Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
Abstract
Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood–brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood–brain barrier have been recognized.
Funding source: National Nature and Science Foundation of China
Award Identifier / Grant number: 81901394, 81960220, 82260240 and 82360456
Funding source: Joint Project on Regional High-Incidence Disease Research of Guangxi Nature Science Foundation
Award Identifier / Grant number: 2024GXNSFAA010221
Funding source: Guangxi Nature and Science Foundation
Award Identifier / Grant number: 2016GXNSFBA380020, 2018GXNSFAA138010 and 2019GXNSF
-
Research ethics: Not applicable.
-
Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of this manuscript.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: National Nature and Science Foundation of China (Grant Nos. 81901394, 81960220, 82260240 and 82360456), Joint Project on Regional High-Incidence Disease Research of Guangxi Nature Science Foundation (Grant No. 2024GXNSFAA010221) and Guangxi Nature and Science Foundation (Grant Nos. 2016GXNSFBA380020, 2018GXNSFAA138010 and 2019GXNSFAA185029).
-
Data availability: Not applicable.
References
Abassi, Z., Armaly, Z., and Heyman, S.N. (2020). Glycocalyx degradation in ischemia-reperfusion injury. Am. J. Pathol. 190: 752–767, https://doi.org/10.1016/j.ajpath.2019.08.019.Search in Google Scholar PubMed
Albert, V., Subramanian, A., Agrawal, D., Pati, H.P., Gupta, S.D., and Mukhopadhyay, A.K. (2018). Acute traumatic endotheliopathy in isolated severe brain injury and its impact on clinical outcome. Med. Sci. 6: 5, https://doi.org/10.3390/medsci6010005.Search in Google Scholar PubMed PubMed Central
Alexopoulou, A.N., Multhaupt, H.A., and Couchman, J.R. (2007). Syndecans in wound healing, inflammation and vascular biology. Int. J. Biochem. Cell Biol. 39: 505–528, https://doi.org/10.1016/j.biocel.2006.10.014.Search in Google Scholar PubMed
Ali, M.M., Mahmoud, A.M., Master, E.L., Levitan, I., and Phillips, S.A. (2019). Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am. J. Physiol.: Heart Circ. Physiol. 316: H647–H663, https://doi.org/10.1152/ajpheart.00090.2018.Search in Google Scholar PubMed PubMed Central
Anderson, T.N., Hinson, H.E., Dewey, E.N., Rick, E.A., Schreiber, M.A., and Rowell, S.E. (2020). Early tranexamic acid administration after traumatic brain injury is associated with reduced syndecan-1 and angiopoietin-2 in patients with traumatic intracranial hemorrhage. J. Head Trauma Rehabil. 35: 317–323, https://doi.org/10.1097/htr.0000000000000619.Search in Google Scholar
Arafa, E.A., Elgendy, N.O., Elhemely, M.A., Abdelaleem, E.A., and Mohamed, W.R. (2023). Diosmin mitigates dexamethasone-induced osteoporosis in vivo: role of Runx2, RANKL/OPG, and oxidative stress. Biomed. Pharmacother. 161: 114461, https://doi.org/10.1016/j.biopha.2023.114461.Search in Google Scholar PubMed
Balistreri, C.R. (2022). Promising strategies for preserving adult endothelium health and reversing its dysfunction: from liquid biopsy to new omics technologies and noninvasive circulating biomarkers. Int. J. Mol. Sci. 23: 7548, https://doi.org/10.3390/ijms23147548.Search in Google Scholar PubMed PubMed Central
Bell, J.D., Rhind, S.G., Battista, A.P. Di, Macdonald, R.L., and Baker, A.J. (2017). Biomarkers of glycocalyx injury are associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage: a case series supporting a new hypothesis. Neurocrit. Care 26: 339–347, https://doi.org/10.1007/s12028-016-0357-4.Search in Google Scholar PubMed
Britten, M.W., Lümers, L., Tominaga, K., Peters, J., and Dirkmann, D. (2021). Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy. BMC Anesthesiol. 21: 83, https://doi.org/10.1186/s12871-021-01300-1.Search in Google Scholar PubMed PubMed Central
Changyaleket, B., Chong, Z.Z., Dull, R.O., Nanegrungsunk, D., and Xu, H. (2017). Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J. Neuroinflammation 14: 137, https://doi.org/10.1186/s12974-017-0912-8.Search in Google Scholar PubMed PubMed Central
Cheng, Z., Kang, C., Che, S., Su, J., Sun, Q., Ge, T., Guo, Y., Lv, J., Sun, Z., Yang, W., et al.. (2022). Berberine: a promising treatment for neurodegenerative diseases. Front. Pharmacol. 13: 845591, https://doi.org/10.3389/fphar.2022.845591.Search in Google Scholar PubMed PubMed Central
Chico-Fernández, M., Barea-Mendoza, J.A., Pérez-Bárcena, J., García-Sáez, I., Quintana-Díaz, M.M., Mayor-García, D.M., Serviá-Goixart, L., Jiménez-Moragas, J.M., Lompart-Pou, J.A., and Llompart-Pou, J.A. (2021). Concomitant traumatic brain injury and hemorrhagic shock: outcomes using the Spanish trauma ICU registry (RETRAUCI). Am. Surg. 87: 370–375, https://doi.org/10.1177/0003134820949990.Search in Google Scholar PubMed
Chiu, K.M., Hung, Y.L., Wang, S.J., Tsai, Y.J., Wu, N.L., Liang, C.W., Chang, D.C., and Hung, C.F. (2021). Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells. Int. J. Mol. Sci. 22: 10994, https://doi.org/10.3390/ijms222010994.Search in Google Scholar PubMed PubMed Central
Csecsei, P., Olah, C., Varnai, R., Simon, D., Erdo-Bonyar, S., Berki, T., Czabajszki, M., Zavori, L., Schwarcz, A., and Molnar, T. (2023). Different kinetics of serum ADAMTS13, GDF-15, and neutrophil gelatinase-associated lipocalin in the early phase of aneurysmal subarachnoid hemorrhage. Int. J. Mol. Sci. 24: 11005, https://doi.org/10.3390/ijms241311005.Search in Google Scholar PubMed PubMed Central
Czeiter, E., Amrein, K., Gravesteijn, B.Y., Lecky, F., Menon, D.K., Mondello, S., Newcombe, V.F.J., Richter, S., Steyerberg, E.W., Vyvere, T.V., et al.. (2020). Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 56: 102785, https://doi.org/10.1016/j.ebiom.2020.102785.Search in Google Scholar PubMed PubMed Central
Daglas, M., Galle, A., Draxler, D.F., Ho, H., Liu, Z., Sashindranath, M., and Medcalf, R.L. (2020). Sex-dependent effects of tranexamic acid on blood-brain barrier permeability and the immune response following traumatic brain injury in mice. J. Thromb. Haemostasis 18: 2658–2671, https://doi.org/10.1111/jth.15015.Search in Google Scholar PubMed
Deen, W.M., Lazzara, M.J., and Myers, B.D. (2001). Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281: F579–F596, https://doi.org/10.1152/ajprenal.2001.281.4.f579.Search in Google Scholar PubMed
Delgadillo, L.F., Lomakina, E.B., Kuebel, J., and Waugh, R.E. (2021). Changes in endothelial glycocalyx layer protective ability after inflammatory stimulus. Am. J. Physiol. Cell Physiol. 320: C216–C224, https://doi.org/10.1152/ajpcell.00259.2020.Search in Google Scholar PubMed PubMed Central
Delgadillo, L.F., Marsh, G.A., and Waugh, R.E. (2020). Endothelial glycocalyx layer properties and its ability to limit leukocyte adhesion. Biophys. J. 118: 1564–1575, https://doi.org/10.1016/j.bpj.2020.02.010.Search in Google Scholar PubMed PubMed Central
DellaValle, B., Hasseldam, H., Johansen, F.F., Iversen, H.K., Rungby, J., and Hempel, C. (2019). Multiple soluble components of the glycocalyx are increased in patient plasma after ischemic stroke. Stroke 50: 2948–2951, https://doi.org/10.1161/strokeaha.119.025953.Search in Google Scholar
DellaValle, B., Manresa-Arraut, A., Hasseldam, H., Stensballe, A., Rungby, J., Larsen, A., and Hempel, C. (2018). Detection of glycan shedding in the blood: new class of multiple sclerosis biomarkers? Front. Immunol. 9: 1254, https://doi.org/10.3389/fimmu.2018.01254.Search in Google Scholar PubMed PubMed Central
Drew, P.J. (2022). Neurovascular coupling: motive unknown. Trends Neurosci. 45: 809–819, https://doi.org/10.1016/j.tins.2022.08.004.Search in Google Scholar PubMed PubMed Central
Druzak, S., Iffrig, E., Roberts, B.R., Zhang, T., Fibben, K.S., Sakurai, Y., Verkerke, H.P., Rostad, C.A., Chahroudi, A., Schneider, F., et al.. (2023). Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat. Commun. 14: 1638, https://doi.org/10.1038/s41467-023-37269-3.Search in Google Scholar PubMed PubMed Central
Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., Spray, D.C., and Tarbell, J.M. (2014). Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 6: 338–347, https://doi.org/10.1039/c3ib40199e.Search in Google Scholar PubMed PubMed Central
Endo, S. and Shimazaki, R. (2018). An open-label, randomized, phase 3 study of the efficacy and safety of antithrombin gamma in patients with sepsis-induced disseminated intravascular coagulation syndrome. J. Intensive Care 6: 75, https://doi.org/10.1186/s40560-018-0339-z.Search in Google Scholar PubMed PubMed Central
Fan, J., Sun, Y., Xia, Y., Tarbell, M., and Fu, B.M. (2019). Endothelial surface glycocalyx (ESG) components and ultra-structure revealed by stochastic optical reconstruction microscopy (STORM). Biorheology 56: 77–88, https://doi.org/10.3233/bir-180204.Search in Google Scholar PubMed
Fu, B.M. and Tarbell, J.M. (2013). Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip. Rev.: Syst. Biol. Med. 5: 381–390, https://doi.org/10.1002/wsbm.1211.Search in Google Scholar PubMed PubMed Central
Geraghty, J.R. and Testai, F.D. (2017). Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr. Atheroscler. Rep. 19: 50, https://doi.org/10.1007/s11883-017-0690-x.Search in Google Scholar PubMed
Ghanemi, A., Melouane, A., Yoshioka, M., and St-Amand, J. (2022). Secreted protein acidic and rich in Cysteine (Sparc) KO leads to an accelerated ageing phenotype which is improved by exercise whereas SPARC overexpression mimics exercise effects in mice. Metabolites 12: 125, https://doi.org/10.3390/metabo12020125.Search in Google Scholar PubMed PubMed Central
Gonzalez, R.E., Cardenas, J.C., Cox, C.S., Kitagawa, R.S., Stensballe, J., Holcomb, J.B., Johansson, P.I., and Wade, C.E. (2018). Traumatic brain injury is associated with increased syndecan-1 shedding in severely injured patients. Scand J. Trauma Resusc. Emerg. Med. 26: 102, https://doi.org/10.1186/s13049-018-0565-3.Search in Google Scholar PubMed PubMed Central
Gonzalez, R.E., Ostrowski, S.R., Cardenas, J.C., Baer, L.A., Tomasek, J.S., Henriksen, H.H., Stensballe, J., Cotton, B.A., Holcomb, J.B., Johansson, P.I., et al.. (2017). Syndecan-1: a quantitative marker for the endotheliopathy of trauma. J. Am. Coll. Surg. 225: 419–427, https://doi.org/10.1016/j.jamcollsurg.2017.05.012.Search in Google Scholar PubMed
Harding, I.C., Mitra, R., Mensah, S.A., Herman, I.M., and Ebong, E.E. (2018). Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation. J. Transl. Med. 16: 364, https://doi.org/10.1186/s12967-018-1721-2.Search in Google Scholar PubMed PubMed Central
He, Q., Fang, Y., Ma, C., Deng, Z., Wang, F., Qu, Y., Yin, M., Zhao, R., Zhang, D., Guo, F., et al.. (2023). Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol. Res. 187: 106641, https://doi.org/10.1016/j.phrs.2022.106641.Search in Google Scholar PubMed
Henriksen, H.H., Marín de Mas, I., Nielsen, L.K., Krocker, J., Stensballe, J., Karvelsson, S.T., Secher, N.H., Rolfsson, Ó., Wade, C.E., and Johansson, P.I. (2023). Endothelial cell phenotypes demonstrate different metabolic patterns and predict mortality in trauma patients. Int. J. Mol. Sci. 24: 2257, https://doi.org/10.3390/ijms24032257.Search in Google Scholar PubMed PubMed Central
Heula, A.L., Sajanti, J., and Majamaa, K. (2015). Glycosaminoglycans in subdural fluid and CSF after meningeal injury. Acta Neurochir. 157: 2105–2110; discussion 2110, https://doi.org/10.1007/s00701-015-2591-5.Search in Google Scholar PubMed
Huang, X.W., Hussain, B., and Chang, J.L. (2021). Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther. 27: 36–47, https://doi.org/10.1111/cns.13569.Search in Google Scholar PubMed PubMed Central
Iba, T. and Levy, J.H. (2019). Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost. 17: 283–294, https://doi.org/10.1111/jth.14371.Search in Google Scholar PubMed
Iba, T., Levy, J.H., Aihara, K., Kadota, K., Tanaka, H., Sato, K., and Nagaoka, I. (2020). Newly developed recombinant antithrombin protects the pndothelial glycocalyx in an endotoxin-induced rat model of sepsis. Int. J. Mol. Sci. 22: 176, https://doi.org/10.3390/ijms22010176.Search in Google Scholar PubMed PubMed Central
Inagawa, R., Okada, H., Takemura, G., Suzuki, K., Takada, C., Yano, H., Ando, Y., Usui, T., Hotta, Y., Miyazaki, N., et al.. (2018). Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during Endotoxemia. Chest 154: 317–325, https://doi.org/10.1016/j.chest.2018.03.003.Search in Google Scholar PubMed
Jasiak-Zatońska, M., Pietrzak, A., Wyciszkiewicz, A., Więsik-Szewczyk, E., Pawlak-Buś, K., Leszczyński, P., Kozubski, W., Michalak, S., and Kalinowska-Łyszczarz, A. (2022). Different blood-brain-barrier disruption profiles in multiple sclerosis, neuromyelitis optica spectrum disorders, and neuropsychiatric systemic lupus erythematosus. Neurol. Neurochir. Pol. 56: 246–255, https://doi.org/10.5603/pjnns.a2022.0013.Search in Google Scholar
Jin, J., Fang, F., Gao, W., Chen, H., Wen, J., Wen, X., and Chen, J. (2021). The structure and function of the glycocalyx and its connection with blood-brain barrier. Front. Cell Neurosci. 15: 739699, https://doi.org/10.3389/fncel.2021.739699.Search in Google Scholar PubMed PubMed Central
Kaplan, L., Chow, B.W., and Gu, C.H. (2020). Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21: 416–432, https://doi.org/10.1038/s41583-020-0322-2.Search in Google Scholar PubMed PubMed Central
Karimi, A., Halabian, M., Razaghi, R., Downs, J.C., Kelley, M.J., and Acott, T.S. (2022). Modeling the endothelial glycocalyx layer in the human conventional aqueous outflow pathway. Cells 11: 3925, https://doi.org/10.3390/cells11233925.Search in Google Scholar PubMed PubMed Central
Kastenholz, N., Megjhani, M., Conzen-Dilger, C., Albanna, W., Veldeman, M., Nametz, D., Kwon, S.B., Schulze-Steinen, H., Ridwan, H., Clusmann, H., et al.. (2023). The oxygen reactivity index indicates disturbed local perfusion regulation after aneurysmal subarachnoid hemorrhage: an observational cohort study. Crit. Care 27: 235, https://doi.org/10.1186/s13054-023-04452-3.Search in Google Scholar PubMed PubMed Central
Kim, H.B., Soh, S., Kwak, Y.L., Bae, J.C., Kang, S.H., and Song, J.W. (2020). High preoperative serum syndecan-1, a marker of endothelial glycocalyx degradation, and severe acute kidney Injury after valvular heart surgery. J. Clin. Med. 9: 1803, https://doi.org/10.3390/jcm9061803.Search in Google Scholar PubMed PubMed Central
Ko, K., Suzuki, T., Ishikawa, R., Hattori, N., Ito, R., Umehara, K., Furihata, T., Dohmae, N., Linhardt, R.J., Igarashi, K., et al.. (2020). Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure. J. Biol. Chem. 295: 18614–18624, https://doi.org/10.1074/jbc.ra120.015105.Search in Google Scholar PubMed PubMed Central
Kolářová, H., Víteček, J., Černá, A., Černík, M., Přibyl, J., Skládal, P., Potěšil, D., Ihnatová, I., Zdráhal, Z., Hampl, A., et al.. (2021). Myeloperoxidase mediated alteration of endothelial function is dependent on its cationic charge. Free Radic. Biol. Med. 162: 14–26, https://doi.org/10.1016/j.freeradbiomed.2020.11.008.Search in Google Scholar PubMed
Krüger-Genge, A., Blocki, A., Franke, R.P., and Jung, F. (2019). Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20: 4411, https://doi.org/10.3390/ijms20184411.Search in Google Scholar PubMed PubMed Central
Kutuzov, N., Flyvbjerg, H., and Lauritzen, M. (2018). Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc. Natl. Acad. Sci. U. S. A. 115: E9429–E9438, https://doi.org/10.1073/pnas.1802155115.Search in Google Scholar PubMed PubMed Central
Lei, J., Xiang, P., Zeng, S., Chen, L., Zhang, L., Yuan, Z., Zhang, J., Wang, T., Yu, R., Zhang, W., et al.. (2021). Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation. Front. Pharmacol. 12: 791841, https://doi.org/10.3389/fphar.2021.791841.Search in Google Scholar PubMed PubMed Central
Li, H., Hao, Y., Yang, L.L., Wang, X.Y., Li, X.Y., Bhandari, S., Han, J., Liu, Y.J., Gong, Y.Q., Scott, A., et al.. (2020). MCTR1 alleviates lipopolysaccharide-induced acute lung injury by protecting lung endothelial glycocalyx. J. Cell. Physiol. 235: 7283–7294, https://doi.org/10.1002/jcp.29628.Search in Google Scholar PubMed
Li, J., Kim, K., Barazia, A., Tseng, A., and Cho, J. (2015). Platelet-neutrophil interactions under thromboinflammatory conditions. Cell. Mol. Life Sci. 72: 2627–2643, https://doi.org/10.1007/s00018-015-1845-y.Search in Google Scholar PubMed PubMed Central
Litkowski, E.M., Logue, M.W., Zhang, R., Charest, B.R., Lange, E.M., Hokanson, J.E., Lynch, J.A., Vujkovic, M., Phillips, L.S., Hauger, R.L., et al.. (2023). Mendelian randomization study of diabetes and dementia in the Million Veteran Program. Alzheimers Dement 19: 4367–4376, https://doi.org/10.1002/alz.13373.Search in Google Scholar PubMed PubMed Central
Liu, H.Q., Li, J., Xuan, C.L., and Ma, H.C. (2020). A review on the physiological and pathophysiological role of endothelial glycocalyx. J. Biochem. Mol. Toxicol. 34: e22571, https://doi.org/10.1002/jbt.22571.Search in Google Scholar PubMed
Liu, J.X., Yan, Z.P., Zhang, Y.Y., Wu, J., Liu, X.H., and Zeng, Y. (2016). Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell Mol. Biol. 62: 28–34.Search in Google Scholar
Liu, X.Y., Xu, H.X., Li, J.K., Zhang, D., Ma, X.H., Huang, L.N., Lü, J.H., and Wang, X.Z. (2018). Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Front. Physiol. 9: 102, https://doi.org/10.3389/fphys.2018.00102.Search in Google Scholar PubMed PubMed Central
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., et al.. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396: 413–446, https://doi.org/10.1016/s0140-6736(20)30367-6.Search in Google Scholar PubMed PubMed Central
Lopez, A., Panisello-Rosello, A., Castro-Benitez, C., and Adam, R. (2018). Glycocalyx preservation and NO production in fatty livers-the protective role of high molecular polyethylene glycol in cold ischemia injury. Int. J. Mol. Sci. 19: 2375, https://doi.org/10.3390/ijms19082375.Search in Google Scholar PubMed PubMed Central
Luft, J.H. (1966). Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25: 1773–1783.Search in Google Scholar
Ma, Y., Lu, Z., Jia, B., Shi, Y., Dong, J., Jiang, S., and Li, Z. (2022). DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16: 12520–12531, https://doi.org/10.1021/acsnano.2c03991.Search in Google Scholar PubMed
Ma, Y., Sannino, D., Linden, J.R., Haigh, S., Zhao, B., Grigg, J.B., Zumbo, P., Dündar, F., Butler, D., Profaci, C.P., et al.. (2023). Epsilon toxin-producing clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J. Clin. Invest. 133: e163239, https://doi.org/10.1172/jci163239.Search in Google Scholar
Machin, D.R., Bloom, S.I., Campbell, R.A., Phuong, T.T.T., Gates, P.E., Lesniewski, L.A., Rondina, M.T., and Donato, A.J. (2018). Advanced age results in a diminished endothelial glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 315: H531–h539, https://doi.org/10.1152/ajpheart.00104.2018.Search in Google Scholar PubMed PubMed Central
Mahmoud, M., Mayer, M., CancelL, M., Bartosch, A.M., Mathews, R., and Tarbell, J.M. (2021). The glycocalyx core protein Glypican 1 protects vessel wall endothelial cells from stiffness-mediated dysfunction and disease. Cardiovasc. Res. 117: 1592–1605, https://doi.org/10.1093/cvr/cvaa201.Search in Google Scholar PubMed PubMed Central
Mayer, S.A., Aldrich, E.F., Bruder, N., Hmissi, A., Macdonald, R.L., Viarasilpa, T., Marr, A., Roux, S., and Higashida, R.T. (2019). Thick and diffuse subarachnoid Blood as a treatment effect modifier of clazosentan after subarachnoid hemorrhage. Stroke 50: 2738–2744, https://doi.org/10.1161/strokeaha.119.025682.Search in Google Scholar PubMed
McCarthy, K.J. (2020). Syndecan-4: major player or innocent bystander of the endothelial glycocalyx? Kidney Int. 97: 858–860, https://doi.org/10.1016/j.kint.2020.01.040.Search in Google Scholar PubMed PubMed Central
McConnell, E.D., Wei, H.S., Reitz, K.M., Kang, H., Takano, T., Vates, G.E., and Nedergaard, M. (2016). Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. J. Cereb. Blood Flow Metab. 36: 1537–1552, https://doi.org/10.1177/0271678x15608389.Search in Google Scholar PubMed PubMed Central
Mitra, R., Nersesyan, A., Pentland, K., Melin, M.M., Levy, R.M., and Ebong, E.E. (2022). Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. Faseb J. 36: e22630, https://doi.org/10.1096/fj.202200053rr.Search in Google Scholar PubMed
Morsing, S.K.H., Rademakers, T., Brouns, S.L.N., Stalborch, A.D.V., Donners, M., and van Buul, J.D. (2021). ADAM10-mediated cleavage of ICAM-1 is involved in neutrophil transendothelial migration. Cells 10: 232, https://doi.org/10.3390/cells10020232.Search in Google Scholar PubMed PubMed Central
