Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia
-
Andrew P. Carlson
, Andrew R. Mayer
, Chad Cole , Harm J. van der Horn , Joshua Marquez , Taylor C. Stevensonand C. William Shuttleworth
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient’s physiology and provide targeted treatments.
Funding source: National Institutes of Health
Award Identifier / Grant number: R01 NS128006 (Carlson)
Funding source: National Institutes of General Medical Sciences
Award Identifier / Grant number: P20 GM109089 (Shuttleworth)
-
Research ethics: Not Applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: All other authors state no conflict of interest.
-
Research funding: This work was supported by the National Institutes of Health R01 NS128006 (Carlson), P20 GM109089 (Shuttleworth).
-
Data availability: Not applicable.
References
Abecasis, F., Dias, C., Zakrzewska, A., Oliveira, V., and Czosnyka, M. (2021). Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods. Childs Nerv. Syst. 37: 3057–3065, https://doi.org/10.1007/s00381-021-05263-z.Search in Google Scholar PubMed
Ainslie, P.N. and Duffin, J. (2009). Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296: R1473–R1495, https://doi.org/10.1152/ajpregu.91008.2008.Search in Google Scholar PubMed
Amyot, F., Kenney, K., Spessert, E., Moore, C., Haber, M., Silverman, E., Gandjbakhche, A., and Diaz-Arrastia, R. (2020). Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin. 25: 102086, https://doi.org/10.1016/j.nicl.2019.102086.Search in Google Scholar PubMed PubMed Central
Appavu, B., Foldes, S., Burrows, B.T., Jacobson, A., Abruzzo, T., Boerwinkle, V., Willyerd, A., Mangum, T., Gunnala, V., Marku, I., et al.. (2021). Multimodal assessment of cerebral autoregulation and autonomic function after pediatric cerebral arteriovenous malformation rupture. Neurocrit. Care 34: 537–546, https://doi.org/10.1007/s12028-020-01058-3.Search in Google Scholar PubMed
Aries, M.J., Czosnyka, M., Budohoski, K.P., Kolias, A.G., Radolovich, D.K., Lavinio, A., Pickard, J.D., and Smielewski, P. (2012a). Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit. Care 17: 67–76, https://doi.org/10.1007/s12028-012-9687-z.Search in Google Scholar PubMed
Aries, M.J., Czosnyka, M., Budohoski, K.P., Steiner, L.A., Lavinio, A., Kolias, A.G., Hutchinson, P.J., Brady, K.M., Menon, D.K., Pickard, J.D., et al.. (2012b). Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit. Care Med. 40: 2456–2463, https://doi.org/10.1097/ccm.0b013e3182514eb6.Search in Google Scholar PubMed
Aries, M.J., Elting, J.W., De Keyser, J., Kremer, B.P., and Vroomen, P.C. (2010). Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41: 2697–2704, https://doi.org/10.1161/strokeaha.110.594168.Search in Google Scholar PubMed
Astrup, J., Siesjo, B.K., and Symon, L. (1981). Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12: 723–725, https://doi.org/10.1161/01.str.12.6.723.Search in Google Scholar PubMed
Baker, W.B., Balu, R., He, L., Kavuri, V.C., Busch, D.R., Amendolia, O., Quattrone, F., Frangos, S., Maloney-Wilensky, E., Abramson, K., et al.. (2019). Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J. Cereb. Blood Flow Metab. 39: 1469–1485, https://doi.org/10.1177/0271678x19846657.Search in Google Scholar PubMed PubMed Central
Balu, R., Rajagopalan, S., Baghshomali, S., Kirschen, M., Amurthur, A., Kofke, W.A., and Abella, B.S. (2021). Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury. Resuscitation 164: 114–121, https://doi.org/10.1016/j.resuscitation.2021.04.023.Search in Google Scholar PubMed
Bang, O.Y., Chung, J.W., Kim, S.K., Kim, S.J., Lee, M.J., Hwang, J., Seo, W.K., Ha, Y.S., Sung, S.M., Kim, E.G., et al.. (2019). Therapeutic-induced hypertension in patients with noncardioembolic acute stroke. Neurology 93: e1955–e63, https://doi.org/10.1212/wnl.0000000000008520.Search in Google Scholar PubMed PubMed Central
Baron, J.C. (2001). Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc. Dis. 11: 2–8, https://doi.org/10.1159/000049119.Search in Google Scholar PubMed
Batjer, H.H., Devous, M.D., Sr., Purdy, P.D., Mickey, B., Bonte, F.J., and Samson, D. (1988). Improvement in regional cerebral blood flow and cerebral vasoreactivity after extracranial-intracranial arterial bypass. Neurosurgery 22: 913–919, https://doi.org/10.1097/00006123-198805000-00022.Search in Google Scholar
Baumgartner, R.W., Mattle, H.P., and Aaslid, R. (1995). Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography: methods, applications, advantages, and limitations. J. Clin. Ultrasound 23: 89–111, https://doi.org/10.1002/jcu.1870230205.Search in Google Scholar PubMed
Beqiri, E., Smielewski, P., Robba, C., Czosnyka, M., Cabeleira, M.T., Tas, J., Donnelly, J., Outtrim, J.G., Hutchinson, P., Menon, D., et al.. (2019). Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open 9: e030727, https://doi.org/10.1136/bmjopen-2019-030727.Search in Google Scholar PubMed PubMed Central
Bisschops, R.H., Klijn, C.J., Kappelle, L.J., van Huffelen, A.C., and van der Grond, J. (2003). Association between impaired carbon dioxide reactivity and ischemic lesions in arterial border zone territories in patients with unilateral internal carotid artery occlusion. Arch. Neurol. 60: 229–233, https://doi.org/10.1001/archneur.60.2.229.Search in Google Scholar PubMed
Bouley, J., Chung, D.Y., Ayata, C., Brown, R.H.Jr., and Henninger, N. (2019). Cortical spreading depression denotes concussion injury. J. Neurotrauma 36: 1008–1017, https://doi.org/10.1089/neu.2018.5844.Search in Google Scholar PubMed PubMed Central
Bouma, G.J., Muizelaar, J.P., Bandoh, K., and Marmarou, A. (1992). Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J. Neurosurg. 77: 15–19, https://doi.org/10.3171/jns.1992.77.1.0015.Search in Google Scholar PubMed
Brady, K.M., Shaffner, D.H., Lee, J.K., Easley, R.B., Smielewski, P., Czosnyka, M., Jallo, G.I., and Guerguerian, A.M. (2009). Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124: e1205–e1212, https://doi.org/10.1542/peds.2009-0550.Search in Google Scholar PubMed
Budohoski, K.P., Czosnyka, M., Kirkpatrick, P.J., Reinhard, M., Varsos, G.V., Kasprowicz, M., Zabek, M., Pickard, J.D., and Smielewski, P. (2015). Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit. Care 22: 65–73, https://doi.org/10.1007/s12028-014-0032-6.Search in Google Scholar PubMed
Budohoski, K.P., Czosnyka, M., Smielewski, P., Kasprowicz, M., Helmy, A., Bulters, D., Pickard, J.D., and Kirkpatrick, P.J. (2012a). Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 43: 3230–3237, https://doi.org/10.1161/strokeaha.112.669788.Search in Google Scholar PubMed
Budohoski, K.P., Reinhard, M., Aries, M.J., Czosnyka, Z., Smielewski, P., Pickard, J.D., Kirkpatrick, P.J., and Czosnyka, M. (2012b). Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit. Care 17: 211–218, https://doi.org/10.1007/s12028-011-9572-1.Search in Google Scholar PubMed
Buratti, L., Viticchi, G., Falsetti, L., Balucani, C., Altamura, C., Petrelli, C., Provinciali, L., Vernieri, F., and Silvestrini, M. (2016). Thresholds of impaired cerebral hemodynamics that predict short-term cognitive decline in asymptomatic carotid stenosis. J. Cereb. Blood Flow Metab. 36: 1804–1812, https://doi.org/10.1177/0271678x15613526.Search in Google Scholar PubMed PubMed Central
Burton, V.J., Gerner, G., Cristofalo, E., Chung, S.E., Jennings, J.M., Parkinson, C., Koehler, R.C., Chavez-Valdez, R., Johnston, M.V., Northington, F.J., et al.. (2015). A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol. 15: 209, https://doi.org/10.1186/s12883-015-0464-4.Search in Google Scholar PubMed PubMed Central
Caicedo, A., De Smet, D., Vanderhaegen, J., Naulaers, G., Wolf, M., Lemmers, P., Van Bel, F., Ameye, L., and Van Huffel, S. (2011). Impaired cerebral autoregulation using near-infrared spectroscopy and its relation to clinical outcomes in premature infants. Adv. Exp. Med. Biol. 701: 233–239, https://doi.org/10.1007/978-1-4419-7756-4_31.Search in Google Scholar PubMed
Calviello, L.A., Cardim, D., Czosnyka, M., Preller, J., Smielewski, P., Siyal, A., and Damian, M.S. (2022). Feasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach. J. Clin. Monit. Comput. 36: 1805–1815, https://doi.org/10.1007/s10877-022-00829-x.Search in Google Scholar PubMed
Calviello, L.A., Czigler, A., Zeiler, F.A., Smielewski, P., and Czosnyka, M. (2020). Validation of non-invasive cerebrovascular pressure reactivity and pulse amplitude reactivity indices in traumatic brain injury. Acta Neurochir. 162: 337–344, https://doi.org/10.1007/s00701-019-04169-9.Search in Google Scholar PubMed PubMed Central
Calviello, L.A., Zeiler, F.A., Donnelly, J., Czigler, A., Lavinio, A., Hutchinson, P.J., Czosnyka, M., and Smielewski, P. (2021). Cerebrovascular consequences of elevated intracranial pressure after traumatic brain injury. Acta Neurochir. Suppl. 131: 43–48, https://doi.org/10.1007/978-3-030-59436-7_10.Search in Google Scholar PubMed
Carlson, A. and Yonas, H. (2010). Xenon/CT in the management of traumatic brain injury. Open Neurosurg. J. 3: 64–72, https://doi.org/10.2174/1876529701003020064.Search in Google Scholar
Carlson, A.P., Alaraj, A., Amin-Hanjani, S., Charbel, F.T., and Aletich, V. (2012). Continued concern of parent vessel steno-occlusive progression with onyx HD-500 and the utility of quantitative MRI in serial assessment. Neurosurgery 71: E577–E77, https://doi.org/10.1227/01.neu.0000417790.21869.af.Search in Google Scholar
Carlson, A.P., Brown, A.M., Zager, E., Uchino, K., Marks, M.P., Robertson, C., Sinson, G.P., Marmarou, A., and Yonas, H. (2011a). Xenon-Enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AJNR Am. J. Neuroradiol. 71: 341–352, https://doi.org/10.3174/ajnr.a2522.Search in Google Scholar PubMed PubMed Central
Carlson, A.P., Davis, H.T., Jones, T., Brennan, K.C., Torbey, M., Ahmadian, R., Qeadan, F., and Shuttleworth, C.W. (2023). Is the human touch always therapeutic? Patient stimulation and spreading depolarization after acute neurological injuries. Transl. Stroke Res. 14: 160–173, https://doi.org/10.1007/s12975-022-01014-7.Search in Google Scholar PubMed PubMed Central
Carlson, A.P. and Shuttleworth, C.W. (2021). Editorial. What causes excitotoxicity after concussion? J. Neurosurg 136: 1647–1648, https://doi.org/10.3171/2021.4.JNS21835.Search in Google Scholar PubMed
Carlson, A.P., Shuttleworth, C.W., Major, S., Lemale, C.L., Dreier, J.P., and Hartings, J.A. (2018). Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report. J. Neurosurg 131: 1773–1779, https://doi.org/10.3171/2018.7.JNS181478.Search in Google Scholar PubMed
Carlson, A.P., Yonas, H., Chang, Y.F., and Nemoto, E.M. (2011b). Failure of cerebral hemodynamic selection in general or of specific positron emission tomography methodology? Carotid occlusion surgery study (COSS). Stroke 42: 3637–3639, https://doi.org/10.1161/strokeaha.111.627745.Search in Google Scholar
Chamanzar, A., Elmer, J., Shutter, L., Hartings, J., and Grover, P. (2023). Noninvasive and reliable automated detection of spreading depolarization in severe traumatic brain injury using scalp EEG. Commun. Med. 3: 113, https://doi.org/10.1038/s43856-023-00344-3.Search in Google Scholar PubMed PubMed Central
Chang, J.J., Kepplinger, D., Metter, E.J., Felbaum, D.R., Mai, J.C., Armonda, R.A., and Aulisi, E.F. (2023). Pressure reactivity index for early neuroprognostication in poor-grade subarachnoid hemorrhage. J. Neurol. Sci. 450: 120691, https://doi.org/10.1016/j.jns.2023.120691.Search in Google Scholar PubMed
Chau, L., Davis, H.T., Jones, T., Greene-Chandos, D., Torbey, M., Shuttleworth, C.W., and Carlson, A.P. (2022). Spreading depolarization as a therapeutic target in severe ischemic stroke: physiological and pharmacological strategies. J. Pers Med. 12: 1447, https://doi.org/10.3390/jpm12091447.Search in Google Scholar PubMed PubMed Central
Chimowitz, M.I., Furlan, A.J., Jones, S.C., Sila, C.A., Lorig, R.L., Paranandi, L., and Beck, G.J. (1993). Transcranial Doppler assessment of cerebral perfusion reserve in patients with carotid occlusive disease and no evidence of cerebral infarction. Neurology 43: 353–357, https://doi.org/10.1212/wnl.43.2.353.Search in Google Scholar PubMed
Chock, V.Y., Kwon, S.H., Ambalavanan, N., Batton, B., Nelin, L.D., Chalak, L.F., Tian, L., and Van Meurs, K.P. (2020). Cerebral oxygenation and autoregulation in preterm infants (early NIRS study). J. Pediatr. 227: 94–100 e1, https://doi.org/10.1016/j.jpeds.2020.08.036.Search in Google Scholar PubMed
Chollet, F., Celsis, P., Clanet, M., Guiraud-Chaumeil, B., Rascol, A., and Marc-Vergnes, J.P. (1989). SPECT study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks. Stroke 20: 458–464, https://doi.org/10.1161/01.str.20.4.458.Search in Google Scholar PubMed
Cohen, E., Baerts, W., Caicedo Dorado, A., Naulaers, G., van Bel, F., and Lemmers, P.M.A. (2019). Cerebrovascular autoregulation in preterm fetal growth restricted neonates. Arch. Dis. Child Fetal Neonatal Ed. 104: F467–F72, https://doi.org/10.1136/archdischild-2017-313712.Search in Google Scholar PubMed
Cossu, M., Gennaro, S., Rossi, A., Balestrero, M.A., Cella, F., and Viale, G.L. (1999). Autoregulation of cortical blood flow during surgery for ruptured intracranial aneurysms. J. Neurosurg Sci. 43: 99–105; discussion 05.Search in Google Scholar
Czosnyka, M., Brady, K., Reinhard, M., Smielewski, P., and Steiner, L.A. (2009). Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit. Care 10: 373–386, https://doi.org/10.1007/s12028-008-9175-7.Search in Google Scholar PubMed
Czosnyka, M., Piechnik, S., Richards, H.K., Kirkpatrick, P., Smielewski, P., and Pickard, J.D. (1997a). Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J. Neurol., Neurosurg. Psychiatry 63: 721–731, https://doi.org/10.1136/jnnp.63.6.721.Search in Google Scholar PubMed PubMed Central
Czosnyka, M., Smielewski, P., Kirkpatrick, P., Laing, R.J., Menon, D., and Pickard, J.D. (1997b). Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41: 11–17; discussion 17-9, https://doi.org/10.1097/00006123-199707000-00005.Search in Google Scholar PubMed
Czosnyka, M., Smielewski, P., Czosnyka, Z., Piechnik, S., Steiner, L.A., Schmidt, E., Gooskens, I., Soehle, M., Lang, E.W., Matta, B.F., et al.. (2003). Continuous assessment of cerebral autoregulation: clinical and laboratory experience. Acta Neurochir., Suppl. 86: 581–585, https://doi.org/10.1007/978-3-7091-0651-8_118.Search in Google Scholar PubMed
Czosnyka, M., Smielewski, P., Kirkpatrick, P., Menon, D.K., and Pickard, J.D. (1996). Monitoring of cerebral autoregulation in head-injured patients. Stroke 27: 1829–1834, https://doi.org/10.1161/01.str.27.10.1829.Search in Google Scholar PubMed
Czosnyka, M., Smielewski, P., Piechnik, S., and Pickard, J.D. (2002). Clinical significance of cerebral autoregulation. Acta Neurochir., Suppl. 81: 117–119, https://doi.org/10.1007/978-3-7091-6738-0_30.Search in Google Scholar PubMed
Czosnyka, M., Smielewski, P., Piechnik, S., Steiner, L.A., and Pickard, J.D. (2001). Cerebral autoregulation following head injury. J. Neurosurg 95: 756–763, https://doi.org/10.3171/jns.2001.95.5.0756.Search in Google Scholar PubMed
Czosnyka, Z., van den Boogaard, F., Czosnyka, M., Momjian, S., Gelling, L., and Pickard, J.D. (2005). The relationship between CSF circulation and cerebrovascular pressure-reactivity in normal pressure hydrocephalus. Acta Neurochir., Suppl. 95: 207–211, https://doi.org/10.1007/3-211-32318-x_43.Search in Google Scholar PubMed
de Boorder, M.J., Hendrikse, J., and van der Grond, J. (2004). Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 35: 1350–1354, https://doi.org/10.1161/01.str.0000128530.75424.63.Search in Google Scholar PubMed
Dengler, J., Frenzel, C., Vajkoczy, P., Horn, P., and Wolf, S. (2013). The oxygen reactivity index and its relation to sensor technology in patients with severe brain lesions. Neurocrit. Care 19: 74–78, https://doi.org/10.1007/s12028-012-9686-0.Search in Google Scholar PubMed
Depreitere, B., Guiza, F., Van den Berghe, G., Schuhmann, M.U., Maier, G., Piper, I., and Meyfroidt, G. (2014). Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J. Neurosurg 120: 1451–1457, https://doi.org/10.3171/2014.3.jns131500.Search in Google Scholar PubMed
De Smet, D., Jacobs, J., Ameye, L., Vanderhaegen, J., Naulaers, G., Lemmers, P., van Bel, F., Wolf, M., and Van Huffel, S. (2010). The partial coherence method for assessment of impaired cerebral autoregulation using near-infrared spectroscopy: potential and limitations. Adv. Exp. Med. Biol. 662: 219–224, https://doi.org/10.1007/978-1-4419-1241-1_31.Search in Google Scholar PubMed
Dias, C., Silva, M.J., Pereira, E., Monteiro, E., Maia, I., Barbosa, S., Silva, S., Honrado, T., Cerejo, A., Aries, M.J., et al.. (2015). Optimal cerebral perfusion pressure management at bedside: a single-center pilot study. Neurocrit. Care 23: 92–102, https://doi.org/10.1007/s12028-014-0103-8.Search in Google Scholar PubMed
Dickman, C.A., Carter, L.P., Baldwin, H.Z., Harrington, T., and Tallman, D. (1991). Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurgery 28: 467–472, https://doi.org/10.1227/00006123-199103000-00026.Search in Google Scholar
Diedler, J., Karpel-Massler, G., Sykora, M., Poli, S., Sakowitz, O.W., Veltkamp, R., and Steiner, T. (2010). Autoregulation and brain metabolism in the perihematomal region of spontaneous intracerebral hemorrhage: an observational pilot study. J. Neurol. Sci. 295: 16–22, https://doi.org/10.1016/j.jns.2010.05.027.Search in Google Scholar PubMed
Diedler, J., Santos, E., Poli, S., and Sykora, M. (2014). Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit. Care 18: R51, https://doi.org/10.1186/cc13796.Search in Google Scholar PubMed PubMed Central
Dirnagl, U. and Pulsinelli, W. (1990). Autoregulation of cerebral blood flow in experimental focal brain ischemia. J. Cereb. Blood Flow Metab. 10: 327–336, https://doi.org/10.1038/jcbfm.1990.61.Search in Google Scholar PubMed
Dohmen, C., Sakowitz, O.W., Fabricius, M., Bosche, B., Reithmeier, T., Ernestus, R.I., Brinker, G., Dreier, J.P., Woitzik, J., Strong, A.J., et al.. (2008). Spreading depolarizations occur in human ischemic stroke with high incidence. Ann. Neurol. 63: 720–728, https://doi.org/10.1002/ana.21390.Search in Google Scholar PubMed
Donati, A., Damiani, E., Domizi, R., Scorcella, C., Carsetti, A., Tondi, S., Monaldi, V., Adrario, E., Romano, R., Pelaia, P., et al.. (2016). Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study. Crit. Care 20: 311, https://doi.org/10.1186/s13054-016-1500-5.Search in Google Scholar PubMed PubMed Central
Donnelly, J., Czosnyka, M., Adams, H., Cardim, D., Kolias, A.G., Zeiler, F.A., Lavinio, A., Aries, M., Robba, C., Smielewski, P., et al.. (2019). Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective, single-center analysis. Neurosurgery 85: E75–E82, https://doi.org/10.1093/neuros/nyy468.Search in Google Scholar PubMed
Donnelly, J., Czosnyka, M., Adams, H., Robba, C., Steiner, L.A., Cardim, D., Cabella, B., Liu, X., Ercole, A., Hutchinson, P.J., et al.. (2018). Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir. Suppl. 126: 209–212, https://doi.org/10.1007/978-3-319-65798-1_43.Search in Google Scholar PubMed
Dreier, J.P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17: 439–447, https://doi.org/10.1038/nm.2333.Search in Google Scholar PubMed
Dreier, J.P., Fabricius, M., Ayata, C., Sakowitz, O.W., William Shuttleworth, C., Dohmen, C., Graf, R., Vajkoczy, P., Helbok, R., Suzuki, M., et al.. (2017). Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J. Cereb. Blood Flow Metab. 37: 1595–1625, https://doi.org/10.1177/0271678x16654496.Search in Google Scholar PubMed PubMed Central
Dreier, J.P., Major, S., Foreman, B., Winkler, M.K.L., Kang, E.J., Milakara, D., Lemale, C.L., DiNapoli, V., Hinzman, J.M., Woitzik, J., et al.. (2018). Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann. Neurol. 83: 295–310, https://doi.org/10.1002/ana.25147.Search in Google Scholar PubMed PubMed Central
Dreier, J.P., Major, S., Manning, A., Woitzik, J., Drenckhahn, C., Steinbrink, J., Tolias, C., Oliveira-Ferreira, A.I., Fabricius, M., Hartings, J.A., et al.. (2009). Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132: 1866–1881, https://doi.org/10.1093/brain/awp102.Search in Google Scholar PubMed PubMed Central
Drenckhahn, C., Winkler, M.K., Major, S., Scheel, M., Kang, E.J., Pinczolits, A., Grozea, C., Hartings, J.A., Woitzik, J., and Dreier, J.P. (2012). Correlates of spreading depolarization in human scalp electroencephalography. Brain 135: 853–868, https://doi.org/10.1093/brain/aws010.Search in Google Scholar PubMed PubMed Central
Eide, P.K., Sorteberg, A., Bentsen, G., Marthinsen, P.B., Stubhaug, A., and Sorteberg, W. (2012). Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J. Neurosurg 116: 961–971, https://doi.org/10.3171/2012.1.jns111313.Search in Google Scholar
Fandino, J., Stocker, R., Prokop, S., and Imhof, H.G. (1999). Correlation between jugular bulb oxygen saturation and partial pressure of brain tissue oxygen during CO2 and O2 reactivity tests in severely head-injured patients. Acta Neurochir. 141: 825–834, https://doi.org/10.1007/s007010050383.Search in Google Scholar PubMed
Feletou, M., Tang, E.H., and Vanhoutte, P.M. (2008). Nitric oxide the gatekeeper of endothelial vasomotor control. Front. Biosci. 13: 4198–4217, https://doi.org/10.2741/3000.Search in Google Scholar PubMed
Figaji, A.A., Zwane, E., Fieggen, A.G., Argent, A.C., Le Roux, P.D., Siesjo, P., and Peter, J.C. (2009). Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J. Neurosurg Pediatr. 4: 420–428, https://doi.org/10.3171/2009.6.peds096.Search in Google Scholar PubMed
Forteza, A., Romano, J.G., Campo-Bustillo, I., Campo, N., Haussen, D.C., Gutierrez, J., and Koch, S. (2012). High-dose atorvastatin enhances impaired cerebral vasomotor reactivity. J. Stroke Cerebrovasc. Dis. 21: 487–492, https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.12.002.Search in Google Scholar PubMed
Furuse, M., Shinichi, W., Suyama, Y., Takahashi, K., and Kajikawa, H. (2008). Ischaemia-induced vascular vulnerability resulting in intracerebral haemorrhage with ipsilateral internal carotid artery occlusion. Neurol. Sci. 29: 367–369, https://doi.org/10.1007/s10072-008-0998-y.Search in Google Scholar PubMed
Goode, S.D., Altaf, N., Auer, D.P., and MacSweeney, S.T. (2009). Carotid endarterectomy improves cerebrovascular reserve capacity preferentially in patients with preoperative impairment as indicated by asymmetric BOLD response to hypercapnia. Eur. J. Vasc. Endovasc. Surg. 38: 546–551, https://doi.org/10.1016/j.ejvs.2009.06.010.Search in Google Scholar PubMed
Gritti, P., Bonfanti, M., Zangari, R., Bonanomi, E., Pellicioli, I., Mandelli, P., Longhi, L., Rasulo, F.A., Bertuetti, R., Farina, A., et al.. (2023a). Evaluation and application of ultra-low-frequency pressure reactivity index in pediatric traumatic brain injury patients. Acta Neurochir. 165: 865–874, https://doi.org/10.1007/s00701-023-05538-1.Search in Google Scholar PubMed
Gritti, P., Bonfanti, M., Zangari, R., Farina, A., Longhi, L., Rasulo, F.A., Bertuetti, R., Biroli, A., Biroli, F., and Lorini, F.L. (2023b). Evaluation and application of ultra-low-resolution pressure reactivity index in moderate or severe traumatic brain injury. J. Neurosurg Anesthesiol. 35: 313–321, https://doi.org/10.1097/ana.0000000000000847.Search in Google Scholar
Guo, Z.N., Liu, J., Xing, Y., Yan, S., Lv, C., Jin, H., and Yang, Y. (2014). Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke. PLoS One 9: e93213, https://doi.org/10.1371/journal.pone.0093213.Search in Google Scholar PubMed PubMed Central
Hall, C.N., Howarth, C., Kurth-Nelson, Z., and Mishra, A. (2016). Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philos. Trans. R. Soc Lond. B Biol. Sci. 371, https://doi.org/10.1098/rstb.2015.0348.Search in Google Scholar PubMed PubMed Central
Hartings, J.A., Dreier, J.P., Ngwenya, L.B., Balu, R., Carlson, A.P., and Foreman, B. (2023). Improving neurotrauma by depolarization inhibition with combination therapy: a phase 2 randomized feasibility trial. Neurosurgery 93: 924–931, https://doi.org/10.1227/neu.0000000000002509.Search in Google Scholar PubMed PubMed Central
Hartings, J.A., Shuttleworth, C.W., Kirov, S.A., Ayata, C., Hinzman, J.M., Foreman, B., Andrew, R.D., Boutelle, M.G., Brennan, K.C., Carlson, A.P., et al.. (2017). The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J. Cereb. Blood Flow Metab. 37: 1571–1594, https://doi.org/10.1177/0271678x16654495.Search in Google Scholar
Hartings, J.A., Strong, A.J., Fabricius, M., Manning, A., Bhatia, R., Dreier, J.P., Mazzeo, A.T., Tortella, F.C., and Bullock, M.R. (2009). Spreading depolarizations and late secondary insults after traumatic brain injury. J. Neurotrauma 26: 1857–1866, https://doi.org/10.1089/neu.2009.0961.Search in Google Scholar PubMed PubMed Central
Hartings, J.A., Wilson, J.A., Hinzman, J.M., Pollandt, S., Dreier, J.P., DiNapoli, V., Ficker, D.M., Shutter, L.A., and Andaluz, N. (2014). Spreading depression in continuous electroencephalography of brain trauma. Ann. Neurol. 76: 681–694, https://doi.org/10.1002/ana.24256.Search in Google Scholar PubMed
Haubrich, C., Kohnke, A., Diehl, R.R., Moller-Hartmann, W., and Klotzsch, C. (2005). Impact of vertebral artery disease on dynamic cerebral autoregulation. Acta Neurol. Scand. 112: 309–316, https://doi.org/10.1111/j.1600-0404.2005.00498.x.Search in Google Scholar PubMed
Hecht, N., Fiss, I., Wolf, S., Barth, M., Vajkoczy, P., and Woitzik, J. (2011). Modified flow- and oxygen-related autoregulation indices for continuous monitoring of cerebral autoregulation. J. Neurosci. Methods 201: 399–403, https://doi.org/10.1016/j.jneumeth.2011.08.018.Search in Google Scholar PubMed
Heiss, W.D. (1983). Flow thresholds of functional and morphological damage of brain tissue. Stroke 14: 329–331, https://doi.org/10.1161/01.str.14.3.329.Search in Google Scholar PubMed
Hinzman, J.M., Andaluz, N., Shutter, L.A., Okonkwo, D.O., Pahl, C., Strong, A.J., Dreier, J.P., and Hartings, J.A. (2014). Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain 137: 2960–2972, https://doi.org/10.1093/brain/awu241.Search in Google Scholar PubMed
Hlatky, R., Valadka, A.B., Gopinath, S.P., and Robertson, C.S. (2008). Brain tissue oxygen tension response to induced hyperoxia reduced in hypoperfused brain. J. Neurosurg. 108: 53–58, https://doi.org/10.3171/jns/2008/108/01/0053.Search in Google Scholar
Hockel, K., Diedler, J., Neunhoeffer, F., Heimberg, E., Nagel, C., and Schuhmann, M.U. (2017). Time spent with impaired autoregulation is linked with outcome in severe infant/paediatric traumatic brain injury. Acta Neurochir. 159: 2053–2061, https://doi.org/10.1007/s00701-017-3308-8.Search in Google Scholar PubMed
Hoffman, S.B., Cheng, Y.J., Magder, L.S., Shet, N., and Viscardi, R.M. (2019). Cerebral autoregulation in premature infants during the first 96 hours of life and relationship to adverse outcomes. Arch Dis. Child Fetal Neonatal Ed. 104: F473–F79, https://doi.org/10.1136/archdischild-2018-315725.Search in Google Scholar PubMed
Hogue, C.W., Brown, C.H.t., Hori, D., Ono, M., Nomura, Y., Balmert, L.C., Srdanovic, N., Grafman, J., Brady, K., and Cerebral Autoregulation Study, G. (2021). Personalized blood pressure management during cardiac surgery with cerebral autoregulation monitoring: a randomized trial. Semin. Thorac Cardiovasc. Surg. 33: 429–438, https://doi.org/10.1053/j.semtcvs.2020.09.032.Search in Google Scholar PubMed
Horowitz, M., Yonas, H., and Albright, A.L. (1995). Evaluation of cerebral blood flow and hemodynamic reserve in symptomatic moyamoya disease using stable Xenon-CT blood flow. Surg. Neurol. 44: 251–261; discussion 62, https://doi.org/10.1016/0090-3019(95)00188-3.Search in Google Scholar PubMed
Hund, S.J., Brown, B.R., Lemale, C.L., Menon, P.G., Easley, K.A., Dreier, J.P., and Jones, S.C. (2022). Numerical simulation of concussive-generated cortical spreading depolarization to optimize DC-EEG electrode spacing for noninvasive visual detection. Neurocrit. Care 37: 67–82, https://doi.org/10.1007/s12028-021-01430-x.Search in Google Scholar PubMed PubMed Central
Ishikawa, T., Houkin, K., Abe, H., Isobe, M., and Kamiyama, H. (1995). Cerebral haemodynamics and long-term prognosis after extracranial-intracranial bypass surgery. J. Neurol. Neurosurg. Psychiatry 59: 625–628, https://doi.org/10.1136/jnnp.59.6.625.Search in Google Scholar PubMed PubMed Central
Jaeger, M., Schuhmann, M.U., Soehle, M., Nagel, C., and Meixensberger, J. (2007). Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke 38: 981–986, https://doi.org/10.1161/01.str.0000257964.65743.99.Search in Google Scholar PubMed
Jeffcote, T., Hinzman, J.M., Jewell, S.L., Learney, R.M., Pahl, C., Tolias, C., Walsh, D.C., Hocker, S., Zakrzewska, A., Fabricius, M.E., et al.. (2014). Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain. Neurocrit. Care 20: 21–31, https://doi.org/10.1007/s12028-013-9938-7.Search in Google Scholar PubMed
Jensen, J.B., Wright, A.D., Lassen, N.A., Harvey, T.C., Winterborn, M.H., Raichle, M.E., and Bradwell, A.R. (1990). Cerebral blood flow in acute mountain sickness. J. Appl. Physiol. 69: 430–433, https://doi.org/10.1152/jappl.1990.69.2.430.Search in Google Scholar PubMed
Johnson, D.W., Stringer, W.A., Marks, M.P., Yonas, H., Good, W.F., and Gur, D. (1991). Stable xenon CT cerebral blood flow imaging: rationale for and role in clinical decision making. AJNR Am. J. Neuroradiol. 12: 201–213.Search in Google Scholar
Johnson, U., Engquist, H., Howells, T., Nilsson, P., Ronne-Engstrom, E., Lewen, A., Rostami, E., and Enblad, P. (2016). Bedside xenon-CT shows lower CBF in SAH patients with impaired CBF pressure autoregulation as defined by pressure reactivity index (PRx). Neurocrit. Care 25: 47–55, https://doi.org/10.1007/s12028-016-0240-3.Search in Google Scholar PubMed
Jolink, W.M., Heinen, R., Persoon, S., van der Zwan, A., Kappelle, L.J., and Klijn, C.J. (2014). Transcranial doppler ultrasonography CO2 reactivity does not predict recurrent ischaemic stroke in patients with symptomatic carotid artery occlusion. Cerebrovasc. Dis. 37: 30–37, https://doi.org/10.1159/000356349.Search in Google Scholar PubMed
Jones, T.H., Morawetz, R.B., Crowell, R.M., Marcoux, F.W., FitzGibbon, S.J., DeGirolami, U., and Ojemann, R.G. (1981). Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 54: 773–782, https://doi.org/10.3171/jns.1981.54.6.0773.Search in Google Scholar PubMed
Jovin, T.G., Yonas, H., Gebel, J.M., Kanal, E., Chang, Y.F., Grahovac, S.Z., Goldstein, S., and Wechsler, L.R. (2003). The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34: 2426–2433, https://doi.org/10.1161/01.str.0000091232.81947.c9.Search in Google Scholar
Junger, E.C., Newell, D.W., Grant, G.A., Avellino, A.M., Ghatan, S., Douville, C.M., Lam, A.M., Aaslid, R., and Winn, H.R. (1997). Cerebral autoregulation following minor head injury. J. Neurosurg. 86: 425–432, https://doi.org/10.3171/jns.1997.86.3.0425.Search in Google Scholar PubMed
Kader, A., Young, W.L., Massaro, A.R., Cunha e Sa, M.J., Hilal, S.K., Mohr, J.P., and Stein, B.M. (1993). Transcranial Doppler changes during staged surgical resection of cerebral arteriovenous malformations: a report of three cases. Surg. Neurol. 39: 392–398, https://doi.org/10.1016/0090-3019(93)90207-h.Search in Google Scholar PubMed
Kashiwagi, S., Kitahara, T., Shirao, S., Moroi, J., Kato, S., Nakayama, H., and Wakuta, Y. (2000). The value of acetazolamide challenge test in the evaluation of acute stroke. Keio J. Med. 49: A120–A121.Search in Google Scholar
Kastenholz, N., Megjhani, M., Conzen-Dilger, C., Albanna, W., Veldeman, M., Nametz, D., Kwon, S.B., Schulze-Steinen, H., Ridwan, H., Clusmann, H., et al.. (2023). The oxygen reactivity index indicates disturbed local perfusion regulation after aneurysmal subarachnoid hemorrhage: an observational cohort study. Crit. Care 27: 235, https://doi.org/10.1186/s13054-023-04452-3.Search in Google Scholar PubMed PubMed Central
Kastrup, A., Kruger, G., Neumann-Haefelin, T., and Moseley, M.E. (2001). Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding. Magn. Reson. Imaging 19: 13–20, https://doi.org/10.1016/s0730-725x(01)00227-2.Search in Google Scholar PubMed
Kelly, D.F., Kordestani, R.K., Martin, N.A., Nguyen, T., Hovda, D.A., Bergsneider, M., McArthur, D.L., and Becker, D.P. (1996). Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J. Neurosurg. 85: 762–771, https://doi.org/10.3171/jns.1996.85.5.0762.Search in Google Scholar PubMed
Khan, J.M., Wood, M.D., Lee, K.F.H., Maslove, D., Muscedere, J., English, S.W., Ball, I., Slessarev, M., and Boyd, J.G. (2021). Delirium, cerebral perfusion, and high-frequency vital-sign monitoring in the critically ill. The CONFOCAL-2 feasibility study. Ann. Am. Thorac. Soc. 18: 112–121, https://doi.org/10.1513/annalsats.202002-093oc.Search in Google Scholar
Kirkness, C.J., Mitchell, P.H., Burr, R.L., and Newell, D.W. (2001). Cerebral autoregulation and outcome in acute brain injury. Biol. Res. Nurs. 2: 175–185, https://doi.org/10.1177/109980040100200303.Search in Google Scholar PubMed
Kirkpatrick, P.J., Smielewski, P., Czosnyka, M., and Pickard, J.D. (1994). Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury. J. Neurol., Neurosurg. Psychiatry 57: 1382–1388, https://doi.org/10.1136/jnnp.57.11.1382.Search in Google Scholar PubMed PubMed Central
Kirschen, M.P., Majmudar, T., Beaulieu, F., Burnett, R., Shaik, M., Morgan, R.W., Baker, W., Ko, T., Balu, R., Agarwal, K., et al.. (2021). Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest. Resuscitation 168: 110–118, https://doi.org/10.1016/j.resuscitation.2021.09.023.Search in Google Scholar PubMed PubMed Central
Kirschen, M.P., Majmudar, T., Diaz-Arrastia, R., Berg, R., Abella, B.S., Topjian, A., and Balu, R. (2022). Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest. Resuscitation 175: 81–87, https://doi.org/10.1016/j.resuscitation.2022.03.003.Search in Google Scholar PubMed PubMed Central
Kitahara, T., Yamashita, T., Kashiwagi, S., Kawakami, N., Ishihara, H., and Ito, H. (1996). Hemodynamics of hypertensive putaminal hemorrhage evaluated by Xenon-enhanced computed tomography and acetazolamide test. Acta Neurol. Scand., Suppl. 166: 139–143, https://doi.org/10.1111/j.1600-0404.1996.tb00579.x.Search in Google Scholar PubMed
Kobeissi, H., Adusumilli, G., Ghozy, S., Kadirvel, R., Brinjikji, W., Albers, G.W., Heit, J.J., and Kallmes, D.F. (2023). Endovascular thrombectomy for ischemic stroke with large core volume: an updated, post-TESLA systematic review and meta-analysis of the randomized trials. Interv. Neuroradiol.: 15910199231185738, https://doi.org/10.1177/15910199231185738.Search in Google Scholar PubMed
Koep, J.L., Taylor, C.E., Coombes, J.S., Bond, B., Ainslie, P.N., and Bailey, T.G. (2022). Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J. Physiol. 600: 15–39, https://doi.org/10.1113/jp281058.Search in Google Scholar
Kontos, H.A., Raper, A.J., and Patterson, J.L. (1977). Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke 8: 358–360, https://doi.org/10.1161/01.str.8.3.358.Search in Google Scholar PubMed
Kooi, E.M.W., Verhagen, E.A., Elting, J.W.J., Czosnyka, M., Austin, T., Wong, F.Y., and Aries, M.J.H. (2017). Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev. Neurother. 17: 801–818, https://doi.org/10.1080/14737175.2017.1346472.Search in Google Scholar PubMed
Kuroda, S., Kamiyama, H., Abe, H., Houkin, K., Isobe, M., and Mitsumori, K. (1993). Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery 32: 912–918, ; discussion 18-9, https://doi.org/10.1097/00006123-199306000-00005.Search in Google Scholar
Kuroda, S., Shiga, T., Houkin, K., Ishikawa, T., Katoh, C., Tamaki, N., and Iwasaki, Y. (2006). Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity attributable to occlusive carotid artery disease. Stroke 37: 393–398, https://doi.org/10.1161/01.str.0000198878.66000.4e.Search in Google Scholar
Kuwabara, Y., Ichiya, Y., Sasaki, M., Yoshida, T., and Masuda, K. (1995). Time dependency of the acetazolamide effect on cerebral hemodynamics in patients with chronic occlusive cerebral arteries. Early steal phenomenon demonstrated by [15O]H2O positron emission tomography. Stroke 26: 1825–1829, https://doi.org/10.1161/01.str.26.10.1825.Search in Google Scholar PubMed
Lalou, A.D., Czosnyka, M., Donnelly, J., Pickard, J.D., Nabbanja, E., Keong, N.C., Garnett, M., and Czosnyka, Z.H. (2018). Cerebral autoregulation, cerebrospinal fluid outflow resistance, and outcome following cerebrospinal fluid diversion in normal pressure hydrocephalus. J. Neurosurg. 130: 154–162, https://doi.org/10.3171/2017.7.jns17216.Search in Google Scholar
Lam, J.M., Hsiang, J.N., and Poon, W.S. (1997). Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J. Neurosurg. 86: 438–445, https://doi.org/10.3171/jns.1997.86.3.0438.Search in Google Scholar PubMed
Lang, E.W., Kasprowicz, M., Smielewski, P., Santos, E., Pickard, J., and Czosnyka, M. (2015). Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. J. Neurosurg. 122: 588–594, https://doi.org/10.3171/2014.10.jns14602.Search in Google Scholar
Lang, E.W., Kasprowicz, M., Smielewski, P., Santos, E., Pickard, J., and Czosnyka, M. (2016). Outcome, pressure reactivity and optimal cerebral perfusion pressure calculation in traumatic brain injury: a comparison of two variants. Acta Neurochir. Suppl. 122: 221–223, https://doi.org/10.1007/978-3-319-22533-3_44.Search in Google Scholar PubMed
Lang, E.W., Lagopoulos, J., Griffith, J., Yip, K., Mudaliar, Y., Mehdorn, H.M., and Dorsch, N.W. (2003). Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J. Neurotrauma 20: 69–75, https://doi.org/10.1089/08977150360517191.Search in Google Scholar PubMed
Lattanzi, S., Carbonari, L., Pagliariccio, G., Bartolini, M., Cagnetti, C., Viticchi, G., Buratti, L., Provinciali, L., and Silvestrini, M. (2018). Neurocognitive functioning and cerebrovascular reactivity after carotid endarterectomy. Neurology 90: e307–e15, https://doi.org/10.1212/wnl.0000000000004862.Search in Google Scholar
Lattanzi, S., Carbonari, L., Pagliariccio, G., Cagnetti, C., Luzzi, S., Bartolini, M., Buratti, L., Provinciali, L., and Silvestrini, M. (2019). Predictors of cognitive functioning after carotid revascularization. J. Neurol. Sci. 405: 116435, https://doi.org/10.1016/j.jns.2019.116435.Search in Google Scholar PubMed
Laurikkala, J., Aneman, A., Peng, A., Reinikainen, M., Pham, P., Jakkula, P., Hastbacka, J., Wilkman, E., Loisa, P., Toppila, J., et al.. (2021). Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: a post-hoc analysis of the COMACARE trial. Crit. Care 25: 350, https://doi.org/10.1186/s13054-021-03764-6.Search in Google Scholar PubMed PubMed Central
Lee, E.J., Hung, Y.C., Chang, C.H., Pai, M.C., and Chen, H.H. (1998). Cerebral blood flow velocity and vasomotor reactivity before and after shunting surgery in patients with normal pressure hydrocephalus. Acta Neurochir. 140: 599–604, ; discussion 04-5, https://doi.org/10.1007/s007010050147.Search in Google Scholar PubMed
Lee, J.H., Kelly, D.F., Oertel, M., McArthur, D.L., Glenn, T.C., Vespa, P., Boscardin, W.J., and Martin, N.A. (2001a). Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J. Neurosurg. 95: 222–232, https://doi.org/10.3171/jns.2001.95.2.0222.Search in Google Scholar PubMed
Lee, S.P., Duong, T.Q., Yang, G., Iadecola, C., and Kim, S.G. (2001b). Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn. Reson. Med. 45: 791–800, https://doi.org/10.1002/mrm.1107.Search in Google Scholar PubMed
Lele, A.V., Watanitanon, A., Lakireddy, V., Clark-Bell, C., Moore, A., Zimmerman, J.J., Chesnut, R.M., Armstead, W., and Vavilala, M.S. (2019). Prevalence, evolution, and extent of impaired cerebral autoregulation in children hospitalized with complex mild traumatic brain injury. Pediatr. Crit. Care Med. 20: 372–378, https://doi.org/10.1097/pcc.0000000000001824.Search in Google Scholar
Len, T.K., Neary, J.P., Asmundson, G.J., Goodman, D.G., Bjornson, B., and Bhambhani, Y.N. (2011). Cerebrovascular reactivity impairment after sport-induced concussion. Med. Sci. Sports Exercise 43: 2241–2248, https://doi.org/10.1249/mss.0b013e3182249539.Search in Google Scholar
Lewis, P.M., Smielewski, P., Pickard, J.D., and Czosnyka, M. (2007). Dynamic cerebral autoregulation: should intracranial pressure be taken into account? Acta Neurochir. 149: 549–555; discussion 55, https://doi.org/10.1007/s00701-007-1160-y.Search in Google Scholar PubMed
Li, N., Zhou, F., Lu, X., Chen, H., Liu, R., Chen, S., and Xing, Y. (2024). Impaired dynamic cerebral autoregulation as a predictor for cerebral hyperperfusion after carotid endarterectomy: a prospective observational study. World Neurosurg. 181: e312–e21, https://doi.org/10.1016/j.wneu.2023.10.046.Search in Google Scholar PubMed
Liu, P., De Vis, J.B., and Lu, H. (2019). Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review. Neuroimage 187: 104–115, https://doi.org/10.1016/j.neuroimage.2018.03.047.Search in Google Scholar PubMed PubMed Central
Liu, P., Li, Y., Pinho, M., Park, D.C., Welch, B.G., and Lu, H. (2017). Cerebrovascular reactivity mapping without gas challenges. Neuroimage 146: 320–326, https://doi.org/10.1016/j.neuroimage.2016.11.054.Search in Google Scholar PubMed PubMed Central
Liu, X., Czosnyka, M., Donnelly, J., Budohoski, K.P., Varsos, G.V., Nasr, N., Brady, K.M., Reinhard, M., Hutchinson, P.J., and Smielewski, P. (2015). Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J. Cereb. Blood Flow Metab. 35: 248–256, https://doi.org/10.1038/jcbfm.2014.192.Search in Google Scholar PubMed PubMed Central
