., Langbehn, D.R., Long, J.D., Warner, J.H., Scahill, R.I., Leavitt, B.R., Stout, J.C., Paulsen, J.S., et al.. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10: 204–216, https://doi.org/10.1038/nrneurol.2014.24.Search in Google Scholar PubMed
Rowe, C.C., Ellis, K.A., Rimajova, M., Bourgeat, P., Pike, K.E., Jones, G., Fripp, J., Tochon-Danguy, H., Morandeau, L., O’Keefe, G., et al.. (2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging, 31: 1275-1283, https://doi.org/10.1016/j.neurobiolaging.2010.04.007.Search in Google Scholar PubMed
Salvany, S., Casanovas, A., Piedrafita, L., Gras, S., Calderó, J., and Esquerda, J.E. (2022). Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Pathol. 32: e13078, https://doi.org/10.1111/bpa.13078.Search in Google Scholar PubMed PubMed Central
Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, N.C., et al.. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287: 3842–3849, https://doi.org/10.1074/jbc.m111.277061.Search in Google Scholar PubMed PubMed Central
Sanchez, I.I., Nguyen, T.B., England, W.E., Lim, R.G., Vu, A.Q., Miramontes, R., Byrne, L.M., Markmiller, S., Lau, A.L., Orellana, I., et al.. (2021). Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J. Clin. Invest. 131 e140723, https://doi.org/10.1172/jci140723.Search in Google Scholar
Santavanond, J.P., Rutter, S.F., Atkin-Smith, G.K., and Poon, I.K.H. (2021). Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell Biochem. 97: 61–88, https://doi.org/10.1007/978-3-030-67171-6_4.Search in Google Scholar PubMed
Sastre, M., Klockgether, T., and Heneka, M.T. (2006). Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci. 24: 167–176, https://doi.org/10.1016/j.ijdevneu.2005.11.014.Search in Google Scholar PubMed
Schiera, G., Di Liegro, C.M., and Di Liegro, I. (2015). Extracellular membrane vesicles as vehicles for brain cell-to-cell interactions in physiological as well as pathological conditions. Biomed. Res. Int. 2015: 152926, https://doi.org/10.1155/2015/152926.Search in Google Scholar PubMed PubMed Central
Schoonenboom, N.S., Pijnenburg, Y.A., Mulder, C., Rosso, S.M., Van Elk, E.J., Van Kamp, G.J., Van Swieten, J.C., and Scheltens, P. (2004). Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 62: 1580–1584, https://doi.org/10.1212/01.wnl.0000123249.58898.e0.Search in Google Scholar PubMed
Schrag, A., Zhelev, S.S., Hotham, S., Merritt, R.D., Khan, K., and Graham, L. (2019). Heterogeneity in progression of prodromal features in Parkinson’s disease. Parkinsonism Relat. Disord 64: 275–279, https://doi.org/10.1016/j.parkreldis.2019.05.013.Search in Google Scholar PubMed
Scotter, E.L., Chen, H.J., and Shaw, C.E. (2015). TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12: 352–363, https://doi.org/10.1007/s13311-015-0338-x.Search in Google Scholar PubMed PubMed Central
Scuderi, C., Facchinetti, R., Steardo, L., and Valenza, M. (2020). Neuroinflammation in Alzheimer’s disease: friend or foe? Faseb. J. 34: 1, https://doi.org/10.1096/fasebj.2020.34.s1.00381.Search in Google Scholar
Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., Li, Y., Aro, P., Dator, R., He, C., et al.. (2014). Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 128: 639–650, https://doi.org/10.1007/s00401-014-1314-y.Search in Google Scholar PubMed PubMed Central
Sidoryk-Węgrzynowicz, M. and Strużyńska, L. (2019). Astroglial contribution to tau-dependent neurodegeneration. Biochem. J. 476: 3493–3504, https://doi.org/10.1042/bcj20190506.Search in Google Scholar
Silverman, J.M., Christy, D., Shyu, C.C., Moon, K.M., Fernando, S., Gidden, Z., Cowan, C.M., Ban, Y., Stacey, R.G., Grad, L.I., et al.. (2019). CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J. Biol. Chem. 294: 3744–3759, https://doi.org/10.1074/jbc.ra118.004825.Search in Google Scholar
Skotland, T., Sandvig, K., and Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66: 30–41, https://doi.org/10.1016/j.plipres.2017.03.001.Search in Google Scholar PubMed
Song, J.X., Malampati, S., Zeng, Y., Durairajan, S.S.K., Yang, C.B., Tong, B.C., Iyaswamy, A., Shang, W.B., Sreenivasmurthy, S.G., Zhu, Z., et al.. (2020). A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 19: e13069, https://doi.org/10.1111/acel.13069.Search in Google Scholar PubMed PubMed Central
