Startseite Current potential diagnostic biomarkers of amyotrophic lateral sclerosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Current potential diagnostic biomarkers of amyotrophic lateral sclerosis

  • Zheqi Xu ORCID logo und Renshi Xu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.


Corresponding author: Renshi Xu, Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China; The Clinical College of Nanchang Medical College, Nanchang 330006, China; and Medical College of Nanchang University, Nanchang 330006, China, E-mail:

Award Identifier / Grant number: 20192BAB205043

Award Identifier / Grant number: 30560042, 81160161, 81360198, and 82160255

Award Identifier / Grant number: 20181019, 202210002 and 202310119

Award Identifier / Grant number: GJJ13198 and GJJ170021

  1. Research ethics: No applicable.

  2. Author contributions: ZQ wrote the first draft of the manuscript. RX provided critical feedback as supervisor. All authors conceived its content and structure, reviewed, edited, and approved the final manuscript.

  3. Competing interests: All authors declare no potential conflicts of interest with regard to this manuscript. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or conflict with the subject matter or materials discussed in this manuscript.

  4. Research funding: This study was in part funded by the National Natural Science Foundation of China (30560042, 81160161, 81360198, and 82160255), Education Department of Jiangxi Province (GJJ13198 and GJJ170021), Jiangxi Provincial Department of Science and Technology (20192BAB205043) and Health and Family Planning Commission of Jiangxi Province (20181019, 202210002 and 202310119).

  5. Data availability: No any data are available, any data include in this manuscript.

References

Åberg, M., Nyberg, J., Robertson, J., Kuhn, G., Schiöler, L., Nissbrandt, H., Waern, M., and Torén, K. (2018). Risk factors in Swedish young men for amyotrophic lateral sclerosis in adulthood. J. Neurol. 265: 460–470, https://doi.org/10.1007/s00415-017-8719-1.Suche in Google Scholar PubMed PubMed Central

Abu-Rumeileh, S., Vacchiano, V., Zenesini, C., Polischi, B., de Pasqua, S., Fileccia, E., Mammana, A., Di Stasi, V., Capellari, S., Salvi, F., et al.. (2020). Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J. Neurol. 267: 1699–1708, https://doi.org/10.1007/s00415-020-09761-z.Suche in Google Scholar PubMed

Agosta, F., Spinelli, E.G., Marjanovic, I.V., Stevic, Z., Pagani, E., Valsasina, P., Salak-Djokic, B., Jankovic, M., Lavrnic, D., Kostic, V.S., et al.. (2018). Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI. Neurology 90: e707–e716, https://doi.org/10.1212/wnl.0000000000005002.Suche in Google Scholar

Ahmed, R. and Farooqi, I.S. (2017). Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88: 1006–1007, https://doi.org/10.1136/jnnp-2017-316382.Suche in Google Scholar PubMed

Alruwaili, A.R., Pannek, K., Coulthard, A., Henderson, R., Kurniawan, N.D., and McCombe, P. (2018). A combined tract-based spatial statistics and voxel-based morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis. J. Neuroradiol. 45: 41–48, https://doi.org/10.1016/j.neurad.2017.03.007.Suche in Google Scholar PubMed

Area-Gomez, E., Larrea, D., Yun, T., Xu, Y., Hupf, J., Zandkarimi, F., Chan, R.B., and Mitsumoto, H. (2021). Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci. Rep. 11: 13562, https://doi.org/10.1038/s41598-021-92112-3.Suche in Google Scholar PubMed PubMed Central

Barp, A., Ferrero, A., Casagrande, S., Morini, R., and Zuccarino, R. (2021). Circulating biomarkers in neuromuscular disorders: what is known, what is new. Biomolecules 11: 1246, https://doi.org/10.3390/biom11081246.Suche in Google Scholar PubMed PubMed Central

Barry, R.L., Torrado-Carvajal, A., Kirsch, J.E., Arabasz, G.E., Albrecht, D.S., Alshelh, Z., Pijanowski, O., Lewis, A.J., Keegan, M., Reynolds, B., et al.. (2022). Selective atrophy of the cervical enlargement in whole spinal cord MRI of amyotrophic lateral sclerosis. Neuroimage Clin. 36: 103199, https://doi.org/10.1016/j.nicl.2022.103199.Suche in Google Scholar PubMed PubMed Central

Basaia, S., Agosta, F., Cividini, C., Trojsi, F., Riva, N., Spinelli, E.G., Moglia, C., Femiano, C., Castelnovo, V., Elisa, C.E., et al.. (2020). Structural and functional brain connectome in motor neuron diseases: a multicenter MRI study. Neurology 95: e2552–e2564, https://doi.org/10.1212/wnl.0000000000010731.Suche in Google Scholar

Benatar, M., Wuu, J., Andersen, P.M., Lombardi, V., and Malaspina, A. (2018). Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann. Neurol. 84: 130–139, https://doi.org/10.1002/ana.25276.Suche in Google Scholar PubMed PubMed Central

Benatar, M., Zhang, L., Wang, L., Granit, V., Statland, J., Barohn, R., Swenson, A., Ravits, J., Jackson, C., Burns, T.M., et al.. (2020). Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95: e59–e69, https://doi.org/10.1212/wnl.0000000000009559.Suche in Google Scholar PubMed PubMed Central

Bjornevik, K., O’Reilly, É.J., Cortese, M., Furtado, J.D., Kolonel, L.N., Le Marchand, L., Mccullough, M.L., Paganoni, S., Schwarzschild, M.A., Shadyab, A.H., et al.. (2021). Pre-diagnostic plasma lipid levels and the risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Frontotemporal Degener. 22: 133–143, https://doi.org/10.1080/21678421.2020.1822411.Suche in Google Scholar PubMed PubMed Central

Brodovitch, A., Boucraut, J., Delmont, E., Parlanti, A., Grapperon, A.-M., Attarian, S., and Verschueren, A. (2021). Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci. Rep. 11: 703, https://doi.org/10.1038/s41598-020-80370-6.Suche in Google Scholar PubMed PubMed Central

Calvo, A., Chiò, A., Pagani, M., Cammarosano, S., Dematteis, F., Moglia, C., Solero, L., Manera, U., Martone, T., Brunetti, M., and et al.. (2019). Parkinsonian traits in amyotrophic lateral sclerosis (ALS): a prospective population-based study. J. Neurol. 266: 1633–1642, https://doi.org/10.1007/s00415-019-09305-0.Suche in Google Scholar PubMed

Canosa, A., Calvo, A., Moglia, C., Manera, U., Vasta, R., Di Pede, F., Cabras, S., Nardo, D., Arena, V., Grassano, M., et al.. (2021). Brain metabolic changes across King’s stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography study. Eur. J. Nucl. Med. Mol. Imaging 48: 1124–1133, https://doi.org/10.1007/s00259-020-05053-w.Suche in Google Scholar PubMed PubMed Central

Canosa, A., Martino, A., Giuliani, A., Moglia, C., Vasta, R., Grassano, M., Palumbo, F., Cabras, S., Pede, F.D., Mattei, F.D., et al.. (2023). Brain metabolic differences between pure bulbar and pure spinal ALS: a 2-[18F]FDG-PET study. J. Neurol. 270: 953–959, https://doi.org/10.1007/s00415-022-11445-9.Suche in Google Scholar PubMed PubMed Central

Canosa, A., Moglia, C., Manera, U., Vasta, R., Torrieri, M.C., Arena, V., D’Ovidio, F., Palumbo, F., Zucchetti, J.P., Iazzolino, B., et al.. (2020). Metabolic brain changes across different levels of cognitive impairment in ALS: a 18F-FDG-PET study. J. Neurol. Neurosurg. Psychiatry, https://doi.org/10.1136/jnnp-2020-323876.Suche in Google Scholar PubMed

Carter, G.T., McLaughlin, R.J., Cuttler, C., Sauber, G.J., Weeks, D.L., Hillard, C.J., and Weiss, M.D. (2021). Endocannabinoids and related lipids in serum from patients with amyotrophic lateral sclerosis. Muscle Nerve 63: 120–126, https://doi.org/10.1002/mus.27096.Suche in Google Scholar PubMed

Castelnovo, V., Canu, E., Calderaro, D., Riva, N., Poletti, B., Basaia, S., Solca, F., Silani, V., Filippi, M., and Agosta, F. (2020). Progression of brain functional connectivity and frontal cognitive dysfunction in ALS. Neuroimage Clin. 28: 102509, https://doi.org/10.1016/j.nicl.2020.102509.Suche in Google Scholar PubMed PubMed Central

Castelnovo, V., Canu, E., Magno, M.A., Gatti, E., Riva, N., Pain, D., Mora, G., Poletti, B., Silani, V., Filippi, M., et al.. (2022). Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. Neuroimage Clin. 35: 103145, https://doi.org/10.1016/j.nicl.2022.103145.Suche in Google Scholar PubMed PubMed Central

Chen, L., Wang, N., Zhang, Y., Li, D., He, C., Li, Z., Zhang, J., and Guo, Y. (2023). Proteomics analysis indicates the involvement of immunity and inflammation in the onset stage of SOD1-G93A mouse model of ALS. J. Proteomics 272: 104776, https://doi.org/10.1016/j.jprot.2022.104776.Suche in Google Scholar PubMed

Chen, Z.Y., Liu, M.Q., and Ma, L. (2018). Gray matter volume changes over the whole brain in the bulbar- and spinal-onset amyotrophic lateral sclerosis: a voxel-based morphometry study. Chin. Med. Sci. J. 33: 20–28, https://doi.org/10.24920/11804.Suche in Google Scholar PubMed

Conti, E., Sala, G., Diamanti, S., Casati, M., Lunetta, C., Gerardi, F., Tarlarini, C., Mosca, L., Riva, N., Falzone, Y., et al.. (2021). Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci. Rep. 11: 1978, https://doi.org/10.1038/s41598-021-81599-5.Suche in Google Scholar PubMed PubMed Central

Daneshafrooz, N., Joghataei, M.T., Mehdizadeh, M., Alavi, A., Barati, M., Panahi, B., Teimourian, S., and Zamani, B. (2022). Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci. Rep. 12: 1373, https://doi.org/10.1038/s41598-022-05067-4.Suche in Google Scholar PubMed PubMed Central

Darabi, S., Ariaei, A., Rustamzadeh, A., Afshari, D., Charkhat, Gorgich, E.A., and Darabi, L. (2024). Cerebrospinal fluid and blood exosomes as biomarkers for amyotrophic lateral sclerosis; a systematic review. Diagn. Pathol. 19: 1–2, https://doi.org/10.1186/s13000-024-01473-6.Suche in Google Scholar PubMed PubMed Central

De Vos, K.J. and Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol. Dis. 105: 283–299, https://doi.org/10.1016/j.nbd.2017.02.004.Suche in Google Scholar PubMed PubMed Central

D’hulst, L., Van Weehaeghe, D., Chiò, A., Calvo, A., Moglia, C., Canosa, A., Cistaro, A., Willekens, S.M., De Vocht, J., Van Damme, P., et al.. (2018). Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph Lateral Scler. Frontotemporal Degener. 19: 570–577, https://doi.org/10.1080/21678421.2018.1476548.Suche in Google Scholar PubMed

Donini, L., Tanel, R., Zuccarino, R., and Basso, M. (2023). Protein biomarkers for the diagnosis and prognosis of amyotrophic lateral sclerosis. Neurosci. Res. 197: 31–41, https://doi.org/10.1016/j.neures.2023.09.002.Suche in Google Scholar PubMed

Ellison, T.J., Stice, S.L., and Yao, Y. (2023). Therapeutic and diagnostic potential of extracellular vesicles in amyotrophic lateral sclerosis. Extracell. Vesicle 2: 100019, https://doi.org/10.1016/j.vesic.2022.100019.Suche in Google Scholar

El Mendili, M.M., Grapperon, A.-M., Dintrich, R., Stellmann, J.-P., Ranjeva, J.-P., Guye, M., Verschueren, A., Attarian, S., and Zaaraoui, W. (2022). Alterations of microstructure and sodium homeostasis in fast amyotrophic lateral sclerosis progressors: a brain DTI and sodium MRI study. Ajnr. Am. J. Neuroradiol. 43: 984–990, https://doi.org/10.3174/ajnr.a7559.Suche in Google Scholar

Fayemendy, P., Marin, B., Labrunie, A., Boirie, Y., Walrand, S., Achamrah, N., Coëffier, M., Preux, P.-M., Lautrette, G., Desport, J.C., et al.. (2021). Hypermetabolism is a reality in amyotrophic lateral sclerosis compared to healthy subjects. J. Neurol. Sci. 420: 117257, https://doi.org/10.1016/j.jns.2020.117257.Suche in Google Scholar PubMed

FernÁndez-Eulate, G., Ruiz-Sanz, J.I., Riancho, J., ZufirÍa, M., GereÑu, G., FernÁndez-TorrÓn, R., Poza-Aldea, J.J., Ondaro, J., Espinal, J.B., GonzÁlez-ChinchÓn, G., et al.. (2020). A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler Frontotemporal Degener. 21: 252–262, https://doi.org/10.1080/21678421.2020.1730904.Suche in Google Scholar PubMed

Fernández-Ruiz, J., de Lago, E., Rodríguez-Cueto, C., and Moro, M.A. (2021). Recent advances in the pathogenesis and therapeutics of amyotrophic lateral sclerosis. Br. J. Pharmacol. 178: 1253–1256, https://doi.org/10.1111/bph.15348.Suche in Google Scholar PubMed

Ferraro, P.M., Campi, C., Miceli, A., Rolla-Bigliani, C., Bauckneht, M., Gualco, L., Piana, M., Marini, C., Castellan, L., Morbelli, S., et al.. (2022). 18F-FDG-PET correlates of aging and disease course in ALS as revealed by distinct PVC approaches. Eur. J. Radiol. Open 9: 100394, https://doi.org/10.1016/j.ejro.2022.100394.Suche in Google Scholar PubMed PubMed Central

Ferraro, P.M., Jester, C., Olm, C.A., Placek, K., Agosta, F., Elman, L., McCluskey, L., Irwin, D.J., Detre, J.A., Filippi, M., et al.. (2018). Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol. Aging 68: 85–92, https://doi.org/10.1016/j.neurobiolaging.2018.04.008.Suche in Google Scholar PubMed PubMed Central

Ferri, A. and Coccurello, R. (2017). What is ‘hyper’ in the ALS hypermetabolism? Mediators Inflammation 2017: 7821672, https://doi.org/10.1155/2017/7821672.Suche in Google Scholar PubMed PubMed Central

Fiscon, G., Conte, F., Amadio, S., Volonté, C., and Paci, P. (2021). Drug repurposing: a network-based approach to amyotrophic lateral sclerosis. Neurotherapeutics 18: 1678–1691, https://doi.org/10.1007/s13311-021-01064-z.Suche in Google Scholar PubMed PubMed Central

Gagliardi, D., Faravelli, I., Meneri, M., Saccomanno, D., Govoni, A., Magri, F., Ricci, G., Siciliano, G., Comi, G.P., and Corti, S. (2021). Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron disease: a cross-sectional study. J. Cell. Mol. Med. 25: 3765–3771, https://doi.org/10.1111/jcmm.16240.Suche in Google Scholar PubMed PubMed Central

Gagliardi, D., Meneri, M., Saccomanno, D., Bresolin, N., Comi, G.P., and Corti, S. (2019). Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: a review of the literature. Int. J. Mol. Sci. 20: 4152, https://doi.org/10.3390/ijms20174152.Suche in Google Scholar PubMed PubMed Central

Gaiani, A., Martinelli, I., Bello, L., Querin, G., Puthenparampil, M., Ruggero, S., Toffanin, E., Cagnin, A., Briani, C., Pegoraro, E., et al.. (2017). Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of disease. JAMA Neurol. 74: 525–532, https://doi.org/10.1001/jamaneurol.2016.5398.Suche in Google Scholar PubMed PubMed Central

Gille, B., De Schaepdryver, M., Goossens, J., Dedeene, L., De Vocht, J., Oldoni, E., Goris, A., Van Den Bosch, L., Depreitere, B., Claeys, K.G., et al.. (2019). Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 45: 291–304, https://doi.org/10.1111/nan.12511.Suche in Google Scholar PubMed

González De Aguilar, J.-L. (2019). Lipid biomarkers for amyotrophic lateral sclerosis. Front. Neurol. 10: 284, https://doi.org/10.3389/fneur.2019.00284.Suche in Google Scholar PubMed PubMed Central

Guillaud, L., El-Agamy, S.E., Otsuki, M., and Terenzio, M. (2020). Anterograde axonal transport in neuronal homeostasis and disease. Front. Mol. Neurosci. 13: 556175, https://doi.org/10.3389/fnmol.2020.556175.Suche in Google Scholar PubMed PubMed Central

Guo, H., Lu, M., Ma, Y., and Liu, X. (2021a). Myoglobin: a new biomarker for spinal and bulbar muscular atrophy? Int. J. Neurosci. 131: 1209–1214, https://doi.org/10.1080/00207454.2020.1796660.Suche in Google Scholar PubMed

Guo, Q.-F., Hu, W., Xu, L.-Q., Luo, H., Wang, N., and Zhang, Q.-J. (2021b). Decreased serum creatinine levels predict short survival in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 8: 448–455, https://doi.org/10.1002/acn3.51299.Suche in Google Scholar PubMed PubMed Central

Haji, S., Sako, W., Murakami, N., Osaki, Y., Furukawa, T., Izumi, Y., and Kaji, R. (2021). The value of serum uric acid as a prognostic biomarker in amyotrophic lateral sclerosis: evidence from a meta-analysis. Clin. Neurol. Neurosurg. 203: 106566, https://doi.org/10.1016/j.clineuro.2021.106566.Suche in Google Scholar PubMed

Herrando-Grabulosa, M., Gaja-Capdevila, N., Vela, J.M., and Navarro, X. (2021). Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br. J. Pharmacol. 178: 1336–1352, https://doi.org/10.1111/bph.15224.Suche in Google Scholar PubMed

Illán-Gala, I., Montal, V., Pegueroles, J., Vilaplana, E., Alcolea, D., Dols-Icardo, O., de Luna, N., Turón-Sans, J., Cortés-Vicente, E., Martinez-Roman, L., et al.. (2020). Cortical microstructure in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Neurology 95: e2565–e2576, https://doi.org/10.1212/wnl.0000000000010727.Suche in Google Scholar

Je, G., Keyhanian, K., and Ghasemi, M. (2021). Overview of stem cells therapy in amyotrophic lateral sclerosis. Neurol. Res. 43: 616–632, https://doi.org/10.1080/01616412.2021.1893564.Suche in Google Scholar PubMed

Juengling, F.D., Wuest, F., Kalra, S., Agosta, F., Schirrmacher, R., Thiel, A., Thaiss, W., Müller, H.-P., and Kassubek, J. (2022). Simultaneous PET/MRI: the future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front. Neurol. 13: 890425, https://doi.org/10.3389/fneur.2022.890425.Suche in Google Scholar PubMed PubMed Central

Kazemi, K. and Noorizadeh, N. (2014). Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J. Biomed. Phys. Eng. 4: 13–26.Suche in Google Scholar

Khosla, R., Rain, M., Sharma, S., and Anand, A. (2021). Amyotrophic Lateral Sclerosis (ALS) prediction model derived from plasma and CSF biomarkers. PLoS One 16: e0247025, https://doi.org/10.1371/journal.pone.0247025.Suche in Google Scholar PubMed PubMed Central

Kmetzsch, V., Anquetil, V., Saracino, D., Rinaldi, D., Camuzat, A., Gareau, T., Jornea, L., Forlani, S., Couratier, P., Wallon, D., et al.. (2021). Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92: 485–493, https://doi.org/10.1136/jnnp-2020-324647.Suche in Google Scholar PubMed PubMed Central

Kojima, Y., Kasai, T., Noto, Y.-I., Ohmichi, T., Tatebe, H., Kitaoji, T., Tsuji, Y., Kitani-Morii, F., Shinomoto, M., Allsop, D., et al.. (2021). Amyotrophic lateral sclerosis: correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PloS. One 16: e0260323, https://doi.org/10.1371/journal.pone.0260323.Suche in Google Scholar PubMed PubMed Central

Li, H., Zhang, Q., Duan, Q., Jin, J., Hu, F., Dang, J., and Zhang, M. (2021). Brainstem involvement in amyotrophic lateral sclerosis: a combined structural and diffusion tensor MRI analysis. Front. Neurosci. 15: 675444, https://doi.org/10.3389/fnins.2021.675444.Suche in Google Scholar PubMed PubMed Central

Magen, I., Yacovzada, N.S., Yanowski, E., Coenen-Stass, A., Grosskreutz, J., Lu, C.-H., Greensmith, L., Malaspina, A., Fratta, P.F., Hornstein, E., et al.. (2021). Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 24: 1534–1541, https://doi.org/10.1038/s41593-021-00936-z.Suche in Google Scholar PubMed

Maj, E., Jamroży, M., Bielecki, M., Bartoszek, M., Gołębiowski, M., Wojtaszek, M., and Kuźma-Kozakiewicz, M. (2022). Role of DTI-MRI parameters in diagnosis of ALS: useful biomarkers for daily practice? Tertiary centre experience and literature review. Neurol. Neurochir. Pol. 56: 490–498, https://doi.org/10.5603/pjnns.a2022.0070.Suche in Google Scholar PubMed

Marini, C., Morbelli, S., Cistaro, A., Campi, C., Caponnetto, C., Bauckneht, M., Bellini, A., Buschiazzo, A., Calamia, I., Beltrametti, M.C., et al.. (2018). Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain 141: 2272–2279, https://doi.org/10.1093/brain/awy152.Suche in Google Scholar PubMed PubMed Central

Mariosa, D., Kamel, F., Bellocco, R., Ronnevi, L.-O., Almqvist, C., Larsson, H., Ye, W., and Fang, F. (2020). Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. Eur. J. Neurol. 27: 1010–1016, https://doi.org/10.1111/ene.14190.Suche in Google Scholar PubMed PubMed Central

McMackin, R., Bede, P., Ingre, C., Malaspina, A., and Hardiman, O. (2023). Biomarkers in amyotrophic lateral sclerosis: current status and prospects. Nat. Rev. Neurol. 19: 754–768, https://doi.org/10.1038/s41582-023-00891-2.Suche in Google Scholar PubMed

Meeter, L.H.H., Gendron, T.F., Sias, A.C., Jiskoot, L.C., Russo, S.P., Donker Kaat, L., Papma, J.M., Panman, J.L., van der Ende, E.,L., Dopper, E.G., et al.. (2018). Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann. Clin. Transl. Neurol. 5: 583–597, https://doi.org/10.1002/acn3.559.Suche in Google Scholar PubMed PubMed Central

Müller, H.-P., Agosta, F., Gorges, M., Kassubek, R., Spinelli, E.G., Riva, N., Ludolph, A.C., Filippi, M., and Kassubek, J. (2018). Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a two-centre tract of interest-based DTI analysis. Neuroimage Clin. 20: 1062–1069, https://doi.org/10.1016/j.nicl.2018.10.005.Suche in Google Scholar PubMed PubMed Central

Müller, H.-P., Turner, M.R., Grosskreutz, J., Abrahams, S., Bede, P., Govind, V., Prudlo, J., Ludolph, A.C., Filippi, M., Kassubek, J., and Neuroimaging Society in ALS (NiSALS) DTI Study Group, et al.. (2016). A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 87: 570–579, https://doi.org/10.1136/jnnp-2015-311952.Suche in Google Scholar PubMed

Muñoz-Lasso, D.C., Romá-Mateo, C., Pallardó, F.V., and Gonzalez-Cabo, P. (2020). Much more than a scaffold: cytoskeletal proteins in neurological disorders. Cells 9: 358, https://doi.org/10.3390/cells9020358.Suche in Google Scholar PubMed PubMed Central

Nakamura, R., Kurihara, M., Ogawa, N., Kitamura, A., Yamakawa, I., Bamba, S., Sanada, M., Sasaki, M., and Urushitani, M. (2022). Investigation of the prognostic predictive value of serum lipid profiles in amyotrophic lateral sclerosis: roles of sex and hypermetabolism. Sci. Rep. 12: 1826, https://doi.org/10.1038/s41598-022-05714-w.Suche in Google Scholar PubMed PubMed Central

Nukui, T., Matsui, A., Niimi, H., Sugimoto, T., Hayashi, T., Dougu, N., Konishi, H., Yamamoto, M., Anada, R., Matsuda, N., et al.. (2021). Increased cerebrospinal fluid adenosine 5’-triphosphate in patients with amyotrophic lateral sclerosis. BMC Neurol. 21: 255, https://doi.org/10.1186/s12883-021-02288-4.Suche in Google Scholar PubMed PubMed Central

Pampalakis, G., Mitropoulos, K., Xiromerisiou, G., Dardiotis, E., Deretzi, G., Anagnostouli, M., Katsila, T., Rentzos, M., and Patrinos, G.P. (2019). New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis. Hum. Mutat. 40: 361–373, https://doi.org/10.1002/humu.23697.Suche in Google Scholar PubMed

Puentes, F., Lombardi, V., Lu, C.-H., Yildiz, O., Fratta, P., Isaacs, A., Bobeva, Y., Wuu, J., ALS, Biomarker Consortium, CReATe, Consortium, et al.. (2021). Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann. Clin. Transl. Neurol. 8: 1831–1844, https://doi.org/10.1002/acn3.51428.Suche in Google Scholar PubMed PubMed Central

Querin, G., Biferi, M.G., and Pradat, P.-F. (2022). Biomarkers for C9orf7-ALS in symptomatic and pre-symptomatic patients: state-of-the-art in the new era of clinical trials. J. neuromuscul. Dis. 9: 25–37, https://doi.org/10.3233/jnd-210754.Suche in Google Scholar

Rajagopalan, V. and Pioro, E.P. (2023). Hypometabolic and hypermetabolic brain regions in patients with ALS-FTD show distinct patterns of grey and white matter degeneration: a pilot multimodal neuroimaging study. Eur. J. Radiol. 158: 110616, https://doi.org/10.1016/j.ejrad.2022.110616.Suche in Google Scholar PubMed

Robichaud, P.-P., Arseneault, M., O’Connell, C., Ouellette, R.J., and Morin, P.J. (2021). Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci. Lett. 750: 135813, https://doi.org/10.1016/j.neulet.2021.135813.Suche in Google Scholar PubMed

Rogers, M.L., Schultz, D.W., Karnaros, V., and Shepheard, S.R. (2023). Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun. 5: fcad287, https://doi.org/10.1093/braincomms/fcad287.Suche in Google Scholar PubMed PubMed Central

Sakurai, T., Hirano, S., Abe, M., Uji, Y., Shimizu, K., Suzuki, M., Nakano, Y., Ishikawa, A., Kojima, K., Shibuya, et al.. (2021). Dysfunction of the left angular gyrus may be associated with writing errors in ALS. Amyotroph Lateral Scler Frontotemporal Degener. 22: 267–275, https://doi.org/10.1080/21678421.2020.1861021.Suche in Google Scholar PubMed

Sala, A., Iaccarino, L., Fania, P., Vanoli, E.G., Fallanca, F., Pagnini, C., Cerami, C., Calvo, A., Canosa, A., Pagani, M., et al.. (2019). Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis. Eur. J. Nucl. Med. Mol. Imaging 46: 1117–1131, https://doi.org/10.1007/s00259-018-4246-2.Suche in Google Scholar PubMed

Sanchez-Tejerina, D., Llaurado, A., Sotoca, J., Lopez-Diego, V., Vidal, Taboada, J.M., Salvado, M., and Juntas-Morales, R. (2023). Biofluid biomarkers in the prognosis of amyotrophic lateral sclerosis: recent developments and therapeutic applications. Cells 12: 1180, https://doi.org/10.3390/cells12081180.Suche in Google Scholar PubMed PubMed Central

Saracino, D., Dorgham, K., Camuzat, A., Rinaldi, D., Rametti-Lacroux, A., Houot, M., Clot, F., Martin-Hardy, P., Jornea, L., Azuar, C., et al.. (2021). Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications. J. Neurol. Neurosurg. Psychiatry 92: 1278–1288, https://doi.org/10.1136/jnnp-2021-326914.Suche in Google Scholar PubMed PubMed Central

Sarraf, P., Bitarafan, S., Nafissi, S., Fathi, D., Abaj, F., Asl Motallebnejad, Z., Teimouri, R., and Vahedi, K. (2021). The correlation of the serum level of L-carnitine with disease severity in patients with Amyotrophic lateral sclerosis. J. Clin. Neurosci. 89: 232–236, https://doi.org/10.1016/j.jocn.2021.05.017.Suche in Google Scholar PubMed

Si, Y., Kazamel, M., Benatar, M., Wuu, J., Kwon, Y., Kwan, T., Jiang, N., Kentrup, D., Faul, C., Alesce, L., et al.. (2021). FGF23, a novel muscle biomarker detected in the early stages of ALS. Sci. Rep. 11: 12062, https://doi.org/10.1038/s41598-021-91496-6.Suche in Google Scholar PubMed PubMed Central

Sjoqvist, S. and Otake, K. (2023). Saliva and Saliva extracellular vesicles for biomarker candidate Identification—assay development and pilot study in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 24: 5237, https://doi.org/10.3390/ijms24065237.Suche in Google Scholar PubMed PubMed Central

Skillbäck, T., Mattsson, N., Blennow, K., and Zetterberg, H. (2017). Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener. 18: 397–403, https://doi.org/10.1080/21678421.2017.1281962.Suche in Google Scholar PubMed

Spinelli, E.G., Agosta, F., Ferraro, P.M., Querin, G., Riva, N., Bertolin, C., Martinelli, I., Lunetta, C., Fontana, A., Sorarù, et al.. (2019). Brain MRI shows white matter sparing in Kennedy’s disease and slow-progressing lower motor neuron disease. Hum. Brain Mapp. 40: 3102–3112, https://doi.org/10.1002/hbm.24583.Suche in Google Scholar PubMed PubMed Central

Spinelli, E.G., Riva, N., Rancoita, P.M.V., Schito, P., Doretti, A., Poletti, B., Di Serio, C., Silani, V., Filippi, M., and Agosta, F. (2020). Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis. Neuroimage Clin. 27: 102315, https://doi.org/10.1016/j.nicl.2020.102315.Suche in Google Scholar PubMed PubMed Central

Staats, K.A., Borchelt, D.R., Tansey, M.G., and Wymer, J. (2022). Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Mol. Neurodegener. 17: 11, https://doi.org/10.1186/s13024-022-00515-1.Suche in Google Scholar PubMed PubMed Central

Steinacker, P., Huss, A., Mayer, B., Grehl, T., Grosskreutz, J., Borck, G., Kuhle, J., Lulé, D., Meyer, T., Oeckl, P., et al.. (2017). Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. 18: 112–119, https://doi.org/10.1080/21678421.2016.1241279.Suche in Google Scholar PubMed

Steyn, F.J., Ioannides, Z.A., Van Eijk, R.P.A., Heggie, S., Thorpe, K.A., Ceslis, A., Heshmat, S., Henders, A.K., Wray, N.R., van den Berg, L.H., et al.. (2018). Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J. Neurol. Neurosurg. Psychiatry 89: 1016–1023, https://doi.org/10.1136/jnnp-2017-317887.Suche in Google Scholar PubMed PubMed Central

Stikvoort, García, D.J., Sleutjes, B.T., Van, Schelven, L.J., Goedee, H.S., Van, den, and Berg, L.H. (2023). Diagnostic accuracy of nerve excitability and compound muscle action potential scan derived biomarkers in amyotrophic lateral sclerosis. Eur. J. Neurol. 30: 3068–3078.10.1111/ene.15954Suche in Google Scholar PubMed

Sturmey, E. and Malaspina, A. (2022). Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta. Neurol. Scand. 146: 375–388, https://doi.org/10.1111/ane.13698.Suche in Google Scholar PubMed PubMed Central

Su, W.-M., Cheng, Y.-F., Jiang, Z., Duan, Q.-Q., Yang, T.-M., Shang, H.-F., and Chen, Y.-P. (2021). Predictors of survival in patients with amyotrophic lateral sclerosis: a large meta-analysis. EBioMedicine 74: 103732, https://doi.org/10.1016/j.ebiom.2021.103732.Suche in Google Scholar PubMed PubMed Central

Tang, Y., Liu, P., Li, W., Liu, Z., Zhou, M., Li, J., Yuan, Y., Fang, L., Wang, M., Shen, L., et al.. (2022). Detection of changes in synaptic density in amyotrophic lateral sclerosis patients using 18 F-SynVesT-1 positron emission tomography. Eur. J. Neurol. 29: 2934–2943, https://doi.org/10.1111/ene.15451.Suche in Google Scholar PubMed

Theunissen, F., West, P.K., Brennan, S., Petrović, B., Hooshmand, K., Akkari, P.A., Keon, M., and Guennewig, B. (2021). New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl. Neurodegener. 10: 46, https://doi.org/10.1186/s40035-021-00272-z.Suche in Google Scholar PubMed PubMed Central

Thompson, A.G., Gray, E., Verber, N., Bobeva, Y., Lombardi, V., Shepheard, S.R., Yildiz, O., Feneberg, E., Farrimond, L., Dharmadasa, T., et al.. (2022a). Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 4: fcac029, https://doi.org/10.1093/braincomms/fcac029.Suche in Google Scholar PubMed PubMed Central

Thompson, A.G., Talbot, K., and Turner, M.R. (2022b). Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93: 75–81, https://doi.org/10.1136/jnnp-2021-327133.Suche in Google Scholar PubMed PubMed Central

Thouvenot, E., Demattei, C., Lehmann, S., Maceski-Maleska, A., Hirtz, C., Juntas-Morales, R., Pageot, N., Esselin, F., Alphandéry, S., Vincent, T., et al.. (2020). Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur. J. Neurol. 27: 251–257, https://doi.org/10.1111/ene.14063.Suche in Google Scholar PubMed

Tsukahara, A., Hosokawa, T., Nishioka, D., Kotani, T., Ishida, S., Takeuchi, T., Kimura, F., and Arawaka, S. (2021). Neuron-specific enolase level is a useful biomarker for distinguishing amyotrophic lateral sclerosis from cervical spondylotic myelopathy. Sci. Rep. 11: 22827, https://doi.org/10.1038/s41598-021-02310-2.Suche in Google Scholar PubMed PubMed Central

Verber, N. and Shaw, P.J. (2020). Biomarkers in amyotrophic lateral sclerosis: a review of new developments. Curr. Opin. Neurol. 33: 662–668, https://doi.org/10.1097/wco.0000000000000854.Suche in Google Scholar

Vercruysse, P., Sinniger, J., El Oussini, H., Scekic-Zahirovic, J., Dieterlé, S., Dengler, R., Meyer, T., Zierz, S., Kassubek, J., Fischer, W., et al.. (2016). Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139: 1106–1122, https://doi.org/10.1093/brain/aww004.Suche in Google Scholar PubMed

Vidovic, M., Müschen, L.H., Brakemeier, S., Machetanz, G., Naumann, M., and Castro-Gomez, S. (2023). Current state and future directions in the diagnosis of amyotrophic lateral sclerosis. Cells 12: 736, https://doi.org/10.3390/cells12050736.Suche in Google Scholar PubMed PubMed Central

Villalón, E., Barry, D.M., Byers, N., Frizzi, K., Jones, M.R., Landayan, D.S., Dale, J.M., Downer, N.L., Calcutt, N.A., and MGarcia, M.L. (2018). Internode length is reduced during myelination and remyelination by neurofilament medium phosphorylation in motor axons. Exp. Neurol. 306: 158–168, https://doi.org/10.1016/j.expneurol.2018.05.009.Suche in Google Scholar PubMed PubMed Central

Yamada, S., Hashizume, A., Hijikata, Y., Ito, D., Kishimoto, Y., Iida, M., Koike, H., Hirakawa, A., and Katsuno, M. (2021). Ratio of urinary N-terminal titin fragment to urinary creatinine is a novel biomarker for amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92: 1072–1079, https://doi.org/10.1136/jnnp-2020-324615.Suche in Google Scholar PubMed

Yasuda, H., Yamamoto, H., Hanamura, K., Mehruba, M., Kawamata, T., Morisaki, H., Miyamoto, M., Takada, S., Shirao, T., Ono, Y., et al.. (2020). PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation. Commun. Biol. 3: 710, https://doi.org/10.1038/s42003-020-01435-w.Suche in Google Scholar PubMed PubMed Central

Ye, S., Jin, P.P., Zhang, N., Wu, H.B., Shi, L., Zhao, Q., Yang, K., Yuan, H.S., and Fan, D.S. (2022). [Cortical thickness and cognitive impairment in patients with amyotrophic lateral sclerosis]. Beijing Da Xue Xue Bao Yi Xue Ban 54: 1158–1162, https://doi.org/10.19723/j.issn.1671-167X.2022.06.016.Suche in Google Scholar PubMed PubMed Central

Yuan, A., Rao, M.V., Veeranna, null, and Nixon, R.A. (2017). Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harbor Perspect. Biol. 9: a018309, https://doi.org/10.1101/cshperspect.a018309.Suche in Google Scholar PubMed PubMed Central

Zanovello, M., Sorarù, G., Campi, C., Anglani, M., Spimpolo, A., Berti, S., Bussè, C., Mozzetta, S., Cagnin, A., and Cecchin, D. (2022). Brain stem glucose hypermetabolism in amyotrophic lateral sclerosis/frontotemporal dementia and shortened survival: an 18F-FDG PET/MRI study. J. Nucl. Med. 63: 777–784, https://doi.org/10.2967/jnumed.121.262232.Suche in Google Scholar PubMed

Zejlon, C., Nakhostin, D., Winklhofer, S., Pangalu, A., Kulcsar, Z., Lewandowski, S., Finnsson, J., Piehl, F., Ingre, C., Granberg, T., et al.. (2022). Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases-A systematic review and meta-analysis. Front. Neurol. 13: 947347, https://doi.org/10.3389/fneur.2022.947347.Suche in Google Scholar PubMed PubMed Central

Zinman, L., Sadeghi, R., Gawel, M., Patton, D., and Kiss, A. (2008). Are statin medications safe in patients with ALS? Amyotroph Lateral Scler. 9: 223–228, https://doi.org/10.1080/17482960802031092.Suche in Google Scholar PubMed

Zucchi, E., Bonetto, V., Sorarù, G., Martinelli, I., Parchi, P., Liguori, R., and Mandrioli, J. (2020). Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol. Neurodegener. 15: 58, https://doi.org/10.1186/s13024-020-00406-3.Suche in Google Scholar PubMed PubMed Central

Received: 2024-03-08
Accepted: 2024-06-13
Published Online: 2024-07-09
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0037/html
Button zum nach oben scrollen