Nägga, K., Hansson, O., van Westen, D., Minthon, L., and Wennström, M. (2014). Increased levels of hyaluronic acid in cerebrospinal fluid in patients with vascular dementia. J. Alzheimers Dis. 42: 1435–1441, https://doi.org/10.3233/jad-141200.Search in Google Scholar
Nukala, S.B., Jousma, J., Yan, G., Han, Z., Kwon, Y., Cho, Y., Liu, C., Gagnon, K., Pinho, S., Rehman, J., et al.. (2023). Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Cardiovasc. Res. 119: 1997–2013, https://doi.org/10.1093/cvr/cvad087.Search in Google Scholar PubMed PubMed Central
O’Neil, M., Demeulenaere, S.K., DeChristopher, P.J., Holthaus, E., Jeske, W., Glynn, L., Husain, A., and Muraskas, J. (2024). Syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with fetal exposure to chorioamnionitis and is a potential biomarker for early-onset neonatal sepsis. Pediatr. Dev. Pathol. 14: 10935266241235504, https://doi.org/10.1177/10935266241235504.Search in Google Scholar PubMed
Ostrowski, S.R. and Johansson, P.I. (2012). Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J. Trauma Acute Care Surg. 73: 60–66, https://doi.org/10.1097/ta.0b013e31825b5c10.Search in Google Scholar
Parton, R.G. and Simons, K. (2007). The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8: 185–194, https://doi.org/10.1038/nrm2122.Search in Google Scholar PubMed
Pei, S., Zheng, D., Wang, Z., Hu, X., Pan, S., and Wang, H. (2018). Elevated soluble syndecan-1 levels in neuromyelitis optica are associated with disease severity. Cytokine 111: 140–145, https://doi.org/10.1016/j.cyto.2018.08.017.Search in Google Scholar PubMed
Peng, N., Geng, Y., Ouyang, J., Liu, S., Yuan, F., Wan, Y., Chen, W., Yu, B., Tang, Y., Su, L., et al.. (2023). Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine. Front. Immunol. 14: 1159195, https://doi.org/10.3389/fimmu.2023.1159195.Search in Google Scholar PubMed PubMed Central
Piotti, A., Novelli, D., Meessen, J., Ferlicca, D., Coppolecchia, S., Marino, A., Salati, G., Savioli, M., Grasselli, G., Bellani, G., et al.. (2021). Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit. Care 25: 113, https://doi.org/10.1186/s13054-021-03545-1.Search in Google Scholar PubMed PubMed Central
Pries, A.R., Secomb, T.W., and Gaehtgens, P. (2000). The endothelial surface layers. Pflugers Arch. 440: 653–666, https://doi.org/10.1007/s004240000307.Search in Google Scholar PubMed
Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M. (1985). The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J. Biol. Chem. 260: 11046–11052, https://doi.org/10.1016/s0021-9258(17)39146-9.Search in Google Scholar
Reitsma, S., Slaaf, D.W., Vink, H., van Zandvoort, M.A., and oude Egbrink, M.G. (2007). The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454: 345–359, https://doi.org/10.1007/s00424-007-0212-8.Search in Google Scholar PubMed PubMed Central
Rienks, M., Carai, P., van Teeffelen, J., Eskens, B., Verhesen, W., Hemmeryckx, B., Johnson, D.M., van Leeuwen, R., Jones, E.A., Heymans, S., et al.. (2018). SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis. Matrix Biol. 74: 21–34, https://doi.org/10.1016/j.matbio.2018.04.015.Search in Google Scholar PubMed
Rosenberg, R.D., Shworak, N.W., Liu, J., Schwartz, J.J., and Zhang, L. (1997). Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99: 2062–2070, https://doi.org/10.1172/jci119377.Search in Google Scholar
Santa-Maria, A.R., Walter, F.R., Figueiredo, R., Kincses, A., Vigh, J.P., Heymans, M., Culot, P., Winter, M., Gosselet, F., Dér, A., et al.. (2021). Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. J. Cereb. Blood Flow Metab. 41: 2201–2215, https://doi.org/10.1177/0271678x21992638.Search in Google Scholar PubMed PubMed Central
Schaeffer, S. and Iadecola, C. (2021). Revisiting the neurovascular unit. Nat. Neurosci. 24: 1198–1209, https://doi.org/10.1038/s41593-021-00904-7.Search in Google Scholar PubMed PubMed Central
Schenck, H., Netti, E., Teernstra, O., De Ridder, I., Dings, J., Niemelä, M., Temel, Y., Hoogland, G., and Haeren, R. (2021). The role of the glycocalyx in the pathophysiology of subarachnoid hemorrhage-induced delayed cerebral ischemia. Front. Cell Dev. Biol. 9: 731641, https://doi.org/10.3389/fcell.2021.731641.Search in Google Scholar PubMed PubMed Central
Schick, V.C., Neumann, T., Illerhaus, A., Timmer, M., Fuchs, A., Grau, S., and Annecke, T. (2023). Release of hyaluronan in aneurysmal subarachnoid hemorrhage and cerebral vasospasm: a pilot study indicating a shedding of the endothelial glycocalyx. J. Neurosurg. Anesthesiol. 35: 232–237, https://doi.org/10.1097/ana.0000000000000814.Search in Google Scholar
Stoddart, P., Satchell, S.C., and Ramnath, R. (2022). Cerebral microvascular endothelial glycocalyx damage, its implications on the blood-brain barrier and a possible contributor to cognitive impairment. Brain Res. 1780: 147804, https://doi.org/10.1016/j.brainres.2022.147804.Search in Google Scholar PubMed
Sun, L., Wang, L., Ye, K.X., Wang, S., Zhang, R., Juan, Z., Feng, L., and Min, S. (2023). Endothelial glycocalyx in aging and age-related diseases. Aging Dis. 14: 1606–1617, https://doi.org/10.14336/ad.2023.0131.Search in Google Scholar PubMed PubMed Central
Tomizawa, Y., Yokoyama, K., Saiki, S., Takahashi, T., Matsuoka, J., and Hattori, N. (2012). Blood-brain barrier disruption is more severe in neuromyelitis optica than in multiple sclerosis and correlates with clinical disability. J. Int. Med. Res. 40: 1483–1491, https://doi.org/10.1177/147323001204000427.Search in Google Scholar PubMed
Tsao, C.W., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., Baker-Smith, C.M., Beaton, A.Z., Boehme, A.K., Buxton, A.E., et al.. (2023). Heart disease and stroke statistics-2023 update: a report from the american heart association. Circulation 147: E93–E621, https://doi.org/10.1161/cir.0000000000001123.Search in Google Scholar
Vahldieck, C., Cianflone, E., Fels, B., Löning, S., Depelmann, P., Sabatino, J., Salerno, N., Karsten, C.M., Kusche-Vihrog, K., Sun, D., et al.. (2023). Endothelial glycocalyx and cardiomyocyte damage is prevented by recombinant syndecan-1 in acute myocardial infarction. Am. J. Pathol. 193: 474–492, https://doi.org/10.1016/j.ajpath.2022.12.009.Search in Google Scholar PubMed PubMed Central
van Steen, A.C.I., Grönloh, M.L.B., Joosten, S., van Alphen, F., van den Biggelaar, M., Nolte, M.A., Spaargaren, M., van Buul, J.D., and Schoppmeyer, R. (2023). Endothelial ICAM-1 adhesome recruits CD44 for optimal transcellular migration of human CTLs. J. Immunol. 211: 377–388, https://doi.org/10.4049/jimmunol.2200761.Search in Google Scholar PubMed
Vink, H. and Duling, B.R. (1996). Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79: 581–589, https://doi.org/10.1161/01.res.79.3.581.Search in Google Scholar PubMed
Wang, G., Tiemeier, G.L., van den Berg, B.M., and Rabelink, T.J. (2020). Endothelial glycocalyx hyaluronan: regulation and role in prevention of diabetic complications. Am. J. Pathol. 190: 781–790, https://doi.org/10.1016/j.ajpath.2019.07.022.Search in Google Scholar PubMed
Wang, G., Zhang, H., Liu, D., and Wang, X. (2022). Resuscitation fluids as drugs: targeting the endothelial glycocalyx. Chin Med. J. 135: 137–144, https://doi.org/10.1097/cm9.0000000000001869.Search in Google Scholar PubMed PubMed Central
Wang, L., Wang, J., Ren, G., Sun, S., Nishikawa, K., Yu, J., and Zhang, C. (2023). Ameliorative effects of the Coptis inflorescence extract against lung injury in diabetic mice by regulating AMPK/NEU1 signaling. Phytomedicine 118: 154963, https://doi.org/10.1016/j.phymed.2023.154963.Search in Google Scholar PubMed
Yang, H., Zhu, L., Gu, Y., Kong, X., Yan, L., Chen, M., Xie, X., Luo, J., and Chen, S. (2019). Berberine inhibits low shear stress-induced glycocalyx degradation via modulating AMPK and p47(phox)/Hyal2 signal pathway. Eur. J. Pharmacol. 856: 172413, https://doi.org/10.1016/j.ejphar.2019.172413.Search in Google Scholar PubMed
Yang, R., Chen, M., Zheng, J., Li, X., and Zhang, X. (2021). The Role of heparin and glycocalyx in blood-brain barrier dysfunction. Front. Immunol. 12: 754141, https://doi.org/10.3389/fimmu.2021.754141.Search in Google Scholar PubMed PubMed Central
Yao, L., He, F., Zhao, Q., Li, D., Fu, S., Zhang, M., Zhang, X., Zhou, B., and Wang, L. (2023). Spatial Multiplexed protein profiling of cardiac ischemia-reperfusion injury. Circ. Res. 133: 86–103, https://doi.org/10.1161/circresaha.123.322620.Search in Google Scholar
Yavarpour-Bali, H., Ghasemi-Kasman, M., and Pirzadeh, M. (2019). Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomed. 14: 4449–4460, https://doi.org/10.2147/ijn.s208332.Search in Google Scholar PubMed PubMed Central
Yin, T., Hao, J., Jiang, Q., Xu, X., Xu, B., Lv, H., Liu, W., Xiao, Y., Jiao, L., Wang, J., et al.. (2022). Dynamics of intracranial and peripheral plasma syndecan-1 after ischemic stroke with large vessel occlusion. CNS Neurosci. Ther. 28: 1648–1650, https://doi.org/10.1111/cns.13898.Search in Google Scholar PubMed PubMed Central
Yoon, J.H., Shin, P., Joo, J., Kim, G.S., Oh, W.Y., and Jeong, Y. (2022). Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. J. Cereb. Blood Flow Metab. 42: 1383–1397, https://doi.org/10.1177/0271678x221076568.Search in Google Scholar
Yu, W.Q., Zhang, S.Y., Fu, S.Q., Fu, Q.H., Lu, W.N., Zhang, J., Liang, Z.Y., Zhang, Y., and Liang, T.B. (2019). Dexamethasone protects the glycocalyx on the kidney microvascular endothelium during severe acute pancreatitis. J. Zhejiang Univ., Sci., B 20: 355–362, https://doi.org/10.1631/jzus.b1900006.Search in Google Scholar
Zhang, D., Li, L., Chen, Y., Ma, J., Yang, Y., Aodeng, S., Cui, Q., Wen, K., Xiao, M., Xie, J., et al.. (2021a). Syndecan-1, an indicator of endothelial glycocalyx degradation, predicts outcome of patients admitted to an ICU with COVID-19. Mol. Med. 27: 151, https://doi.org/10.1186/s10020-021-00412-1.Search in Google Scholar PubMed PubMed Central
Zhang, Q., Pei, S., Zhou, Z., Wang, Z., Peng, Y., Chen, J., and Wang, H. (2021b). High level of serum and cerebrospinal fluid of heparan sulfate and hyaluronic acid might be a biomarker ofseverity of neuromyelitis optica. Front. Immunol. 12: 705536, https://doi.org/10.3389/fimmu.2021.705536.Search in Google Scholar PubMed PubMed Central
Zhang, D., Qi, B.Y., Zhu, W.W., Huang, X., and Wang, X.Z. (2020a). Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways. Inflamm. Res. 69: 267–278, https://doi.org/10.1007/s00011-019-01314-z.Search in Google Scholar PubMed PubMed Central
Zhang, H., Tang, W., Wang, S., Zhang, J., and Fan, X. (2020b). Tetramethylpyrazine inhibits platelet adhesion and inflammatory response in vascular endothelial cells by inhibiting P38 MAPK and NF-κB signaling pathways. Inflammation 43: 286–297, https://doi.org/10.1007/s10753-019-01119-6.Search in Google Scholar PubMed
Zhang, Y.N., Wu, Q., Zhang, N.N., and Chen, H.S. (2023). Ischemic preconditioning alleviates cerebral ischemia-reperfusion injury by interfering with glycocalyx. Transl. Stroke Res. 14: 929–940, https://doi.org/10.1007/s12975-022-01081-w.Search in Google Scholar PubMed
Zhao, F., Wang, R., Huang, Y., Li, L., Zhong, L., Hu, Y., Han, Z., Fan, J., Liu, P., Zheng, Y., et al.. (2022). Elevated plasma syndecan-1 as glycocalyx injury marker predicts unfavorable outcomes after rt-PA intravenous thrombolysis in acute ischemic stroke. Front. Pharmacol. 13: 949290, https://doi.org/10.3389/fphar.2022.949290.Search in Google Scholar PubMed PubMed Central
Zhao, F., Zhong, L., and Luo, Y. (2021). Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci. Ther. 27: 26–35, https://doi.org/10.1111/cns.13560.Search in Google Scholar PubMed PubMed Central
Zhu, J., Li, Z., Ji, Z., Wu, Y., He, Y., Liu, K., Chang, Y., Peng, Y., Lin, Z., Wang, S., et al.. (2022). Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke. Brain Pathol. 32: e13006, https://doi.org/10.1111/bpa.13006.Search in Google Scholar PubMed PubMed Central
Zou, Z., Li, L., Li, Q., Zhao, P., Zhang, K., Liu, C., Cai, D., Maegele, M., Gu, Z., and Huang, Q. (2022). The role of S100B/RAGE-enhanced ADAM17 activation in endothelial glycocalyx shedding after traumatic brain injury. J. Neuroinflammation 19: 46, https://doi.org/10.1186/s12974-022-02412-2.Search in Google Scholar PubMed PubMed Central
Zou, Z., Li, L., Schäfer, N., Huang, Q., Maegele, M., and Gu, Z. (2021). Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J. Neuroinflammation 18: 134, https://doi.org/10.1186/s12974-021-02192-1.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder
Articles in the same Issue
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder