Startseite Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data

  • Weihao Ye , Shang Xu , Ying Liu EMAIL logo und Ziming Ye EMAIL logo
Veröffentlicht/Copyright: 23. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood–brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood–brain barrier have been recognized.


Corresponding authors: Ying Liu, Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China, E-mail: ; and Ziming Ye, Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China, E-mail:
Weihao Ye and Shang Xu contributed equally to this review.

Funding source: National Nature and Science Foundation of China

Award Identifier / Grant number: 81901394, 81960220, 82260240 and 82360456

Funding source: Joint Project on Regional High-Incidence Disease Research of Guangxi Nature Science Foundation

Award Identifier / Grant number: 2024GXNSFAA010221

Funding source: Guangxi Nature and Science Foundation

Award Identifier / Grant number: 2016GXNSFBA380020, 2018GXNSFAA138010 and 2019GXNSF

  1. Research ethics: Not applicable.

  2. Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of this manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Nature and Science Foundation of China (Grant Nos. 81901394, 81960220, 82260240 and 82360456), Joint Project on Regional High-Incidence Disease Research of Guangxi Nature Science Foundation (Grant No. 2024GXNSFAA010221) and Guangxi Nature and Science Foundation (Grant Nos. 2016GXNSFBA380020, 2018GXNSFAA138010 and 2019GXNSFAA185029).

  5. Data availability: Not applicable.

References

Abassi, Z., Armaly, Z., and Heyman, S.N. (2020). Glycocalyx degradation in ischemia-reperfusion injury. Am. J. Pathol. 190: 752–767, https://doi.org/10.1016/j.ajpath.2019.08.019.Suche in Google Scholar PubMed

Albert, V., Subramanian, A., Agrawal, D., Pati, H.P., Gupta, S.D., and Mukhopadhyay, A.K. (2018). Acute traumatic endotheliopathy in isolated severe brain injury and its impact on clinical outcome. Med. Sci. 6: 5, https://doi.org/10.3390/medsci6010005.Suche in Google Scholar PubMed PubMed Central

Alexopoulou, A.N., Multhaupt, H.A., and Couchman, J.R. (2007). Syndecans in wound healing, inflammation and vascular biology. Int. J. Biochem. Cell Biol. 39: 505–528, https://doi.org/10.1016/j.biocel.2006.10.014.Suche in Google Scholar PubMed

Ali, M.M., Mahmoud, A.M., Master, E.L., Levitan, I., and Phillips, S.A. (2019). Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am. J. Physiol.: Heart Circ. Physiol. 316: H647–H663, https://doi.org/10.1152/ajpheart.00090.2018.Suche in Google Scholar PubMed PubMed Central

Anderson, T.N., Hinson, H.E., Dewey, E.N., Rick, E.A., Schreiber, M.A., and Rowell, S.E. (2020). Early tranexamic acid administration after traumatic brain injury is associated with reduced syndecan-1 and angiopoietin-2 in patients with traumatic intracranial hemorrhage. J. Head Trauma Rehabil. 35: 317–323, https://doi.org/10.1097/htr.0000000000000619.Suche in Google Scholar

Arafa, E.A., Elgendy, N.O., Elhemely, M.A., Abdelaleem, E.A., and Mohamed, W.R. (2023). Diosmin mitigates dexamethasone-induced osteoporosis in vivo: role of Runx2, RANKL/OPG, and oxidative stress. Biomed. Pharmacother. 161: 114461, https://doi.org/10.1016/j.biopha.2023.114461.Suche in Google Scholar PubMed

Balistreri, C.R. (2022). Promising strategies for preserving adult endothelium health and reversing its dysfunction: from liquid biopsy to new omics technologies and noninvasive circulating biomarkers. Int. J. Mol. Sci. 23: 7548, https://doi.org/10.3390/ijms23147548.Suche in Google Scholar PubMed PubMed Central

Bell, J.D., Rhind, S.G., Battista, A.P. Di, Macdonald, R.L., and Baker, A.J. (2017). Biomarkers of glycocalyx injury are associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage: a case series supporting a new hypothesis. Neurocrit. Care 26: 339–347, https://doi.org/10.1007/s12028-016-0357-4.Suche in Google Scholar PubMed

Britten, M.W., Lümers, L., Tominaga, K., Peters, J., and Dirkmann, D. (2021). Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy. BMC Anesthesiol. 21: 83, https://doi.org/10.1186/s12871-021-01300-1.Suche in Google Scholar PubMed PubMed Central

Changyaleket, B., Chong, Z.Z., Dull, R.O., Nanegrungsunk, D., and Xu, H. (2017). Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J. Neuroinflammation 14: 137, https://doi.org/10.1186/s12974-017-0912-8.Suche in Google Scholar PubMed PubMed Central

Cheng, Z., Kang, C., Che, S., Su, J., Sun, Q., Ge, T., Guo, Y., Lv, J., Sun, Z., Yang, W., et al.. (2022). Berberine: a promising treatment for neurodegenerative diseases. Front. Pharmacol. 13: 845591, https://doi.org/10.3389/fphar.2022.845591.Suche in Google Scholar PubMed PubMed Central

Chico-Fernández, M., Barea-Mendoza, J.A., Pérez-Bárcena, J., García-Sáez, I., Quintana-Díaz, M.M., Mayor-García, D.M., Serviá-Goixart, L., Jiménez-Moragas, J.M., Lompart-Pou, J.A., and Llompart-Pou, J.A. (2021). Concomitant traumatic brain injury and hemorrhagic shock: outcomes using the Spanish trauma ICU registry (RETRAUCI). Am. Surg. 87: 370–375, https://doi.org/10.1177/0003134820949990.Suche in Google Scholar PubMed

Chiu, K.M., Hung, Y.L., Wang, S.J., Tsai, Y.J., Wu, N.L., Liang, C.W., Chang, D.C., and Hung, C.F. (2021). Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells. Int. J. Mol. Sci. 22: 10994, https://doi.org/10.3390/ijms222010994.Suche in Google Scholar PubMed PubMed Central

Csecsei, P., Olah, C., Varnai, R., Simon, D., Erdo-Bonyar, S., Berki, T., Czabajszki, M., Zavori, L., Schwarcz, A., and Molnar, T. (2023). Different kinetics of serum ADAMTS13, GDF-15, and neutrophil gelatinase-associated lipocalin in the early phase of aneurysmal subarachnoid hemorrhage. Int. J. Mol. Sci. 24: 11005, https://doi.org/10.3390/ijms241311005.Suche in Google Scholar PubMed PubMed Central

Czeiter, E., Amrein, K., Gravesteijn, B.Y., Lecky, F., Menon, D.K., Mondello, S., Newcombe, V.F.J., Richter, S., Steyerberg, E.W., Vyvere, T.V., et al.. (2020). Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 56: 102785, https://doi.org/10.1016/j.ebiom.2020.102785.Suche in Google Scholar PubMed PubMed Central

Daglas, M., Galle, A., Draxler, D.F., Ho, H., Liu, Z., Sashindranath, M., and Medcalf, R.L. (2020). Sex-dependent effects of tranexamic acid on blood-brain barrier permeability and the immune response following traumatic brain injury in mice. J. Thromb. Haemostasis 18: 2658–2671, https://doi.org/10.1111/jth.15015.Suche in Google Scholar PubMed

Deen, W.M., Lazzara, M.J., and Myers, B.D. (2001). Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281: F579–F596, https://doi.org/10.1152/ajprenal.2001.281.4.f579.Suche in Google Scholar PubMed

Delgadillo, L.F., Lomakina, E.B., Kuebel, J., and Waugh, R.E. (2021). Changes in endothelial glycocalyx layer protective ability after inflammatory stimulus. Am. J. Physiol. Cell Physiol. 320: C216–C224, https://doi.org/10.1152/ajpcell.00259.2020.Suche in Google Scholar PubMed PubMed Central

Delgadillo, L.F., Marsh, G.A., and Waugh, R.E. (2020). Endothelial glycocalyx layer properties and its ability to limit leukocyte adhesion. Biophys. J. 118: 1564–1575, https://doi.org/10.1016/j.bpj.2020.02.010.Suche in Google Scholar PubMed PubMed Central

DellaValle, B., Hasseldam, H., Johansen, F.F., Iversen, H.K., Rungby, J., and Hempel, C. (2019). Multiple soluble components of the glycocalyx are increased in patient plasma after ischemic stroke. Stroke 50: 2948–2951, https://doi.org/10.1161/strokeaha.119.025953.Suche in Google Scholar

DellaValle, B., Manresa-Arraut, A., Hasseldam, H., Stensballe, A., Rungby, J., Larsen, A., and Hempel, C. (2018). Detection of glycan shedding in the blood: new class of multiple sclerosis biomarkers? Front. Immunol. 9: 1254, https://doi.org/10.3389/fimmu.2018.01254.Suche in Google Scholar PubMed PubMed Central

Drew, P.J. (2022). Neurovascular coupling: motive unknown. Trends Neurosci. 45: 809–819, https://doi.org/10.1016/j.tins.2022.08.004.Suche in Google Scholar PubMed PubMed Central

Druzak, S., Iffrig, E., Roberts, B.R., Zhang, T., Fibben, K.S., Sakurai, Y., Verkerke, H.P., Rostad, C.A., Chahroudi, A., Schneider, F., et al.. (2023). Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat. Commun. 14: 1638, https://doi.org/10.1038/s41467-023-37269-3.Suche in Google Scholar PubMed PubMed Central

Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., Spray, D.C., and Tarbell, J.M. (2014). Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 6: 338–347, https://doi.org/10.1039/c3ib40199e.Suche in Google Scholar PubMed PubMed Central

Endo, S. and Shimazaki, R. (2018). An open-label, randomized, phase 3 study of the efficacy and safety of antithrombin gamma in patients with sepsis-induced disseminated intravascular coagulation syndrome. J. Intensive Care 6: 75, https://doi.org/10.1186/s40560-018-0339-z.Suche in Google Scholar PubMed PubMed Central

Fan, J., Sun, Y., Xia, Y., Tarbell, M., and Fu, B.M. (2019). Endothelial surface glycocalyx (ESG) components and ultra-structure revealed by stochastic optical reconstruction microscopy (STORM). Biorheology 56: 77–88, https://doi.org/10.3233/bir-180204.Suche in Google Scholar PubMed

Fu, B.M. and Tarbell, J.M. (2013). Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip. Rev.: Syst. Biol. Med. 5: 381–390, https://doi.org/10.1002/wsbm.1211.Suche in Google Scholar PubMed PubMed Central

Geraghty, J.R. and Testai, F.D. (2017). Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr. Atheroscler. Rep. 19: 50, https://doi.org/10.1007/s11883-017-0690-x.Suche in Google Scholar PubMed

Ghanemi, A., Melouane, A., Yoshioka, M., and St-Amand, J. (2022). Secreted protein acidic and rich in Cysteine (Sparc) KO leads to an accelerated ageing phenotype which is improved by exercise whereas SPARC overexpression mimics exercise effects in mice. Metabolites 12: 125, https://doi.org/10.3390/metabo12020125.Suche in Google Scholar PubMed PubMed Central

Gonzalez, R.E., Cardenas, J.C., Cox, C.S., Kitagawa, R.S., Stensballe, J., Holcomb, J.B., Johansson, P.I., and Wade, C.E. (2018). Traumatic brain injury is associated with increased syndecan-1 shedding in severely injured patients. Scand J. Trauma Resusc. Emerg. Med. 26: 102, https://doi.org/10.1186/s13049-018-0565-3.Suche in Google Scholar PubMed PubMed Central

Gonzalez, R.E., Ostrowski, S.R., Cardenas, J.C., Baer, L.A., Tomasek, J.S., Henriksen, H.H., Stensballe, J., Cotton, B.A., Holcomb, J.B., Johansson, P.I., et al.. (2017). Syndecan-1: a quantitative marker for the endotheliopathy of trauma. J. Am. Coll. Surg. 225: 419–427, https://doi.org/10.1016/j.jamcollsurg.2017.05.012.Suche in Google Scholar PubMed

Harding, I.C., Mitra, R., Mensah, S.A., Herman, I.M., and Ebong, E.E. (2018). Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation. J. Transl. Med. 16: 364, https://doi.org/10.1186/s12967-018-1721-2.Suche in Google Scholar PubMed PubMed Central

He, Q., Fang, Y., Ma, C., Deng, Z., Wang, F., Qu, Y., Yin, M., Zhao, R., Zhang, D., Guo, F., et al.. (2023). Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol. Res. 187: 106641, https://doi.org/10.1016/j.phrs.2022.106641.Suche in Google Scholar PubMed

Henriksen, H.H., Marín de Mas, I., Nielsen, L.K., Krocker, J., Stensballe, J., Karvelsson, S.T., Secher, N.H., Rolfsson, Ó., Wade, C.E., and Johansson, P.I. (2023). Endothelial cell phenotypes demonstrate different metabolic patterns and predict mortality in trauma patients. Int. J. Mol. Sci. 24: 2257, https://doi.org/10.3390/ijms24032257.Suche in Google Scholar PubMed PubMed Central

Heula, A.L., Sajanti, J., and Majamaa, K. (2015). Glycosaminoglycans in subdural fluid and CSF after meningeal injury. Acta Neurochir. 157: 2105–2110; discussion 2110, https://doi.org/10.1007/s00701-015-2591-5.Suche in Google Scholar PubMed

Huang, X.W., Hussain, B., and Chang, J.L. (2021). Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther. 27: 36–47, https://doi.org/10.1111/cns.13569.Suche in Google Scholar PubMed PubMed Central

Iba, T. and Levy, J.H. (2019). Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost. 17: 283–294, https://doi.org/10.1111/jth.14371.Suche in Google Scholar PubMed

Iba, T., Levy, J.H., Aihara, K., Kadota, K., Tanaka, H., Sato, K., and Nagaoka, I. (2020). Newly developed recombinant antithrombin protects the pndothelial glycocalyx in an endotoxin-induced rat model of sepsis. Int. J. Mol. Sci. 22: 176, https://doi.org/10.3390/ijms22010176.Suche in Google Scholar PubMed PubMed Central

Inagawa, R., Okada, H., Takemura, G., Suzuki, K., Takada, C., Yano, H., Ando, Y., Usui, T., Hotta, Y., Miyazaki, N., et al.. (2018). Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during Endotoxemia. Chest 154: 317–325, https://doi.org/10.1016/j.chest.2018.03.003.Suche in Google Scholar PubMed

Jasiak-Zatońska, M., Pietrzak, A., Wyciszkiewicz, A., Więsik-Szewczyk, E., Pawlak-Buś, K., Leszczyński, P., Kozubski, W., Michalak, S., and Kalinowska-Łyszczarz, A. (2022). Different blood-brain-barrier disruption profiles in multiple sclerosis, neuromyelitis optica spectrum disorders, and neuropsychiatric systemic lupus erythematosus. Neurol. Neurochir. Pol. 56: 246–255, https://doi.org/10.5603/pjnns.a2022.0013.Suche in Google Scholar

Jin, J., Fang, F., Gao, W., Chen, H., Wen, J., Wen, X., and Chen, J. (2021). The structure and function of the glycocalyx and its connection with blood-brain barrier. Front. Cell Neurosci. 15: 739699, https://doi.org/10.3389/fncel.2021.739699.Suche in Google Scholar PubMed PubMed Central

Kaplan, L., Chow, B.W., and Gu, C.H. (2020). Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21: 416–432, https://doi.org/10.1038/s41583-020-0322-2.Suche in Google Scholar PubMed PubMed Central

Karimi, A., Halabian, M., Razaghi, R., Downs, J.C., Kelley, M.J., and Acott, T.S. (2022). Modeling the endothelial glycocalyx layer in the human conventional aqueous outflow pathway. Cells 11: 3925, https://doi.org/10.3390/cells11233925.Suche in Google Scholar PubMed PubMed Central

Kastenholz, N., Megjhani, M., Conzen-Dilger, C., Albanna, W., Veldeman, M., Nametz, D., Kwon, S.B., Schulze-Steinen, H., Ridwan, H., Clusmann, H., et al.. (2023). The oxygen reactivity index indicates disturbed local perfusion regulation after aneurysmal subarachnoid hemorrhage: an observational cohort study. Crit. Care 27: 235, https://doi.org/10.1186/s13054-023-04452-3.Suche in Google Scholar PubMed PubMed Central

Kim, H.B., Soh, S., Kwak, Y.L., Bae, J.C., Kang, S.H., and Song, J.W. (2020). High preoperative serum syndecan-1, a marker of endothelial glycocalyx degradation, and severe acute kidney Injury after valvular heart surgery. J. Clin. Med. 9: 1803, https://doi.org/10.3390/jcm9061803.Suche in Google Scholar PubMed PubMed Central

Ko, K., Suzuki, T., Ishikawa, R., Hattori, N., Ito, R., Umehara, K., Furihata, T., Dohmae, N., Linhardt, R.J., Igarashi, K., et al.. (2020). Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure. J. Biol. Chem. 295: 18614–18624, https://doi.org/10.1074/jbc.ra120.015105.Suche in Google Scholar PubMed PubMed Central

Kolářová, H., Víteček, J., Černá, A., Černík, M., Přibyl, J., Skládal, P., Potěšil, D., Ihnatová, I., Zdráhal, Z., Hampl, A., et al.. (2021). Myeloperoxidase mediated alteration of endothelial function is dependent on its cationic charge. Free Radic. Biol. Med. 162: 14–26, https://doi.org/10.1016/j.freeradbiomed.2020.11.008.Suche in Google Scholar PubMed

Krüger-Genge, A., Blocki, A., Franke, R.P., and Jung, F. (2019). Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20: 4411, https://doi.org/10.3390/ijms20184411.Suche in Google Scholar PubMed PubMed Central

Kutuzov, N., Flyvbjerg, H., and Lauritzen, M. (2018). Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc. Natl. Acad. Sci. U. S. A. 115: E9429–E9438, https://doi.org/10.1073/pnas.1802155115.Suche in Google Scholar PubMed PubMed Central

Lei, J., Xiang, P., Zeng, S., Chen, L., Zhang, L., Yuan, Z., Zhang, J., Wang, T., Yu, R., Zhang, W., et al.. (2021). Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation. Front. Pharmacol. 12: 791841, https://doi.org/10.3389/fphar.2021.791841.Suche in Google Scholar PubMed PubMed Central

Li, H., Hao, Y., Yang, L.L., Wang, X.Y., Li, X.Y., Bhandari, S., Han, J., Liu, Y.J., Gong, Y.Q., Scott, A., et al.. (2020). MCTR1 alleviates lipopolysaccharide-induced acute lung injury by protecting lung endothelial glycocalyx. J. Cell. Physiol. 235: 7283–7294, https://doi.org/10.1002/jcp.29628.Suche in Google Scholar PubMed

Li, J., Kim, K., Barazia, A., Tseng, A., and Cho, J. (2015). Platelet-neutrophil interactions under thromboinflammatory conditions. Cell. Mol. Life Sci. 72: 2627–2643, https://doi.org/10.1007/s00018-015-1845-y.Suche in Google Scholar PubMed PubMed Central

Litkowski, E.M., Logue, M.W., Zhang, R., Charest, B.R., Lange, E.M., Hokanson, J.E., Lynch, J.A., Vujkovic, M., Phillips, L.S., Hauger, R.L., et al.. (2023). Mendelian randomization study of diabetes and dementia in the Million Veteran Program. Alzheimers Dement 19: 4367–4376, https://doi.org/10.1002/alz.13373.Suche in Google Scholar PubMed PubMed Central

Liu, H.Q., Li, J., Xuan, C.L., and Ma, H.C. (2020). A review on the physiological and pathophysiological role of endothelial glycocalyx. J. Biochem. Mol. Toxicol. 34: e22571, https://doi.org/10.1002/jbt.22571.Suche in Google Scholar PubMed

Liu, J.X., Yan, Z.P., Zhang, Y.Y., Wu, J., Liu, X.H., and Zeng, Y. (2016). Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell Mol. Biol. 62: 28–34.Suche in Google Scholar

Liu, X.Y., Xu, H.X., Li, J.K., Zhang, D., Ma, X.H., Huang, L.N., Lü, J.H., and Wang, X.Z. (2018). Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Front. Physiol. 9: 102, https://doi.org/10.3389/fphys.2018.00102.Suche in Google Scholar PubMed PubMed Central

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., et al.. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396: 413–446, https://doi.org/10.1016/s0140-6736(20)30367-6.Suche in Google Scholar PubMed PubMed Central

Lopez, A., Panisello-Rosello, A., Castro-Benitez, C., and Adam, R. (2018). Glycocalyx preservation and NO production in fatty livers-the protective role of high molecular polyethylene glycol in cold ischemia injury. Int. J. Mol. Sci. 19: 2375, https://doi.org/10.3390/ijms19082375.Suche in Google Scholar PubMed PubMed Central

Luft, J.H. (1966). Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25: 1773–1783.Suche in Google Scholar

Ma, Y., Lu, Z., Jia, B., Shi, Y., Dong, J., Jiang, S., and Li, Z. (2022). DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16: 12520–12531, https://doi.org/10.1021/acsnano.2c03991.Suche in Google Scholar PubMed

Ma, Y., Sannino, D., Linden, J.R., Haigh, S., Zhao, B., Grigg, J.B., Zumbo, P., Dündar, F., Butler, D., Profaci, C.P., et al.. (2023). Epsilon toxin-producing clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J. Clin. Invest. 133: e163239, https://doi.org/10.1172/jci163239.Suche in Google Scholar

Machin, D.R., Bloom, S.I., Campbell, R.A., Phuong, T.T.T., Gates, P.E., Lesniewski, L.A., Rondina, M.T., and Donato, A.J. (2018). Advanced age results in a diminished endothelial glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 315: H531–h539, https://doi.org/10.1152/ajpheart.00104.2018.Suche in Google Scholar PubMed PubMed Central

Mahmoud, M., Mayer, M., CancelL, M., Bartosch, A.M., Mathews, R., and Tarbell, J.M. (2021). The glycocalyx core protein Glypican 1 protects vessel wall endothelial cells from stiffness-mediated dysfunction and disease. Cardiovasc. Res. 117: 1592–1605, https://doi.org/10.1093/cvr/cvaa201.Suche in Google Scholar PubMed PubMed Central

Mayer, S.A., Aldrich, E.F., Bruder, N., Hmissi, A., Macdonald, R.L., Viarasilpa, T., Marr, A., Roux, S., and Higashida, R.T. (2019). Thick and diffuse subarachnoid Blood as a treatment effect modifier of clazosentan after subarachnoid hemorrhage. Stroke 50: 2738–2744, https://doi.org/10.1161/strokeaha.119.025682.Suche in Google Scholar PubMed

McCarthy, K.J. (2020). Syndecan-4: major player or innocent bystander of the endothelial glycocalyx? Kidney Int. 97: 858–860, https://doi.org/10.1016/j.kint.2020.01.040.Suche in Google Scholar PubMed PubMed Central

McConnell, E.D., Wei, H.S., Reitz, K.M., Kang, H., Takano, T., Vates, G.E., and Nedergaard, M. (2016). Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. J. Cereb. Blood Flow Metab. 36: 1537–1552, https://doi.org/10.1177/0271678x15608389.Suche in Google Scholar PubMed PubMed Central

Mitra, R., Nersesyan, A., Pentland, K., Melin, M.M., Levy, R.M., and Ebong, E.E. (2022). Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. Faseb J. 36: e22630, https://doi.org/10.1096/fj.202200053rr.Suche in Google Scholar PubMed

Morsing, S.K.H., Rademakers, T., Brouns, S.L.N., Stalborch, A.D.V., Donners, M., and van Buul, J.D. (2021). ADAM10-mediated cleavage of ICAM-1 is involved in neutrophil transendothelial migration. Cells 10: 232, https://doi.org/10.3390/cells10020232.Suche in Google Scholar PubMed PubMed Central

Nägga, K., Hansson, O., van Westen, D., Minthon, L., and Wennström, M. (2014). Increased levels of hyaluronic acid in cerebrospinal fluid in patients with vascular dementia. J. Alzheimers Dis. 42: 1435–1441, https://doi.org/10.3233/jad-141200.Suche in Google Scholar

Nukala, S.B., Jousma, J., Yan, G., Han, Z., Kwon, Y., Cho, Y., Liu, C., Gagnon, K., Pinho, S., Rehman, J., et al.. (2023). Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Cardiovasc. Res. 119: 1997–2013, https://doi.org/10.1093/cvr/cvad087.Suche in Google Scholar PubMed PubMed Central

O’Neil, M., Demeulenaere, S.K., DeChristopher, P.J., Holthaus, E., Jeske, W., Glynn, L., Husain, A., and Muraskas, J. (2024). Syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with fetal exposure to chorioamnionitis and is a potential biomarker for early-onset neonatal sepsis. Pediatr. Dev. Pathol. 14: 10935266241235504, https://doi.org/10.1177/10935266241235504.Suche in Google Scholar PubMed

Ostrowski, S.R. and Johansson, P.I. (2012). Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J. Trauma Acute Care Surg. 73: 60–66, https://doi.org/10.1097/ta.0b013e31825b5c10.Suche in Google Scholar

Parton, R.G. and Simons, K. (2007). The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8: 185–194, https://doi.org/10.1038/nrm2122.Suche in Google Scholar PubMed

Pei, S., Zheng, D., Wang, Z., Hu, X., Pan, S., and Wang, H. (2018). Elevated soluble syndecan-1 levels in neuromyelitis optica are associated with disease severity. Cytokine 111: 140–145, https://doi.org/10.1016/j.cyto.2018.08.017.Suche in Google Scholar PubMed

Peng, N., Geng, Y., Ouyang, J., Liu, S., Yuan, F., Wan, Y., Chen, W., Yu, B., Tang, Y., Su, L., et al.. (2023). Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine. Front. Immunol. 14: 1159195, https://doi.org/10.3389/fimmu.2023.1159195.Suche in Google Scholar PubMed PubMed Central

Piotti, A., Novelli, D., Meessen, J., Ferlicca, D., Coppolecchia, S., Marino, A., Salati, G., Savioli, M., Grasselli, G., Bellani, G., et al.. (2021). Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit. Care 25: 113, https://doi.org/10.1186/s13054-021-03545-1.Suche in Google Scholar PubMed PubMed Central

Pries, A.R., Secomb, T.W., and Gaehtgens, P. (2000). The endothelial surface layers. Pflugers Arch. 440: 653–666, https://doi.org/10.1007/s004240000307.Suche in Google Scholar PubMed

Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M. (1985). The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J. Biol. Chem. 260: 11046–11052, https://doi.org/10.1016/s0021-9258(17)39146-9.Suche in Google Scholar

Reitsma, S., Slaaf, D.W., Vink, H., van Zandvoort, M.A., and oude Egbrink, M.G. (2007). The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454: 345–359, https://doi.org/10.1007/s00424-007-0212-8.Suche in Google Scholar PubMed PubMed Central

Rienks, M., Carai, P., van Teeffelen, J., Eskens, B., Verhesen, W., Hemmeryckx, B., Johnson, D.M., van Leeuwen, R., Jones, E.A., Heymans, S., et al.. (2018). SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis. Matrix Biol. 74: 21–34, https://doi.org/10.1016/j.matbio.2018.04.015.Suche in Google Scholar PubMed

Rosenberg, R.D., Shworak, N.W., Liu, J., Schwartz, J.J., and Zhang, L. (1997). Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99: 2062–2070, https://doi.org/10.1172/jci119377.Suche in Google Scholar

Santa-Maria, A.R., Walter, F.R., Figueiredo, R., Kincses, A., Vigh, J.P., Heymans, M., Culot, P., Winter, M., Gosselet, F., Dér, A., et al.. (2021). Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. J. Cereb. Blood Flow Metab. 41: 2201–2215, https://doi.org/10.1177/0271678x21992638.Suche in Google Scholar PubMed PubMed Central

Schaeffer, S. and Iadecola, C. (2021). Revisiting the neurovascular unit. Nat. Neurosci. 24: 1198–1209, https://doi.org/10.1038/s41593-021-00904-7.Suche in Google Scholar PubMed PubMed Central

Schenck, H., Netti, E., Teernstra, O., De Ridder, I., Dings, J., Niemelä, M., Temel, Y., Hoogland, G., and Haeren, R. (2021). The role of the glycocalyx in the pathophysiology of subarachnoid hemorrhage-induced delayed cerebral ischemia. Front. Cell Dev. Biol. 9: 731641, https://doi.org/10.3389/fcell.2021.731641.Suche in Google Scholar PubMed PubMed Central

Schick, V.C., Neumann, T., Illerhaus, A., Timmer, M., Fuchs, A., Grau, S., and Annecke, T. (2023). Release of hyaluronan in aneurysmal subarachnoid hemorrhage and cerebral vasospasm: a pilot study indicating a shedding of the endothelial glycocalyx. J. Neurosurg. Anesthesiol. 35: 232–237, https://doi.org/10.1097/ana.0000000000000814.Suche in Google Scholar

Stoddart, P., Satchell, S.C., and Ramnath, R. (2022). Cerebral microvascular endothelial glycocalyx damage, its implications on the blood-brain barrier and a possible contributor to cognitive impairment. Brain Res. 1780: 147804, https://doi.org/10.1016/j.brainres.2022.147804.Suche in Google Scholar PubMed

Sun, L., Wang, L., Ye, K.X., Wang, S., Zhang, R., Juan, Z., Feng, L., and Min, S. (2023). Endothelial glycocalyx in aging and age-related diseases. Aging Dis. 14: 1606–1617, https://doi.org/10.14336/ad.2023.0131.Suche in Google Scholar PubMed PubMed Central

Tomizawa, Y., Yokoyama, K., Saiki, S., Takahashi, T., Matsuoka, J., and Hattori, N. (2012). Blood-brain barrier disruption is more severe in neuromyelitis optica than in multiple sclerosis and correlates with clinical disability. J. Int. Med. Res. 40: 1483–1491, https://doi.org/10.1177/147323001204000427.Suche in Google Scholar PubMed

Tsao, C.W., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., Baker-Smith, C.M., Beaton, A.Z., Boehme, A.K., Buxton, A.E., et al.. (2023). Heart disease and stroke statistics-2023 update: a report from the american heart association. Circulation 147: E93–E621, https://doi.org/10.1161/cir.0000000000001123.Suche in Google Scholar

Vahldieck, C., Cianflone, E., Fels, B., Löning, S., Depelmann, P., Sabatino, J., Salerno, N., Karsten, C.M., Kusche-Vihrog, K., Sun, D., et al.. (2023). Endothelial glycocalyx and cardiomyocyte damage is prevented by recombinant syndecan-1 in acute myocardial infarction. Am. J. Pathol. 193: 474–492, https://doi.org/10.1016/j.ajpath.2022.12.009.Suche in Google Scholar PubMed PubMed Central

van Steen, A.C.I., Grönloh, M.L.B., Joosten, S., van Alphen, F., van den Biggelaar, M., Nolte, M.A., Spaargaren, M., van Buul, J.D., and Schoppmeyer, R. (2023). Endothelial ICAM-1 adhesome recruits CD44 for optimal transcellular migration of human CTLs. J. Immunol. 211: 377–388, https://doi.org/10.4049/jimmunol.2200761.Suche in Google Scholar PubMed

Vink, H. and Duling, B.R. (1996). Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79: 581–589, https://doi.org/10.1161/01.res.79.3.581.Suche in Google Scholar PubMed

Wang, G., Tiemeier, G.L., van den Berg, B.M., and Rabelink, T.J. (2020). Endothelial glycocalyx hyaluronan: regulation and role in prevention of diabetic complications. Am. J. Pathol. 190: 781–790, https://doi.org/10.1016/j.ajpath.2019.07.022.Suche in Google Scholar PubMed

Wang, G., Zhang, H., Liu, D., and Wang, X. (2022). Resuscitation fluids as drugs: targeting the endothelial glycocalyx. Chin Med. J. 135: 137–144, https://doi.org/10.1097/cm9.0000000000001869.Suche in Google Scholar PubMed PubMed Central

Wang, L., Wang, J., Ren, G., Sun, S., Nishikawa, K., Yu, J., and Zhang, C. (2023). Ameliorative effects of the Coptis inflorescence extract against lung injury in diabetic mice by regulating AMPK/NEU1 signaling. Phytomedicine 118: 154963, https://doi.org/10.1016/j.phymed.2023.154963.Suche in Google Scholar PubMed

Yang, H., Zhu, L., Gu, Y., Kong, X., Yan, L., Chen, M., Xie, X., Luo, J., and Chen, S. (2019). Berberine inhibits low shear stress-induced glycocalyx degradation via modulating AMPK and p47(phox)/Hyal2 signal pathway. Eur. J. Pharmacol. 856: 172413, https://doi.org/10.1016/j.ejphar.2019.172413.Suche in Google Scholar PubMed

Yang, R., Chen, M., Zheng, J., Li, X., and Zhang, X. (2021). The Role of heparin and glycocalyx in blood-brain barrier dysfunction. Front. Immunol. 12: 754141, https://doi.org/10.3389/fimmu.2021.754141.Suche in Google Scholar PubMed PubMed Central

Yao, L., He, F., Zhao, Q., Li, D., Fu, S., Zhang, M., Zhang, X., Zhou, B., and Wang, L. (2023). Spatial Multiplexed protein profiling of cardiac ischemia-reperfusion injury. Circ. Res. 133: 86–103, https://doi.org/10.1161/circresaha.123.322620.Suche in Google Scholar

Yavarpour-Bali, H., Ghasemi-Kasman, M., and Pirzadeh, M. (2019). Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomed. 14: 4449–4460, https://doi.org/10.2147/ijn.s208332.Suche in Google Scholar PubMed PubMed Central

Yin, T., Hao, J., Jiang, Q., Xu, X., Xu, B., Lv, H., Liu, W., Xiao, Y., Jiao, L., Wang, J., et al.. (2022). Dynamics of intracranial and peripheral plasma syndecan-1 after ischemic stroke with large vessel occlusion. CNS Neurosci. Ther. 28: 1648–1650, https://doi.org/10.1111/cns.13898.Suche in Google Scholar PubMed PubMed Central

Yoon, J.H., Shin, P., Joo, J., Kim, G.S., Oh, W.Y., and Jeong, Y. (2022). Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. J. Cereb. Blood Flow Metab. 42: 1383–1397, https://doi.org/10.1177/0271678x221076568.Suche in Google Scholar

Yu, W.Q., Zhang, S.Y., Fu, S.Q., Fu, Q.H., Lu, W.N., Zhang, J., Liang, Z.Y., Zhang, Y., and Liang, T.B. (2019). Dexamethasone protects the glycocalyx on the kidney microvascular endothelium during severe acute pancreatitis. J. Zhejiang Univ., Sci., B 20: 355–362, https://doi.org/10.1631/jzus.b1900006.Suche in Google Scholar

Zhang, D., Li, L., Chen, Y., Ma, J., Yang, Y., Aodeng, S., Cui, Q., Wen, K., Xiao, M., Xie, J., et al.. (2021a). Syndecan-1, an indicator of endothelial glycocalyx degradation, predicts outcome of patients admitted to an ICU with COVID-19. Mol. Med. 27: 151, https://doi.org/10.1186/s10020-021-00412-1.Suche in Google Scholar PubMed PubMed Central

Zhang, Q., Pei, S., Zhou, Z., Wang, Z., Peng, Y., Chen, J., and Wang, H. (2021b). High level of serum and cerebrospinal fluid of heparan sulfate and hyaluronic acid might be a biomarker ofseverity of neuromyelitis optica. Front. Immunol. 12: 705536, https://doi.org/10.3389/fimmu.2021.705536.Suche in Google Scholar PubMed PubMed Central

Zhang, D., Qi, B.Y., Zhu, W.W., Huang, X., and Wang, X.Z. (2020a). Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways. Inflamm. Res. 69: 267–278, https://doi.org/10.1007/s00011-019-01314-z.Suche in Google Scholar PubMed PubMed Central

Zhang, H., Tang, W., Wang, S., Zhang, J., and Fan, X. (2020b). Tetramethylpyrazine inhibits platelet adhesion and inflammatory response in vascular endothelial cells by inhibiting P38 MAPK and NF-κB signaling pathways. Inflammation 43: 286–297, https://doi.org/10.1007/s10753-019-01119-6.Suche in Google Scholar PubMed

Zhang, Y.N., Wu, Q., Zhang, N.N., and Chen, H.S. (2023). Ischemic preconditioning alleviates cerebral ischemia-reperfusion injury by interfering with glycocalyx. Transl. Stroke Res. 14: 929–940, https://doi.org/10.1007/s12975-022-01081-w.Suche in Google Scholar PubMed

Zhao, F., Wang, R., Huang, Y., Li, L., Zhong, L., Hu, Y., Han, Z., Fan, J., Liu, P., Zheng, Y., et al.. (2022). Elevated plasma syndecan-1 as glycocalyx injury marker predicts unfavorable outcomes after rt-PA intravenous thrombolysis in acute ischemic stroke. Front. Pharmacol. 13: 949290, https://doi.org/10.3389/fphar.2022.949290.Suche in Google Scholar PubMed PubMed Central

Zhao, F., Zhong, L., and Luo, Y. (2021). Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci. Ther. 27: 26–35, https://doi.org/10.1111/cns.13560.Suche in Google Scholar PubMed PubMed Central

Zhu, J., Li, Z., Ji, Z., Wu, Y., He, Y., Liu, K., Chang, Y., Peng, Y., Lin, Z., Wang, S., et al.. (2022). Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke. Brain Pathol. 32: e13006, https://doi.org/10.1111/bpa.13006.Suche in Google Scholar PubMed PubMed Central

Zou, Z., Li, L., Li, Q., Zhao, P., Zhang, K., Liu, C., Cai, D., Maegele, M., Gu, Z., and Huang, Q. (2022). The role of S100B/RAGE-enhanced ADAM17 activation in endothelial glycocalyx shedding after traumatic brain injury. J. Neuroinflammation 19: 46, https://doi.org/10.1186/s12974-022-02412-2.Suche in Google Scholar PubMed PubMed Central

Zou, Z., Li, L., Schäfer, N., Huang, Q., Maegele, M., and Gu, Z. (2021). Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J. Neuroinflammation 18: 134, https://doi.org/10.1186/s12974-021-02192-1.Suche in Google Scholar PubMed PubMed Central

Received: 2024-03-14
Accepted: 2024-05-22
Published Online: 2024-07-23
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0039/html
Button zum nach oben scrollen