Sproviero, D., La Salvia, S., Giannini, M., Crippa, V., Gagliardi, S., Bernuzzi, S., Diamanti, L., Ceroni, M., Pansarasa, O., Poletti, A., et al.. (2018). Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front. Neurosci. 12: 487, https://doi.org/10.3389/fnins.2018.00487.Search in Google Scholar PubMed PubMed Central
Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.P., Appelmans, S., Oh, H., Van Damme, P., Rutten, B., Man, W.Y., De Mol, M., et al.. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8: 85–92, https://doi.org/10.1038/nn1360.Search in Google Scholar PubMed
Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K.M., Mollenhauer, B., and Schneider, A. (2016). Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139: 481–494, https://doi.org/10.1093/brain/awv346.Search in Google Scholar PubMed PubMed Central
Sun, Y., Luo, Z.M., Guo, X.M., Su, D.F., and Liu, X. (2015). An updated role of microRNA-124 in central nervous system disorders: a review. Front. Cell Neurosci. 9: 193, https://doi.org/10.3389/fncel.2015.00193.Search in Google Scholar PubMed PubMed Central
Tabrizi, S.J., Flower, M.D., Ross, C.A., and Wild, E.J. (2020). Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16: 529–546, https://doi.org/10.1038/s41582-020-0389-4.Search in Google Scholar PubMed
Takeuchi, T. (2021). Pathogenic and protective roles of extracellular vesicles in neurodegenerative diseases. J. Biochem. 169: 181–186, https://doi.org/10.1093/jb/mvaa131.Search in Google Scholar PubMed
Taylor, A.R., Robinson, M.B., Gifondorwa, D.J., Tytell, M., and Milligan, C.E. (2007). Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev. Neurobiol. 67: 1815–1829, https://doi.org/10.1002/dneu.20559.Search in Google Scholar PubMed
Tengteng, W., Mengchao, Y., Li, Z., Xi Chen, and Zhong, P. (2018). I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of huntington’s disease. J. Neurol., Neurosurg. Psychiatry 89: A88.10.1136/jnnp-2018-EHDN.238Search in Google Scholar
Terrisse, L., Poirier, J., Bertrand, P., Merched, A., Visvikis, S., Siest, G., Milne, R., and Rassart, E. (1998). Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer’s patients. J. Neurochem. 71: 1643–1650, https://doi.org/10.1046/j.1471-4159.1998.71041643.x.Search in Google Scholar PubMed
Théry, C. (2011). Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep. 3: 15, https://doi.org/10.3410/b3-15.Search in Google Scholar
Tolosa, L., Mir, M., Asensio, V.J., Olmos, G., and Lladó, J. (2008). Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J. Neurochem. 105: 1080–1090, https://doi.org/10.1111/j.1471-4159.2007.05206.x.Search in Google Scholar PubMed
Trotta, T., Panaro, M.A., Cianciulli, A., Mori, G., Di Benedetto, A., and Porro, C. (2018). Microglia-derived extracellular vesicles in Alzheimer’s Disease: a double-edged sword. Biochem. Pharmacol. 148: 184–192, https://doi.org/10.1016/j.bcp.2017.12.020.Search in Google Scholar PubMed
Upadhya, R., Zingg, W., Shetty, S., and Shetty, A.K. (2020). Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control Release 323: 225–239, https://doi.org/10.1016/j.jconrel.2020.04.017.Search in Google Scholar PubMed PubMed Central
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., and Lötvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659, https://doi.org/10.1038/ncb1596.Search in Google Scholar PubMed
Vandenberg, R.J. and Ryan, R.M. (2013). Mechanisms of glutamate transport. Physiol. Rev. 93: 1621–1657, https://doi.org/10.1152/physrev.00007.2013.Search in Google Scholar PubMed
Van Den Bosch, L., Storkebaum, E., Vleminckx, V., Moons, L., Vanopdenbosch, L., Scheveneels, W., Carmeliet, P., and Robberecht, W. (2004). Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiol. Dis. 17: 21–28, https://doi.org/10.1016/j.nbd.2004.06.004.Search in Google Scholar PubMed
Vanderstichele, H., De Vreese, K., Blennow, K., Andreasen, N., Sindic, C., Ivanoiu, A., Hampel, H., Bürger, K., Parnetti, L., Lanari, A., et al.. (2006). Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin. Chem. Lab. Med. 44: 1472–1480, https://doi.org/10.1515/cclm.2006.258.Search in Google Scholar
Vella, L.J., Hill, A.F., and Cheng, L. (2016). Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci. 17: 173, https://doi.org/10.3390/ijms17020173.Search in Google Scholar PubMed PubMed Central
Vidal, M. (2019). Exosomes: revisiting their role as “garbage bags”. Traffic 20: 815–828, https://doi.org/10.1111/tra.12687.Search in Google Scholar PubMed
Waller, R., Wyles, M., Heath, P.R., Kazoka, M., Wollff, H., Shaw, P.J., and Kirby, J. (2017). Small RNA sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neural and glial activity. Front. Neurosci. 11: 731, https://doi.org/10.3389/fnins.2017.00731.Search in Google Scholar PubMed PubMed Central
Wang, G., Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., and Bieberich, E. (2012). Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J. Biol. Chem. 287: 21384–21395, https://doi.org/10.1074/jbc.m112.340513.Search in Google Scholar
Wang, S., Cesca, F., Loers, G., Schweizer, M., Buck, F., Benfenati, F., Schachner, M., and Kleene, R. (2011). Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31: 7275–7290, https://doi.org/10.1523/jneurosci.6476-10.2011.Search in Google Scholar PubMed PubMed Central
Winston, C.N., Goetzl, E.J., Schwartz, J.B., Elahi, F.M., and Rissman, R.A. (2019). Complement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer’s disease dementia. Alzheimers Dement 11: 61–66, https://doi.org/10.1016/j.dadm.2018.11.002.Search in Google Scholar PubMed PubMed Central
Wood, T.E., Barry, J., Yang, Z., Cepeda, C., Levine, M.S., and Gray, M. (2019). Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet. 28: 487–500, https://doi.org/10.1093/hmg/ddy363.Search in Google Scholar PubMed PubMed Central
Woodbury, M.E. and Ikezu, T. (2014). Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 9: 92–101, https://doi.org/10.1007/s11481-013-9501-5.Search in Google Scholar PubMed PubMed Central
Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C., and Husemann, J. (2003). Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9: 453–457, https://doi.org/10.1038/nm838.Search in Google Scholar PubMed
Xia, X., Wang, Y., Huang, Y., Zhang, H., Lu, H., and Zheng, J.C. (2019). Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog. Neurobiol. 183: 101694, https://doi.org/10.1016/j.pneurobio.2019.101694.Search in Google Scholar PubMed PubMed Central
Xu, L., Cao, H., Xie, Y., Zhang, Y., Du, M., Xu, X., Ye, R., and Liu, X. (2019). Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res. 1717: 66–73, https://doi.org/10.1016/j.brainres.2019.04.009.Search in Google Scholar PubMed
Xu, Q., Zhao, Y., Zhou, X., Luan, J., Cui, Y., and Han, J. (2018). Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients. Intractable Rare Dis. Res. 7: 13–18, https://doi.org/10.5582/irdr.2017.01091.Search in Google Scholar PubMed PubMed Central
Yang, W., Dunlap, J.R., Andrews, R.B., and Wetzel, R. (2002). Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11: 2905–2917, https://doi.org/10.1093/hmg/11.23.2905.Search in Google Scholar PubMed
Zheng, C., Nennesmo, I., Fadeel, B., and Henter, J.I. (2004). Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 56: 564–567, https://doi.org/10.1002/ana.20223.Search in Google Scholar PubMed
Zhou, Q., He, L., Hu, J., Gao, Y., Shen, D., Ni, Y., Qin, Y., Liang, H., Liu, J., Le, W., et al.. (2022). Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front. Med. 16: 723–735, https://doi.org/10.1007/s11684-021-0905-y.Search in Google Scholar PubMed
Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R.C., Ju, S., Mu, J., Zhang, L., Steinman, L., et al.. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19: 1769–1779, https://doi.org/10.1038/mt.2011.164.Search in Google Scholar PubMed PubMed Central
Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al.. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601–607, https://doi.org/10.1016/j.neuron.2004.11.005.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder
Articles in the same Issue
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder