Abstract
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
Funding source: Jiangxi Provincial Department of Science and Technology
Award Identifier / Grant number: 20192BAB205043
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 30560042, 81160161, 81360198, and 82160255
Funding source: Health and Family Planning Commission of Jiangxi Province
Award Identifier / Grant number: 20181019, 202210002 and 202310119
Funding source: Education Department of Jiangxi Province
Award Identifier / Grant number: GJJ13198 and GJJ170021
-
Research ethics: No applicable.
-
Author contributions: ZQ wrote the first draft of the manuscript. RX provided critical feedback as supervisor. All authors conceived its content and structure, reviewed, edited, and approved the final manuscript.
-
Competing interests: All authors declare no potential conflicts of interest with regard to this manuscript. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or conflict with the subject matter or materials discussed in this manuscript.
-
Research funding: This study was in part funded by the National Natural Science Foundation of China (30560042, 81160161, 81360198, and 82160255), Education Department of Jiangxi Province (GJJ13198 and GJJ170021), Jiangxi Provincial Department of Science and Technology (20192BAB205043) and Health and Family Planning Commission of Jiangxi Province (20181019, 202210002 and 202310119).
-
Data availability: No any data are available, any data include in this manuscript.
References
Åberg, M., Nyberg, J., Robertson, J., Kuhn, G., Schiöler, L., Nissbrandt, H., Waern, M., and Torén, K. (2018). Risk factors in Swedish young men for amyotrophic lateral sclerosis in adulthood. J. Neurol. 265: 460–470, https://doi.org/10.1007/s00415-017-8719-1.Suche in Google Scholar PubMed PubMed Central
Abu-Rumeileh, S., Vacchiano, V., Zenesini, C., Polischi, B., de Pasqua, S., Fileccia, E., Mammana, A., Di Stasi, V., Capellari, S., Salvi, F., et al.. (2020). Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J. Neurol. 267: 1699–1708, https://doi.org/10.1007/s00415-020-09761-z.Suche in Google Scholar PubMed
Agosta, F., Spinelli, E.G., Marjanovic, I.V., Stevic, Z., Pagani, E., Valsasina, P., Salak-Djokic, B., Jankovic, M., Lavrnic, D., Kostic, V.S., et al.. (2018). Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI. Neurology 90: e707–e716, https://doi.org/10.1212/wnl.0000000000005002.Suche in Google Scholar
Ahmed, R. and Farooqi, I.S. (2017). Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88: 1006–1007, https://doi.org/10.1136/jnnp-2017-316382.Suche in Google Scholar PubMed
Alruwaili, A.R., Pannek, K., Coulthard, A., Henderson, R., Kurniawan, N.D., and McCombe, P. (2018). A combined tract-based spatial statistics and voxel-based morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis. J. Neuroradiol. 45: 41–48, https://doi.org/10.1016/j.neurad.2017.03.007.Suche in Google Scholar PubMed
Area-Gomez, E., Larrea, D., Yun, T., Xu, Y., Hupf, J., Zandkarimi, F., Chan, R.B., and Mitsumoto, H. (2021). Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci. Rep. 11: 13562, https://doi.org/10.1038/s41598-021-92112-3.Suche in Google Scholar PubMed PubMed Central
Barp, A., Ferrero, A., Casagrande, S., Morini, R., and Zuccarino, R. (2021). Circulating biomarkers in neuromuscular disorders: what is known, what is new. Biomolecules 11: 1246, https://doi.org/10.3390/biom11081246.Suche in Google Scholar PubMed PubMed Central
Barry, R.L., Torrado-Carvajal, A., Kirsch, J.E., Arabasz, G.E., Albrecht, D.S., Alshelh, Z., Pijanowski, O., Lewis, A.J., Keegan, M., Reynolds, B., et al.. (2022). Selective atrophy of the cervical enlargement in whole spinal cord MRI of amyotrophic lateral sclerosis. Neuroimage Clin. 36: 103199, https://doi.org/10.1016/j.nicl.2022.103199.Suche in Google Scholar PubMed PubMed Central
Basaia, S., Agosta, F., Cividini, C., Trojsi, F., Riva, N., Spinelli, E.G., Moglia, C., Femiano, C., Castelnovo, V., Elisa, C.E., et al.. (2020). Structural and functional brain connectome in motor neuron diseases: a multicenter MRI study. Neurology 95: e2552–e2564, https://doi.org/10.1212/wnl.0000000000010731.Suche in Google Scholar
Benatar, M., Wuu, J., Andersen, P.M., Lombardi, V., and Malaspina, A. (2018). Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann. Neurol. 84: 130–139, https://doi.org/10.1002/ana.25276.Suche in Google Scholar PubMed PubMed Central
Benatar, M., Zhang, L., Wang, L., Granit, V., Statland, J., Barohn, R., Swenson, A., Ravits, J., Jackson, C., Burns, T.M., et al.. (2020). Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95: e59–e69, https://doi.org/10.1212/wnl.0000000000009559.Suche in Google Scholar PubMed PubMed Central
Bjornevik, K., O’Reilly, É.J., Cortese, M., Furtado, J.D., Kolonel, L.N., Le Marchand, L., Mccullough, M.L., Paganoni, S., Schwarzschild, M.A., Shadyab, A.H., et al.. (2021). Pre-diagnostic plasma lipid levels and the risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Frontotemporal Degener. 22: 133–143, https://doi.org/10.1080/21678421.2020.1822411.Suche in Google Scholar PubMed PubMed Central
Brodovitch, A., Boucraut, J., Delmont, E., Parlanti, A., Grapperon, A.-M., Attarian, S., and Verschueren, A. (2021). Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci. Rep. 11: 703, https://doi.org/10.1038/s41598-020-80370-6.Suche in Google Scholar PubMed PubMed Central
Calvo, A., Chiò, A., Pagani, M., Cammarosano, S., Dematteis, F., Moglia, C., Solero, L., Manera, U., Martone, T., Brunetti, M., and et al.. (2019). Parkinsonian traits in amyotrophic lateral sclerosis (ALS): a prospective population-based study. J. Neurol. 266: 1633–1642, https://doi.org/10.1007/s00415-019-09305-0.Suche in Google Scholar PubMed
Canosa, A., Calvo, A., Moglia, C., Manera, U., Vasta, R., Di Pede, F., Cabras, S., Nardo, D., Arena, V., Grassano, M., et al.. (2021). Brain metabolic changes across King’s stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography study. Eur. J. Nucl. Med. Mol. Imaging 48: 1124–1133, https://doi.org/10.1007/s00259-020-05053-w.Suche in Google Scholar PubMed PubMed Central
Canosa, A., Martino, A., Giuliani, A., Moglia, C., Vasta, R., Grassano, M., Palumbo, F., Cabras, S., Pede, F.D., Mattei, F.D., et al.. (2023). Brain metabolic differences between pure bulbar and pure spinal ALS: a 2-[18F]FDG-PET study. J. Neurol. 270: 953–959, https://doi.org/10.1007/s00415-022-11445-9.Suche in Google Scholar PubMed PubMed Central
Canosa, A., Moglia, C., Manera, U., Vasta, R., Torrieri, M.C., Arena, V., D’Ovidio, F., Palumbo, F., Zucchetti, J.P., Iazzolino, B., et al.. (2020). Metabolic brain changes across different levels of cognitive impairment in ALS: a 18F-FDG-PET study. J. Neurol. Neurosurg. Psychiatry, https://doi.org/10.1136/jnnp-2020-323876.Suche in Google Scholar PubMed
Carter, G.T., McLaughlin, R.J., Cuttler, C., Sauber, G.J., Weeks, D.L., Hillard, C.J., and Weiss, M.D. (2021). Endocannabinoids and related lipids in serum from patients with amyotrophic lateral sclerosis. Muscle Nerve 63: 120–126, https://doi.org/10.1002/mus.27096.Suche in Google Scholar PubMed
Castelnovo, V., Canu, E., Calderaro, D., Riva, N., Poletti, B., Basaia, S., Solca, F., Silani, V., Filippi, M., and Agosta, F. (2020). Progression of brain functional connectivity and frontal cognitive dysfunction in ALS. Neuroimage Clin. 28: 102509, https://doi.org/10.1016/j.nicl.2020.102509.Suche in Google Scholar PubMed PubMed Central
Castelnovo, V., Canu, E., Magno, M.A., Gatti, E., Riva, N., Pain, D., Mora, G., Poletti, B., Silani, V., Filippi, M., et al.. (2022). Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. Neuroimage Clin. 35: 103145, https://doi.org/10.1016/j.nicl.2022.103145.Suche in Google Scholar PubMed PubMed Central
Chen, L., Wang, N., Zhang, Y., Li, D., He, C., Li, Z., Zhang, J., and Guo, Y. (2023). Proteomics analysis indicates the involvement of immunity and inflammation in the onset stage of SOD1-G93A mouse model of ALS. J. Proteomics 272: 104776, https://doi.org/10.1016/j.jprot.2022.104776.Suche in Google Scholar PubMed
Chen, Z.Y., Liu, M.Q., and Ma, L. (2018). Gray matter volume changes over the whole brain in the bulbar- and spinal-onset amyotrophic lateral sclerosis: a voxel-based morphometry study. Chin. Med. Sci. J. 33: 20–28, https://doi.org/10.24920/11804.Suche in Google Scholar PubMed
Conti, E., Sala, G., Diamanti, S., Casati, M., Lunetta, C., Gerardi, F., Tarlarini, C., Mosca, L., Riva, N., Falzone, Y., et al.. (2021). Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci. Rep. 11: 1978, https://doi.org/10.1038/s41598-021-81599-5.Suche in Google Scholar PubMed PubMed Central
Daneshafrooz, N., Joghataei, M.T., Mehdizadeh, M., Alavi, A., Barati, M., Panahi, B., Teimourian, S., and Zamani, B. (2022). Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci. Rep. 12: 1373, https://doi.org/10.1038/s41598-022-05067-4.Suche in Google Scholar PubMed PubMed Central
Darabi, S., Ariaei, A., Rustamzadeh, A., Afshari, D., Charkhat, Gorgich, E.A., and Darabi, L. (2024). Cerebrospinal fluid and blood exosomes as biomarkers for amyotrophic lateral sclerosis; a systematic review. Diagn. Pathol. 19: 1–2, https://doi.org/10.1186/s13000-024-01473-6.Suche in Google Scholar PubMed PubMed Central
De Vos, K.J. and Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol. Dis. 105: 283–299, https://doi.org/10.1016/j.nbd.2017.02.004.Suche in Google Scholar PubMed PubMed Central
D’hulst, L., Van Weehaeghe, D., Chiò, A., Calvo, A., Moglia, C., Canosa, A., Cistaro, A., Willekens, S.M., De Vocht, J., Van Damme, P., et al.. (2018). Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph Lateral Scler. Frontotemporal Degener. 19: 570–577, https://doi.org/10.1080/21678421.2018.1476548.Suche in Google Scholar PubMed
Donini, L., Tanel, R., Zuccarino, R., and Basso, M. (2023). Protein biomarkers for the diagnosis and prognosis of amyotrophic lateral sclerosis. Neurosci. Res. 197: 31–41, https://doi.org/10.1016/j.neures.2023.09.002.Suche in Google Scholar PubMed
Ellison, T.J., Stice, S.L., and Yao, Y. (2023). Therapeutic and diagnostic potential of extracellular vesicles in amyotrophic lateral sclerosis. Extracell. Vesicle 2: 100019, https://doi.org/10.1016/j.vesic.2022.100019.Suche in Google Scholar
El Mendili, M.M., Grapperon, A.-M., Dintrich, R., Stellmann, J.-P., Ranjeva, J.-P., Guye, M., Verschueren, A., Attarian, S., and Zaaraoui, W. (2022). Alterations of microstructure and sodium homeostasis in fast amyotrophic lateral sclerosis progressors: a brain DTI and sodium MRI study. Ajnr. Am. J. Neuroradiol. 43: 984–990, https://doi.org/10.3174/ajnr.a7559.Suche in Google Scholar
Fayemendy, P., Marin, B., Labrunie, A., Boirie, Y., Walrand, S., Achamrah, N., Coëffier, M., Preux, P.-M., Lautrette, G., Desport, J.C., et al.. (2021). Hypermetabolism is a reality in amyotrophic lateral sclerosis compared to healthy subjects. J. Neurol. Sci. 420: 117257, https://doi.org/10.1016/j.jns.2020.117257.Suche in Google Scholar PubMed
FernÁndez-Eulate, G., Ruiz-Sanz, J.I., Riancho, J., ZufirÍa, M., GereÑu, G., FernÁndez-TorrÓn, R., Poza-Aldea, J.J., Ondaro, J., Espinal, J.B., GonzÁlez-ChinchÓn, G., et al.. (2020). A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler Frontotemporal Degener. 21: 252–262, https://doi.org/10.1080/21678421.2020.1730904.Suche in Google Scholar PubMed
Fernández-Ruiz, J., de Lago, E., Rodríguez-Cueto, C., and Moro, M.A. (2021). Recent advances in the pathogenesis and therapeutics of amyotrophic lateral sclerosis. Br. J. Pharmacol. 178: 1253–1256, https://doi.org/10.1111/bph.15348.Suche in Google Scholar PubMed
Ferraro, P.M., Campi, C., Miceli, A., Rolla-Bigliani, C., Bauckneht, M., Gualco, L., Piana, M., Marini, C., Castellan, L., Morbelli, S., et al.. (2022). 18F-FDG-PET correlates of aging and disease course in ALS as revealed by distinct PVC approaches. Eur. J. Radiol. Open 9: 100394, https://doi.org/10.1016/j.ejro.2022.100394.Suche in Google Scholar PubMed PubMed Central
Ferraro, P.M., Jester, C., Olm, C.A., Placek, K., Agosta, F., Elman, L., McCluskey, L., Irwin, D.J., Detre, J.A., Filippi, M., et al.. (2018). Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol. Aging 68: 85–92, https://doi.org/10.1016/j.neurobiolaging.2018.04.008.Suche in Google Scholar PubMed PubMed Central
Ferri, A. and Coccurello, R. (2017). What is ‘hyper’ in the ALS hypermetabolism? Mediators Inflammation 2017: 7821672, https://doi.org/10.1155/2017/7821672.Suche in Google Scholar PubMed PubMed Central
Fiscon, G., Conte, F., Amadio, S., Volonté, C., and Paci, P. (2021). Drug repurposing: a network-based approach to amyotrophic lateral sclerosis. Neurotherapeutics 18: 1678–1691, https://doi.org/10.1007/s13311-021-01064-z.Suche in Google Scholar PubMed PubMed Central
Gagliardi, D., Faravelli, I., Meneri, M., Saccomanno, D., Govoni, A., Magri, F., Ricci, G., Siciliano, G., Comi, G.P., and Corti, S. (2021). Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron disease: a cross-sectional study. J. Cell. Mol. Med. 25: 3765–3771, https://doi.org/10.1111/jcmm.16240.Suche in Google Scholar PubMed PubMed Central
Gagliardi, D., Meneri, M., Saccomanno, D., Bresolin, N., Comi, G.P., and Corti, S. (2019). Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: a review of the literature. Int. J. Mol. Sci. 20: 4152, https://doi.org/10.3390/ijms20174152.Suche in Google Scholar PubMed PubMed Central
Gaiani, A., Martinelli, I., Bello, L., Querin, G., Puthenparampil, M., Ruggero, S., Toffanin, E., Cagnin, A., Briani, C., Pegoraro, E., et al.. (2017). Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of disease. JAMA Neurol. 74: 525–532, https://doi.org/10.1001/jamaneurol.2016.5398.Suche in Google Scholar PubMed PubMed Central
Gille, B., De Schaepdryver, M., Goossens, J., Dedeene, L., De Vocht, J., Oldoni, E., Goris, A., Van Den Bosch, L., Depreitere, B., Claeys, K.G., et al.. (2019). Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 45: 291–304, https://doi.org/10.1111/nan.12511.Suche in Google Scholar PubMed
González De Aguilar, J.-L. (2019). Lipid biomarkers for amyotrophic lateral sclerosis. Front. Neurol. 10: 284, https://doi.org/10.3389/fneur.2019.00284.Suche in Google Scholar PubMed PubMed Central
Guillaud, L., El-Agamy, S.E., Otsuki, M., and Terenzio, M. (2020). Anterograde axonal transport in neuronal homeostasis and disease. Front. Mol. Neurosci. 13: 556175, https://doi.org/10.3389/fnmol.2020.556175.Suche in Google Scholar PubMed PubMed Central
Guo, H., Lu, M., Ma, Y., and Liu, X. (2021a). Myoglobin: a new biomarker for spinal and bulbar muscular atrophy? Int. J. Neurosci. 131: 1209–1214, https://doi.org/10.1080/00207454.2020.1796660.Suche in Google Scholar PubMed
Guo, Q.-F., Hu, W., Xu, L.-Q., Luo, H., Wang, N., and Zhang, Q.-J. (2021b). Decreased serum creatinine levels predict short survival in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 8: 448–455, https://doi.org/10.1002/acn3.51299.Suche in Google Scholar PubMed PubMed Central
Haji, S., Sako, W., Murakami, N., Osaki, Y., Furukawa, T., Izumi, Y., and Kaji, R. (2021). The value of serum uric acid as a prognostic biomarker in amyotrophic lateral sclerosis: evidence from a meta-analysis. Clin. Neurol. Neurosurg. 203: 106566, https://doi.org/10.1016/j.clineuro.2021.106566.Suche in Google Scholar PubMed
Herrando-Grabulosa, M., Gaja-Capdevila, N., Vela, J.M., and Navarro, X. (2021). Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br. J. Pharmacol. 178: 1336–1352, https://doi.org/10.1111/bph.15224.Suche in Google Scholar PubMed
Illán-Gala, I., Montal, V., Pegueroles, J., Vilaplana, E., Alcolea, D., Dols-Icardo, O., de Luna, N., Turón-Sans, J., Cortés-Vicente, E., Martinez-Roman, L., et al.. (2020). Cortical microstructure in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Neurology 95: e2565–e2576, https://doi.org/10.1212/wnl.0000000000010727.Suche in Google Scholar
Je, G., Keyhanian, K., and Ghasemi, M. (2021). Overview of stem cells therapy in amyotrophic lateral sclerosis. Neurol. Res. 43: 616–632, https://doi.org/10.1080/01616412.2021.1893564.Suche in Google Scholar PubMed
Juengling, F.D., Wuest, F., Kalra, S., Agosta, F., Schirrmacher, R., Thiel, A., Thaiss, W., Müller, H.-P., and Kassubek, J. (2022). Simultaneous PET/MRI: the future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front. Neurol. 13: 890425, https://doi.org/10.3389/fneur.2022.890425.Suche in Google Scholar PubMed PubMed Central
Kazemi, K. and Noorizadeh, N. (2014). Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J. Biomed. Phys. Eng. 4: 13–26.Suche in Google Scholar
Khosla, R., Rain, M., Sharma, S., and Anand, A. (2021). Amyotrophic Lateral Sclerosis (ALS) prediction model derived from plasma and CSF biomarkers. PLoS One 16: e0247025, https://doi.org/10.1371/journal.pone.0247025.Suche in Google Scholar PubMed PubMed Central
Kmetzsch, V., Anquetil, V., Saracino, D., Rinaldi, D., Camuzat, A., Gareau, T., Jornea, L., Forlani, S., Couratier, P., Wallon, D., et al.. (2021). Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92: 485–493, https://doi.org/10.1136/jnnp-2020-324647.Suche in Google Scholar PubMed PubMed Central
Kojima, Y., Kasai, T., Noto, Y.-I., Ohmichi, T., Tatebe, H., Kitaoji, T., Tsuji, Y., Kitani-Morii, F., Shinomoto, M., Allsop, D., et al.. (2021). Amyotrophic lateral sclerosis: correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PloS. One 16: e0260323, https://doi.org/10.1371/journal.pone.0260323.Suche in Google Scholar PubMed PubMed Central
Li, H., Zhang, Q., Duan, Q., Jin, J., Hu, F., Dang, J., and Zhang, M. (2021). Brainstem involvement in amyotrophic lateral sclerosis: a combined structural and diffusion tensor MRI analysis. Front. Neurosci. 15: 675444, https://doi.org/10.3389/fnins.2021.675444.Suche in Google Scholar PubMed PubMed Central
Magen, I., Yacovzada, N.S., Yanowski, E., Coenen-Stass, A., Grosskreutz, J., Lu, C.-H., Greensmith, L., Malaspina, A., Fratta, P.F., Hornstein, E., et al.. (2021). Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 24: 1534–1541, https://doi.org/10.1038/s41593-021-00936-z.Suche in Google Scholar PubMed
Maj, E., Jamroży, M., Bielecki, M., Bartoszek, M., Gołębiowski, M., Wojtaszek, M., and Kuźma-Kozakiewicz, M. (2022). Role of DTI-MRI parameters in diagnosis of ALS: useful biomarkers for daily practice? Tertiary centre experience and literature review. Neurol. Neurochir. Pol. 56: 490–498, https://doi.org/10.5603/pjnns.a2022.0070.Suche in Google Scholar PubMed
Marini, C., Morbelli, S., Cistaro, A., Campi, C., Caponnetto, C., Bauckneht, M., Bellini, A., Buschiazzo, A., Calamia, I., Beltrametti, M.C., et al.. (2018). Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain 141: 2272–2279, https://doi.org/10.1093/brain/awy152.Suche in Google Scholar PubMed PubMed Central
Mariosa, D., Kamel, F., Bellocco, R., Ronnevi, L.-O., Almqvist, C., Larsson, H., Ye, W., and Fang, F. (2020). Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. Eur. J. Neurol. 27: 1010–1016, https://doi.org/10.1111/ene.14190.Suche in Google Scholar PubMed PubMed Central
McMackin, R., Bede, P., Ingre, C., Malaspina, A., and Hardiman, O. (2023). Biomarkers in amyotrophic lateral sclerosis: current status and prospects. Nat. Rev. Neurol. 19: 754–768, https://doi.org/10.1038/s41582-023-00891-2.Suche in Google Scholar PubMed
Meeter, L.H.H., Gendron, T.F., Sias, A.C., Jiskoot, L.C., Russo, S.P., Donker Kaat, L., Papma, J.M., Panman, J.L., van der Ende, E.,L., Dopper, E.G., et al.. (2018). Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann. Clin. Transl. Neurol. 5: 583–597, https://doi.org/10.1002/acn3.559.Suche in Google Scholar PubMed PubMed Central
Müller, H.-P., Agosta, F., Gorges, M., Kassubek, R., Spinelli, E.G., Riva, N., Ludolph, A.C., Filippi, M., and Kassubek, J. (2018). Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a two-centre tract of interest-based DTI analysis. Neuroimage Clin. 20: 1062–1069, https://doi.org/10.1016/j.nicl.2018.10.005.Suche in Google Scholar PubMed PubMed Central
Müller, H.-P., Turner, M.R., Grosskreutz, J., Abrahams, S., Bede, P., Govind, V., Prudlo, J., Ludolph, A.C., Filippi, M., Kassubek, J., and Neuroimaging Society in ALS (NiSALS) DTI Study Group, et al.. (2016). A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 87: 570–579, https://doi.org/10.1136/jnnp-2015-311952.Suche in Google Scholar PubMed
Muñoz-Lasso, D.C., Romá-Mateo, C., Pallardó, F.V., and Gonzalez-Cabo, P. (2020). Much more than a scaffold: cytoskeletal proteins in neurological disorders. Cells 9: 358, https://doi.org/10.3390/cells9020358.Suche in Google Scholar PubMed PubMed Central
Nakamura, R., Kurihara, M., Ogawa, N., Kitamura, A., Yamakawa, I., Bamba, S., Sanada, M., Sasaki, M., and Urushitani, M. (2022). Investigation of the prognostic predictive value of serum lipid profiles in amyotrophic lateral sclerosis: roles of sex and hypermetabolism. Sci. Rep. 12: 1826, https://doi.org/10.1038/s41598-022-05714-w.Suche in Google Scholar PubMed PubMed Central
Nukui, T., Matsui, A., Niimi, H., Sugimoto, T., Hayashi, T., Dougu, N., Konishi, H., Yamamoto, M., Anada, R., Matsuda, N., et al.. (2021). Increased cerebrospinal fluid adenosine 5’-triphosphate in patients with amyotrophic lateral sclerosis. BMC Neurol. 21: 255, https://doi.org/10.1186/s12883-021-02288-4.Suche in Google Scholar PubMed PubMed Central
Pampalakis, G., Mitropoulos, K., Xiromerisiou, G., Dardiotis, E., Deretzi, G., Anagnostouli, M., Katsila, T., Rentzos, M., and Patrinos, G.P. (2019). New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis. Hum. Mutat. 40: 361–373, https://doi.org/10.1002/humu.23697.Suche in Google Scholar PubMed
Puentes, F., Lombardi, V., Lu, C.-H., Yildiz, O., Fratta, P., Isaacs, A., Bobeva, Y., Wuu, J., ALS, Biomarker Consortium, CReATe, Consortium, et al.. (2021). Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann. Clin. Transl. Neurol. 8: 1831–1844, https://doi.org/10.1002/acn3.51428.Suche in Google Scholar PubMed PubMed Central
Querin, G., Biferi, M.G., and Pradat, P.-F. (2022). Biomarkers for C9orf7-ALS in symptomatic and pre-symptomatic patients: state-of-the-art in the new era of clinical trials. J. neuromuscul. Dis. 9: 25–37, https://doi.org/10.3233/jnd-210754.Suche in Google Scholar
Rajagopalan, V. and Pioro, E.P. (2023). Hypometabolic and hypermetabolic brain regions in patients with ALS-FTD show distinct patterns of grey and white matter degeneration: a pilot multimodal neuroimaging study. Eur. J. Radiol. 158: 110616, https://doi.org/10.1016/j.ejrad.2022.110616.Suche in Google Scholar PubMed
Robichaud, P.-P., Arseneault, M., O’Connell, C., Ouellette, R.J., and Morin, P.J. (2021). Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci. Lett. 750: 135813, https://doi.org/10.1016/j.neulet.2021.135813.Suche in Google Scholar PubMed
Rogers, M.L., Schultz, D.W., Karnaros, V., and Shepheard, S.R. (2023). Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun. 5: fcad287, https://doi.org/10.1093/braincomms/fcad287.Suche in Google Scholar PubMed PubMed Central
Sakurai, T., Hirano, S., Abe, M., Uji, Y., Shimizu, K., Suzuki, M., Nakano, Y., Ishikawa, A., Kojima, K., Shibuya, et al.. (2021). Dysfunction of the left angular gyrus may be associated with writing errors in ALS. Amyotroph Lateral Scler Frontotemporal Degener. 22: 267–275, https://doi.org/10.1080/21678421.2020.1861021.Suche in Google Scholar PubMed
Sala, A., Iaccarino, L., Fania, P., Vanoli, E.G., Fallanca, F., Pagnini, C., Cerami, C., Calvo, A., Canosa, A., Pagani, M., et al.. (2019). Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis. Eur. J. Nucl. Med. Mol. Imaging 46: 1117–1131, https://doi.org/10.1007/s00259-018-4246-2.Suche in Google Scholar PubMed
Sanchez-Tejerina, D., Llaurado, A., Sotoca, J., Lopez-Diego, V., Vidal, Taboada, J.M., Salvado, M., and Juntas-Morales, R. (2023). Biofluid biomarkers in the prognosis of amyotrophic lateral sclerosis: recent developments and therapeutic applications. Cells 12: 1180, https://doi.org/10.3390/cells12081180.Suche in Google Scholar PubMed PubMed Central
Saracino, D., Dorgham, K., Camuzat, A., Rinaldi, D., Rametti-Lacroux, A., Houot, M., Clot, F., Martin-Hardy, P., Jornea, L., Azuar, C., et al.. (2021). Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications. J. Neurol. Neurosurg. Psychiatry 92: 1278–1288, https://doi.org/10.1136/jnnp-2021-326914.Suche in Google Scholar PubMed PubMed Central
Sarraf, P., Bitarafan, S., Nafissi, S., Fathi, D., Abaj, F., Asl Motallebnejad, Z., Teimouri, R., and Vahedi, K. (2021). The correlation of the serum level of L-carnitine with disease severity in patients with Amyotrophic lateral sclerosis. J. Clin. Neurosci. 89: 232–236, https://doi.org/10.1016/j.jocn.2021.05.017.Suche in Google Scholar PubMed
Si, Y., Kazamel, M., Benatar, M., Wuu, J., Kwon, Y., Kwan, T., Jiang, N., Kentrup, D., Faul, C., Alesce, L., et al.. (2021). FGF23, a novel muscle biomarker detected in the early stages of ALS. Sci. Rep. 11: 12062, https://doi.org/10.1038/s41598-021-91496-6.Suche in Google Scholar PubMed PubMed Central
Sjoqvist, S. and Otake, K. (2023). Saliva and Saliva extracellular vesicles for biomarker candidate Identification—assay development and pilot study in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 24: 5237, https://doi.org/10.3390/ijms24065237.Suche in Google Scholar PubMed PubMed Central
Skillbäck, T., Mattsson, N., Blennow, K., and Zetterberg, H. (2017). Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener. 18: 397–403, https://doi.org/10.1080/21678421.2017.1281962.Suche in Google Scholar PubMed
Spinelli, E.G., Agosta, F., Ferraro, P.M., Querin, G., Riva, N., Bertolin, C., Martinelli, I., Lunetta, C., Fontana, A., Sorarù, et al.. (2019). Brain MRI shows white matter sparing in Kennedy’s disease and slow-progressing lower motor neuron disease. Hum. Brain Mapp. 40: 3102–3112, https://doi.org/10.1002/hbm.24583.Suche in Google Scholar PubMed PubMed Central
Spinelli, E.G., Riva, N., Rancoita, P.M.V., Schito, P., Doretti, A., Poletti, B., Di Serio, C., Silani, V., Filippi, M., and Agosta, F. (2020). Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis. Neuroimage Clin. 27: 102315, https://doi.org/10.1016/j.nicl.2020.102315.Suche in Google Scholar PubMed PubMed Central
Staats, K.A., Borchelt, D.R., Tansey, M.G., and Wymer, J. (2022). Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Mol. Neurodegener. 17: 11, https://doi.org/10.1186/s13024-022-00515-1.Suche in Google Scholar PubMed PubMed Central
Steinacker, P., Huss, A., Mayer, B., Grehl, T., Grosskreutz, J., Borck, G., Kuhle, J., Lulé, D., Meyer, T., Oeckl, P., et al.. (2017). Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. 18: 112–119, https://doi.org/10.1080/21678421.2016.1241279.Suche in Google Scholar PubMed
Steyn, F.J., Ioannides, Z.A., Van Eijk, R.P.A., Heggie, S., Thorpe, K.A., Ceslis, A., Heshmat, S., Henders, A.K., Wray, N.R., van den Berg, L.H., et al.. (2018). Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J. Neurol. Neurosurg. Psychiatry 89: 1016–1023, https://doi.org/10.1136/jnnp-2017-317887.Suche in Google Scholar PubMed PubMed Central
Stikvoort, García, D.J., Sleutjes, B.T., Van, Schelven, L.J., Goedee, H.S., Van, den, and Berg, L.H. (2023). Diagnostic accuracy of nerve excitability and compound muscle action potential scan derived biomarkers in amyotrophic lateral sclerosis. Eur. J. Neurol. 30: 3068–3078.10.1111/ene.15954Suche in Google Scholar PubMed
Sturmey, E. and Malaspina, A. (2022). Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta. Neurol. Scand. 146: 375–388, https://doi.org/10.1111/ane.13698.Suche in Google Scholar PubMed PubMed Central
Su, W.-M., Cheng, Y.-F., Jiang, Z., Duan, Q.-Q., Yang, T.-M., Shang, H.-F., and Chen, Y.-P. (2021). Predictors of survival in patients with amyotrophic lateral sclerosis: a large meta-analysis. EBioMedicine 74: 103732, https://doi.org/10.1016/j.ebiom.2021.103732.Suche in Google Scholar PubMed PubMed Central
Tang, Y., Liu, P., Li, W., Liu, Z., Zhou, M., Li, J., Yuan, Y., Fang, L., Wang, M., Shen, L., et al.. (2022). Detection of changes in synaptic density in amyotrophic lateral sclerosis patients using 18 F-SynVesT-1 positron emission tomography. Eur. J. Neurol. 29: 2934–2943, https://doi.org/10.1111/ene.15451.Suche in Google Scholar PubMed
Theunissen, F., West, P.K., Brennan, S., Petrović, B., Hooshmand, K., Akkari, P.A., Keon, M., and Guennewig, B. (2021). New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl. Neurodegener. 10: 46, https://doi.org/10.1186/s40035-021-00272-z.Suche in Google Scholar PubMed PubMed Central
Thompson, A.G., Gray, E., Verber, N., Bobeva, Y., Lombardi, V., Shepheard, S.R., Yildiz, O., Feneberg, E., Farrimond, L., Dharmadasa, T., et al.. (2022a). Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 4: fcac029, https://doi.org/10.1093/braincomms/fcac029.Suche in Google Scholar PubMed PubMed Central
Thompson, A.G., Talbot, K., and Turner, M.R. (2022b). Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93: 75–81, https://doi.org/10.1136/jnnp-2021-327133.Suche in Google Scholar PubMed PubMed Central
Thouvenot, E., Demattei, C., Lehmann, S., Maceski-Maleska, A., Hirtz, C., Juntas-Morales, R., Pageot, N., Esselin, F., Alphandéry, S., Vincent, T., et al.. (2020). Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur. J. Neurol. 27: 251–257, https://doi.org/10.1111/ene.14063.Suche in Google Scholar PubMed
Tsukahara, A., Hosokawa, T., Nishioka, D., Kotani, T., Ishida, S., Takeuchi, T., Kimura, F., and Arawaka, S. (2021). Neuron-specific enolase level is a useful biomarker for distinguishing amyotrophic lateral sclerosis from cervical spondylotic myelopathy. Sci. Rep. 11: 22827, https://doi.org/10.1038/s41598-021-02310-2.Suche in Google Scholar PubMed PubMed Central
Verber, N. and Shaw, P.J. (2020). Biomarkers in amyotrophic lateral sclerosis: a review of new developments. Curr. Opin. Neurol. 33: 662–668, https://doi.org/10.1097/wco.0000000000000854.Suche in Google Scholar
Vercruysse, P., Sinniger, J., El Oussini, H., Scekic-Zahirovic, J., Dieterlé, S., Dengler, R., Meyer, T., Zierz, S., Kassubek, J., Fischer, W., et al.. (2016). Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139: 1106–1122, https://doi.org/10.1093/brain/aww004.Suche in Google Scholar PubMed
Vidovic, M., Müschen, L.H., Brakemeier, S., Machetanz, G., Naumann, M., and Castro-Gomez, S. (2023). Current state and future directions in the diagnosis of amyotrophic lateral sclerosis. Cells 12: 736, https://doi.org/10.3390/cells12050736.Suche in Google Scholar PubMed PubMed Central
Villalón, E., Barry, D.M., Byers, N., Frizzi, K., Jones, M.R., Landayan, D.S., Dale, J.M., Downer, N.L., Calcutt, N.A., and MGarcia, M.L. (2018). Internode length is reduced during myelination and remyelination by neurofilament medium phosphorylation in motor axons. Exp. Neurol. 306: 158–168, https://doi.org/10.1016/j.expneurol.2018.05.009.Suche in Google Scholar PubMed PubMed Central
Yamada, S., Hashizume, A., Hijikata, Y., Ito, D., Kishimoto, Y., Iida, M., Koike, H., Hirakawa, A., and Katsuno, M. (2021). Ratio of urinary N-terminal titin fragment to urinary creatinine is a novel biomarker for amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92: 1072–1079, https://doi.org/10.1136/jnnp-2020-324615.Suche in Google Scholar PubMed
Yasuda, H., Yamamoto, H., Hanamura, K., Mehruba, M., Kawamata, T., Morisaki, H., Miyamoto, M., Takada, S., Shirao, T., Ono, Y., et al.. (2020). PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation. Commun. Biol. 3: 710, https://doi.org/10.1038/s42003-020-01435-w.Suche in Google Scholar PubMed PubMed Central
Ye, S., Jin, P.P., Zhang, N., Wu, H.B., Shi, L., Zhao, Q., Yang, K., Yuan, H.S., and Fan, D.S. (2022). [Cortical thickness and cognitive impairment in patients with amyotrophic lateral sclerosis]. Beijing Da Xue Xue Bao Yi Xue Ban 54: 1158–1162, https://doi.org/10.19723/j.issn.1671-167X.2022.06.016.Suche in Google Scholar PubMed PubMed Central
Yuan, A., Rao, M.V., Veeranna, null, and Nixon, R.A. (2017). Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harbor Perspect. Biol. 9: a018309, https://doi.org/10.1101/cshperspect.a018309.Suche in Google Scholar PubMed PubMed Central
Zanovello, M., Sorarù, G., Campi, C., Anglani, M., Spimpolo, A., Berti, S., Bussè, C., Mozzetta, S., Cagnin, A., and Cecchin, D. (2022). Brain stem glucose hypermetabolism in amyotrophic lateral sclerosis/frontotemporal dementia and shortened survival: an 18F-FDG PET/MRI study. J. Nucl. Med. 63: 777–784, https://doi.org/10.2967/jnumed.121.262232.Suche in Google Scholar PubMed
Zejlon, C., Nakhostin, D., Winklhofer, S., Pangalu, A., Kulcsar, Z., Lewandowski, S., Finnsson, J., Piehl, F., Ingre, C., Granberg, T., et al.. (2022). Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases-A systematic review and meta-analysis. Front. Neurol. 13: 947347, https://doi.org/10.3389/fneur.2022.947347.Suche in Google Scholar PubMed PubMed Central
Zinman, L., Sadeghi, R., Gawel, M., Patton, D., and Kiss, A. (2008). Are statin medications safe in patients with ALS? Amyotroph Lateral Scler. 9: 223–228, https://doi.org/10.1080/17482960802031092.Suche in Google Scholar PubMed
Zucchi, E., Bonetto, V., Sorarù, G., Martinelli, I., Parchi, P., Liguori, R., and Mandrioli, J. (2020). Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol. Neurodegener. 15: 58, https://doi.org/10.1186/s13024-020-00406-3.Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder
Artikel in diesem Heft
- Frontmatter
- Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data
- Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases
- The role of antibodies in small fiber neuropathy: a review of currently available evidence
- Revealing the mechanisms of blood–brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention
- Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
- The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review
- Accelerated biological brain aging in major depressive disorder