Luckl, J., Lemale, C.L., Kola, V., Horst, V., Khojasteh, U., Oliveira-Ferreira, A.I., Major, S., Winkler, M.K.L., Kang, E.J., Schoknecht, K., et al.. (2018). The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 141: 1734–1752, https://doi.org/10.1093/brain/awy102.Search in Google Scholar PubMed PubMed Central
Ma, H., Guo, Z.N., Liu, J., Xing, Y., Zhao, R., and Yang, Y. (2016). Temporal course of dynamic cerebral autoregulation in patients with intracerebral hemorrhage. Stroke 47: 674–681, https://doi.org/10.1161/strokeaha.115.011453.Search in Google Scholar
Mainali, S., Cardim, D., Sarwal, A., Merck, L.H., Yeatts, S.D., Czosnyka, M., and Shutter, L. (2022). Prolonged automated robotic TCD monitoring in acute severe TBI: study design and rationale. Neurocrit. Care 37: 267–275, https://doi.org/10.1007/s12028-022-01483-6.Search in Google Scholar PubMed
Manojlovic, V., Budakov, N., Budinski, S., Milosevic, D., Nikolic, D., and Manojlovic, V. (2020). Cerebrovascular reserve predicts the cerebral hyperperfusion syndrome after carotid endarterectomy. J. Stroke Cerebrovasc. Dis. 29: 105318, https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105318.Search in Google Scholar PubMed
Massaro, A.N., Govindan, R.B., Vezina, G., Chang, T., Andescavage, N.N., Wang, Y., Al-Shargabi, T., Metzler, M., Harris, K., and du Plessis, A.J. (2015). Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J. Neurophysiol. 114: 818–824, https://doi.org/10.1152/jn.00353.2015.Search in Google Scholar PubMed PubMed Central
Mathieu, F., Khellaf, A., Ku, J.C., Donnelly, J., Thelin, E.P., and Zeiler, F.A. (2020a). Continuous near-infrared spectroscopy monitoring in adult traumatic brain injury: a systematic review. J. Neurosurg. Anesthesiol. 32: 288–299, https://doi.org/10.1097/ana.0000000000000620.Search in Google Scholar
Mathieu, F., Zeiler, F.A., Whitehouse, D.P., Das, T., Ercole, A., Smielewski, P., Hutchinson, P.J., Czosnyka, M., Newcombe, V.F.J., and Menon, D.K. (2020b). Relationship between measures of cerebrovascular reactivity and intracranial lesion progression in acute TBI patients: an exploratory analysis. Neurocrit. Care 32: 373–382, https://doi.org/10.1007/s12028-019-00885-3.Search in Google Scholar PubMed PubMed Central
McAuley, D.J., Poskitt, K., and Steinbok, P. (2004). Predicting stroke risk in pediatric moyamoya disease with xenon-enhanced computed tomography. Neurosurgery 55: 327–332; discussion 32-3, https://doi.org/10.1227/01.neu.0000129695.91536.41.Search in Google Scholar PubMed
Mestre, H., Du, T., Sweeney, A.M., Liu, G., Samson, A.J., Peng, W., Mortensen, K.N., Staeger, F.F., Bork, P.A.R., Bashford, L., et al.. (2020). Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, https://doi.org/10.1126/science.aax7171.Search in Google Scholar PubMed PubMed Central
Meyer, M., Juenemann, M., Braun, T., Schirotzek, I., Tanislav, C., Engelhard, K., and Schramm, P. (2020). Impaired cerebrovascular autoregulation in large vessel occlusive stroke after successful mechanical thrombectomy: a prospective cohort study. J. Stroke Cerebrovasc. Dis. 29: 104596, https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104596.Search in Google Scholar PubMed
Miller, J.I., Chou, M.W., Capocelli, A., Bolognese, P., Pan, J., and Milhorat, T.H. (1998). Continuous intracranial multimodality monitoring comparing local cerebral blood flow, cerebral perfusion pressure, and microvascular resistance. Acta Neurochir. Suppl. 71: 82–84, https://doi.org/10.1007/978-3-7091-6475-4_25.Search in Google Scholar PubMed
Minhas, J.S., Panerai, R.B., Ghaly, G., Divall, P., and Robinson, T.G. (2019). Cerebral autoregulation in hemorrhagic stroke: a systematic review and meta-analysis of transcranial Doppler ultrasonography studies. J. Clin. Ultrasound 47: 14–21, https://doi.org/10.1002/jcu.22645.Search in Google Scholar PubMed
Minhas, J.S., Panerai, R.B., Swienton, D., and Robinson, T.G. (2020). Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: results from an experimental interventional study. Int. J. Stroke 15: 627–637, https://doi.org/10.1177/1747493019873690.Search in Google Scholar PubMed
Miyazawa, N., Hashizume, K., Uchida, M., and Nukui, H. (2001). Long-term follow-up of asymptomatic patients with major artery occlusion: rate of symptomatic change and evaluation of cerebral hemodynamics. AJNR Am. J. Neuroradiol. 22: 243–247.Search in Google Scholar
Montgomery, D., Brown, C., Hogue, C.W., Brady, K., Nakano, M., Nomura, Y., Antunes, A., and Addison, P.S. (2020). Real-time intraoperative determination and reporting of cerebral autoregulation state using near-infrared spectroscopy. Anesth. Analg. 131: 1520–1528, https://doi.org/10.1213/ane.0000000000004614.Search in Google Scholar
Morawetz, R.B., Crowell, R.H., DeGirolami, U., Marcoux, F.W., Jones, T.H., and Halsey, J.H. (1979) Regional cerebral blood flow thresholds during cerebral ischemia. Fed. Proc. 38: 2493–2494.Search in Google Scholar
Mutch, W.A., Ellis, M.J., Ryner, L.N., Graham, M.R., Dufault, B., Gregson, B., Hall, T., Bunge, M., Essig, M., Fisher, J.A., et al.. (2016). Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome. J. Neurosurg. 125: 648–660, https://doi.org/10.3171/2015.6.jns15972.Search in Google Scholar PubMed
Mutch, W.A., Mandell, D.M., Fisher, J.A., Mikulis, D.J., Crawley, A.P., Pucci, O., and Duffin, J. (2012). Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide. PLoS One 7: e47443, https://doi.org/10.1371/journal.pone.0047443.Search in Google Scholar PubMed PubMed Central
Nagel, C., Diedler, J., Gerbig, I., Heimberg, E., Schuhmann, M.U., and Hockel, K. (2016). State of cerebrovascular autoregulation correlates with outcome in severe infant/pediatric traumatic brain injury. Acta Neurochir. Suppl. 122: 239–244, https://doi.org/10.1007/978-3-319-22533-3_48.Search in Google Scholar PubMed
Nakamura, H., Strong, A.J., Dohmen, C., Sakowitz, O.W., Vollmar, S., Sue, M., Kracht, L., Hashemi, P., Bhatia, R., Yoshimine, T., et al.. (2010). Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133: 1994–2006, https://doi.org/10.1093/brain/awq117.Search in Google Scholar PubMed PubMed Central
Nariai, T. (1996). Comparison of measurement between Xe/CT CBF and PET in cerebrovascular disease and brain tumor. Acta Neurol. Scand. Suppl. 166: 10–12, https://doi.org/10.1111/j.1600-0404.1996.tb00532.x.Search in Google Scholar PubMed
Nemoto, E.M., Yonas, H., Kuwabara, H., Pindzola, R.R., Sashin, D., Meltzer, C.C., Price, J.C., Chang, Y., and Johnson, D.W. (2004). Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. J. Cereb. Blood Flow Metab. 24: 1081–1089, https://doi.org/10.1097/01.wcb.0000125887.48838.37.Search in Google Scholar
Nemoto, E.M., Yonas, H., Pindzola, R.R., Kuwabara, H., Sashin, D., Chang, Y.F., and Jovin, T. (2007). PET OEF reactivity for hemodynamic compromise in occlusive vascular disease. J. Neuroimaging 17: 54–60, https://doi.org/10.1111/j.1552-6569.2006.00080.x.Search in Google Scholar PubMed
Ng, S.C., Poon, W.S., Chan, M.T., Lam, J.M., and Lam, W.W. (2002). Is transcranial doppler ultrasonography (TCD) good enough in determining CO2 reactivity and pressure autoregulation in head-injured patients? Acta Neurochir. Suppl. 81: 125–127, https://doi.org/10.1007/978-3-7091-6738-0_32.Search in Google Scholar PubMed
Niezen, C.K., Massari, D., Vos, J.J., and Scheeren, T.W.L. (2022). The use of a vascular occlusion test combined with near-infrared spectroscopy in perioperative care: a systematic review. J. Clin. Monit. Comput. 36: 933–946, https://doi.org/10.1007/s10877-021-00779-w.Search in Google Scholar PubMed
Ogasawara, K., Ogawa, A., Terasaki, K., Shimizu, H., Tominaga, T., and Yoshimoto, T. (2002). Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J. Cereb. Blood Flow Metab. 22: 1142–1148, https://doi.org/10.1097/00004647-200209000-00012.Search in Google Scholar PubMed
Okonkwo, D.O., Shutter, L.A., Moore, C., Temkin, N.R., Puccio, A.M., Madden, C.J., Andaluz, N., Chesnut, R.M., Bullock, M.R., Grant, G.A., et al.. (2017). Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit. Care Med. 45: 1907–1914, https://doi.org/10.1097/ccm.0000000000002619.Search in Google Scholar PubMed PubMed Central
Olivot, J.M., Mlynash, M., Zaharchuk, G., Straka, M., Bammer, R., Schwartz, N., Lansberg, M.G., Moseley, M.E., and Albers, G.W. (2009). Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 72: 1140–1145, https://doi.org/10.1212/01.wnl.0000345372.49233.e3.Search in Google Scholar PubMed PubMed Central
Olsen, M.H., Riberholt, C., Plovsing, R.R., Berg, R.M., and Moller, K. (2022). Diagnostic and prognostic performance of Mxa and transfer function analysis-based dynamic cerebral autoregulation metrics. J. Cereb. Blood Flow Metab. 42: 2164–2172, https://doi.org/10.1177/0271678x221121841.Search in Google Scholar PubMed PubMed Central
Otite, F., Mink, S., Tan, C.O., Puri, A., Zamani, A.A., Mehregan, A., Chou, S., Orzell, S., Purkayastha, S., Du, R., et al.. (2014). Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke 45: 677–682, https://doi.org/10.1161/strokeaha.113.002630.Search in Google Scholar
Owen, B., Vangala, A., Fritch, C., Alsarah, A.A., Jones, T., Davis, H., Shuttleworth, C.W., and Carlson, A.P. (2022). Cerebral autoregulation correlation with outcomes and spreading depolarization in aneurysmal subarachnoid hemorrhage. Stroke 53: 1975–1983, https://doi.org/10.1161/strokeaha.121.037184.Search in Google Scholar
Pacheco, J.M., Hines-Lanham, A., Stratton, C., Mehos, C.J., McCurdy, K.E., Pinkowski, N.J., Zhang, H., Shuttleworth, C.W., and Morton, R.A. (2019). Spreading depolarizations occur in mild traumatic brain injuries and are associated with postinjury behavior. eNeuro 6, https://doi.org/10.1523/eneuro.0070-19.2019.Search in Google Scholar PubMed PubMed Central
Palazzo, P., Tibuzzi, F., Pasqualetti, P., Altamura, C., Silvestrini, M., Passarelli, F., Rossini, P.M., and Vernieri, F. (2010). Is there a role of near-infrared spectroscopy in predicting the outcome of patients with carotid artery occlusion? J. Neurol. Sci. 292: 36–39, https://doi.org/10.1016/j.jns.2010.02.011.Search in Google Scholar PubMed
Patel, H.C., McNamara, I.R., Al-Rawi, P.G., and Kirkpatrick, P.J. (2010). Improved cerebrovascular reactivity following low flow EC/IC bypass in patients with occlusive carotid disease. Br. J. Neurosurg. 24: 179–184, https://doi.org/10.3109/02688690903536603.Search in Google Scholar PubMed
Persoon, S., Luitse, M.J., de Borst, G.J., van der Zwan, A., Algra, A., Kappelle, L.J., and Klijn, C.J. (2011). Symptomatic internal carotid artery occlusion: a long-term follow-up study. J. Neurol., Neurosurg. Psychiatry 82: 521–526, https://doi.org/10.1136/jnnp.2010.208330.Search in Google Scholar PubMed
Petkus, V., Preiksaitis, A., Chaleckas, E., Chomskis, R., Zubaviciute, E., Vosylius, S., Rocka, S., Rastenyte, D., Aries, M.J., Ragauskas, A., et al.. (2020). Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury. J. Neurotrauma 37: 389–396, https://doi.org/10.1089/neu.2019.6551.Search in Google Scholar PubMed
Pham, P., Bindra, J., Chuan, A., Jaeger, M., and Aneman, A. (2015). Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study. Resuscitation 96: 192–198, https://doi.org/10.1016/j.resuscitation.2015.08.007.Search in Google Scholar PubMed
Pindzola, R.R., Balzer, J.R., Nemoto, E.M., Goldstein, S., and Yonas, H. (2001). Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler. Stroke 32: 1811–1817, https://doi.org/10.1161/01.str.32.8.1811.Search in Google Scholar PubMed
Powers, W.J., Videen, T.O., Diringer, M.N., Aiyagari, V., and Zazulia, A.R. (2009). Autoregulation after ischaemic stroke. J. Hypertens. 27: 2218–2222, https://doi.org/10.1097/hjh.0b013e328330a9a7.Search in Google Scholar
Preiksaitis, A., Krakauskaite, S., Petkus, V., Rocka, S., Chomskis, R., Dagi, T.F., and Ragauskas, A. (2016). Association of severe traumatic brain injury patient outcomes with duration of cerebrovascular autoregulation impairment events. Neurosurgery 79: 75–82, https://doi.org/10.1227/neu.0000000000001192.Search in Google Scholar PubMed
Provinciali, L., Minciotti, P., Ceravolo, G., and Sanguinetti, C.M. (1990). Investigation of cerebrovascular reactivity using transcranial Doppler sonography. Evaluation and comparison of different methods. Funct. Neurol. 5: 33–41.Search in Google Scholar
Przybylski, G.J., Yonas, H., and Smith, H.A. (1998). Reduced stroke risk in patients with compromised cerebral blood flow reactivity treated with superficial temporal artery to distal middle cerebral artery bypass surgery. J. Stroke Cerebrovasc. Dis. 7: 302–309, https://doi.org/10.1016/s1052-3057(98)80047-5.Search in Google Scholar PubMed
Radolovich, D.K., Aries, M.J., Castellani, G., Corona, A., Lavinio, A., Smielewski, P., Pickard, J.D., and Czosnyka, M. (2011). Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit. Care 15: 379–386, https://doi.org/10.1007/s12028-011-9553-4.Search in Google Scholar PubMed
Radolovich, D.K., Czosnyka, M., Timofeev, I., Lavinio, A., Hutchinson, P., Gupta, A., Pickard, J.D., and Smielewski, P. (2009). Reactivity of brain tissue oxygen to change in cerebral perfusion pressure in head injured patients. Neurocrit. Care 10: 274–279, https://doi.org/10.1007/s12028-009-9190-3.Search in Google Scholar PubMed
RangeL-Castilla, L., Gasco, J., Nauta, H.J.W., Okonkwo, D.O., and Robertson, C.S. (2008). Cerebral pressure autoregulation in traumatic brain injury. Neurosurg. Focus 25: E7, https://doi.org/10.3171/foc.2008.25.10.e7.Search in Google Scholar
Rapela, C.E. and Green, H.D. (1964). Autoregulation of canine cerebral blood flow. Circ. Res. 15: 205–212.Search in Google Scholar
Rasulo, F.A., Girardini, A., Lavinio, A., De Peri, E., Stefini, R., Cenzato, M., Nodari, I., and Latronico, N. (2012). Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J. Neurosurg Anesthesiol. 24: 3–8, https://doi.org/10.1097/ana.0b013e318224030a.Search in Google Scholar PubMed
Ratsep, T. and Asser, T. (2001). Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J. Neurosurg. 95: 393–401, https://doi.org/10.3171/jns.2001.95.3.0393.Search in Google Scholar PubMed
Reinhard, M., Neunhoeffer, F., Gerds, T.A., Niesen, W.D., Buttler, K.J., Timmer, J., Schmidt, B., Czosnyka, M., Weiller, C., and Hetzel, A. (2010). Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 36: 264–271, https://doi.org/10.1007/s00134-009-1698-7.Search in Google Scholar PubMed
Reinhard, M., Roth, M., Guschlbauer, B., Harloff, A., Timmer, J., Czosnyka, M., and Hetzel, A. (2005). Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke 36: 1684–1689, https://doi.org/10.1161/01.str.0000173183.36331.ee.Search in Google Scholar
Reinhard, M., Rutsch, S., Lambeck, J., Wihler, C., Czosnyka, M., Weiller, C., and Hetzel, A. (2012). Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol. Scand. 125: 156–162, https://doi.org/10.1111/j.1600-0404.2011.01515.x.Search in Google Scholar PubMed
Reinhard, M., Schwarzer, G., Briel, M., Altamura, C., Palazzo, P., King, A., Bornstein, N.M., Petersen, N., Motschall, E., Hetzel, A., et al.. (2014). Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology 83: 1424–1431, https://doi.org/10.1212/wnl.0000000000000888.Search in Google Scholar PubMed PubMed Central
Reinhard, M., Wihler, C., Roth, M., Harloff, A., Niesen, W.D., Timmer, J., Weiller, C., and Hetzel, A. (2008). Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis. Cerebrovasc. Dis. 26: 147–155, https://doi.org/10.1159/000139662.Search in Google Scholar PubMed
Riemann, L., Beqiri, E., Smielewski, P., Czosnyka, M., Stocchetti, N., Sakowitz, O., Zweckberger, K., Unterberg, A., Younsi, A., and Participants, C.-T.H.R.I.S.-S., and Investigators. (2020a). Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Crit. Care 24: 266, https://doi.org/10.1186/s13054-020-02974-8.Search in Google Scholar PubMed PubMed Central
Riemann, L., Beqiri, E., Younsi, A., Czosnyka, M., and Smielewski, P. (2020b). Predictive and discriminative power of pressure reactivity indices in traumatic brain injury. Neurosurgery 87: 655–663, https://doi.org/10.1093/neuros/nyaa039.Search in Google Scholar PubMed
Rivera-Lara, L., Geocadin, R., Zorrilla-Vaca, A., Healy, R., Radzik, B.R., Palmisano, C., White, M.A., Sha, D., Ponce-Mejia, L., Brown, C., et al.. (2020). Near-infrared spectroscopy-derived cerebral autoregulation indices independently predict clinical outcome in acutely ill comatose patients. J. Neurosurg. Anesthesiol. 32: 234–241, https://doi.org/10.1097/ana.0000000000000589.Search in Google Scholar PubMed PubMed Central
Rivera-Lara, L., Zorrilla-Vaca, A., Geocadin, R., Ziai, W., Healy, R., Thompson, R., Smielewski, P., Czosnyka, M., and Hogue, C.W. (2017a). Predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit. Care Med. 45: 695–704, https://doi.org/10.1097/ccm.0000000000002251.Search in Google Scholar
Rivera-Lara, L., Zorrilla-Vaca, A., Geocadin, R.G., Healy, R.J., Ziai, W., and Mirski, M.A. (2017b). Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology 126: 1187–1199, https://doi.org/10.1097/aln.0000000000001625.Search in Google Scholar PubMed
Rodan, L.H., Poublanc, J., Fisher, J.A., Sobczyk, O., Mikulis, D.J., and Tein, I. (2020). L-arginine effects on cerebrovascular reactivity, perfusion and neurovascular coupling in MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) syndrome. PLoS One 15: e0238224, https://doi.org/10.1371/journal.pone.0238224.Search in Google Scholar PubMed PubMed Central
Rodriguez, G., Nobili, F., Celestino, M.A., Francione, S., Gulli, G., Hassan, K., Marenco, S., Rosadini, G., and Cordera, R. (1993). Regional cerebral blood flow and cerebrovascular reactivity in IDDM. Diabetes Care 16: 462–468, https://doi.org/10.2337/diacare.16.2.462.Search in Google Scholar PubMed
Rogg, J., Rutigliano, M., Yonas, H., Johnson, D.W., Pentheny, S., and Latchaw, R.E. (1989). The acetazolamide challenge: imaging techniques designed to evaluate cerebral blood flow reserve. AJR Am. J. Roentgenol. 153: 605–612, https://doi.org/10.2214/ajr.153.3.605.Search in Google Scholar PubMed
Rosenthal, G., Hemphill, J.C. 3rd, Sorani, M., Martin, C., Morabito, D., Obrist, W.D., and Manley, G.T. (2008). Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury, Crit. Care Med., 36: 1917–1924, https://doi.org/10.1097/ccm.0b013e3181743d77.Search in Google Scholar
Rosenthal, G., Sanchez-Mejia, R.O., Phan, N., Hemphill, J.C. 3rd, Martin, C., and Manley, G.T. (2011). Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J. Neurosurg. 114: 62–70, https://doi.org/10.3171/2010.6.jns091360.Search in Google Scholar
Rozanek, M., Skola, J., Horakova, L., and Trukhan, V. (2022). Effect of artifacts upon the pressure reactivity index. Sci. Rep. 12: 15131, https://doi.org/10.1038/s41598-022-19101-y.Search in Google Scholar PubMed PubMed Central
Rynkowski, C.B., de Oliveira Manoel, A.L., Dos Reis, M.M., Puppo, C., Worm, P.V., Zambonin, D., and Bianchin, M.M. (2019). Early transcranial doppler evaluation of cerebral autoregulation independently predicts functional outcome after aneurysmal subarachnoid hemorrhage. Neurocrit. Care 31: 253–262, https://doi.org/10.1007/s12028-019-00732-5.Search in Google Scholar PubMed
Salinet, A.S., Silva, N.C., Caldas, J., de Azevedo, D.S., de-Lima-Oliveira, M., Nogueira, R.C., Conforto, A.B., Texeira, M.J., Robinson, T.G., Panerai, R.B., et al.. (2019). Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: influence of severity? J. Cereb. Blood Flow Metab. 39: 2277–2285, https://doi.org/10.1177/0271678x18794835.Search in Google Scholar PubMed PubMed Central
Sanchez-Porras, R., Ramirez-Cuapio, F.L., Hecht, N., Seule, M., Diaz-Peregrino, R., Unterberg, A., Woitzik, J., Dreier, J.P., Sakowitz, O.W., and Santos, E. (2023). Cerebrovascular pressure reactivity according to long-pressure reactivity index during spreading depolarizations in aneurysmal subarachnoid hemorrhage. Neurocrit. Care 39: 135–144, https://doi.org/10.1007/s12028-022-01669-y.Search in Google Scholar PubMed PubMed Central
Sanchez-Porras, R., Santos, E., Czosnyka, M., Zheng, Z., Unterberg, A.W., and Sakowitz, O.W. (2012). Long’ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir. 154: 1575–1581, https://doi.org/10.1007/s00701-012-1423-0.Search in Google Scholar PubMed
Santos, E., Diedler, J., Sykora, M., Orakcioglu, B., Kentar, M., Czosnyka, M., Unterberg, A., and Sakowitz, O.W. (2011). Low-frequency sampling for PRx calculation does not reduce prognostication and produces similar CPPopt in intracerebral haemorrhage patients. Acta Neurochir. 153: 2189–2195, https://doi.org/10.1007/s00701-011-1148-5.Search in Google Scholar PubMed
Santos, G.A., Petersen, N., Zamani, A.A., Du, R., LaRose, S., Monk, A., Sorond, F.A., and Tan, C.O. (2016). Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology 86: 1950–1956, https://doi.org/10.1212/wnl.0000000000002696.Search in Google Scholar PubMed PubMed Central
Sarrafzadeh, A.S., Kiening, K.L., Bardt, T.F., Schneider, G.H., Unterberg, A.W., and Lanksch, W.R. (1998). Cerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend. Acta Neurochir. Suppl. 71: 186–189, https://doi.org/10.1007/978-3-7091-6475-4_54.Search in Google Scholar PubMed
Schmidt, B., Lezaic, V., Weinhold, M., Plontke, R., Schwarze, J., and Klingelhofer, J. (2016). Is impaired autoregulation associated with mortality in patients with severe cerebral diseases? Acta Neurochir. Suppl. 122: 181–185, https://doi.org/10.1007/978-3-319-22533-3_37.Search in Google Scholar PubMed
Schroder, M.L. and Muizelaar, J.P. (1993). Monitoring of regional cerebral blood flow (CBF) in acute head injury by thermal diffusion. Acta Neurochir. Suppl. 59: 47–49, https://doi.org/10.1007/978-3-7091-9302-0_8.Search in Google Scholar PubMed
Schubert, G.A., Weinmann, C., Seiz, M., Gerigk, L., Weiss, C., Horn, P., and Thome, C. (2009). Cerebrovascular insufficiency as the criterion for revascularization procedures in selected patients: a correlation study of xenon contrast-enhanced CT and PWI. Neurosurg Rev. 32: 29–35; discussion 35-6, https://doi.org/10.1007/s10143-008-0159-z.Search in Google Scholar PubMed
Schweickert, W.D., Pohlman, M.C., Pohlman, A.S., Nigos, C., Pawlik, A.J., Esbrook, C.L., Spears, L., Miller, M., Franczyk, M., Deprizio, D., et al.. (2009). Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373: 1874–1882, https://doi.org/10.1016/s0140-6736(09)60658-9.Search in Google Scholar
Sfyroeras, G., Karkos, C.D., Liasidis, C., Spyridis, C., Dimitriadis, A.S., Kouskouras, K., and Gerassimidis, T.S. (2006). The impact of carotid stenting on the hemodynamic parameters and cerebrovascular reactivity of the ipsilateral middle cerebral artery. J. Vasc. Surg. 44: 1016–1022; discussion 22, https://doi.org/10.1016/j.jvs.2006.07.025.Search in Google Scholar PubMed
Sfyroeras, G.S., Karkos, C.D., Arsos, G., Liasidis, C., Dimitriadis, A.S., Papazoglou, K.O., and Gerassimidis, T.S. (2009). Cerebral hyperperfusion after carotid stenting: a transcranial Doppler and SPECT study. Vasc. Endovascu. Surg. 43: 150–156, https://doi.org/10.1177/1538574408324510.Search in Google Scholar PubMed
Shen, Y., Zhou, Y., Xiong, J., Xiao, K., Zhang, P., Liu, J., and Ren, L. (2022). Association between cerebral autoregulation and long-term outcome in patients with acute ischemic stroke. Neurologist 27: 319–323, https://doi.org/10.1097/nrl.0000000000000422.Search in Google Scholar
Silverman, A., Kodali, S., Strander, S., Gilmore, E.J., Kimmel, A., Wang, A., Cord, B., Falcone, G., Hebert, R., Matouk, C., et al.. (2019). Deviation from personalized blood pressure targets is associated with worse outcome after subarachnoid hemorrhage. Stroke 50: 2729–2737, https://doi.org/10.1161/strokeaha.119.026282.Search in Google Scholar
Silvestrini, M., Vernieri, F., Pasqualetti, P., Matteis, M., Passarelli, F., Troisi, E., and Caltagirone, C. (2000). Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA, J. Am. Med. Assoc. 283: 2122–2127, https://doi.org/10.1001/jama.283.16.2122.Search in Google Scholar PubMed
Skov, L., Pryds, O., and Greisen, G. (1991). Estimating cerebral blood flow in newborn infants: comparison of near infrared spectroscopy and 133Xe clearance. Pediatr. Res. 30: 570–573, https://doi.org/10.1203/00006450-199112000-00016.Search in Google Scholar PubMed
Smith, C.A., Rohlwink, U.K., Mauff, K., Thango, N.S., Hina, T.S., Salie, S., Enslin, J.M.N., and Figaji, A.A. (2023). Cerebrovascular pressure reactivity has a strong and independent association with outcome in children with severe traumatic brain injury. Crit. Care Med. 51: 573–583, https://doi.org/10.1097/ccm.0000000000005815.Search in Google Scholar
Sorrentino, E., Budohoski, K.P., Kasprowicz, M., Smielewski, P., Matta, B., Pickard, J.D., and Czosnyka, M. (2011). Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit. Care 14: 188–193, https://doi.org/10.1007/s12028-010-9492-5.Search in Google Scholar PubMed
Sorrentino, E., Diedler, J., Kasprowicz, M., Budohoski, K.P., Haubrich, C., Smielewski, P., Outtrim, J.G., Manktelow, A., Hutchinson, P.J., Pickard, J.D., et al.. (2012). Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocriti. Care 16: 258–266, https://doi.org/10.1007/s12028-011-9630-8.Search in Google Scholar PubMed
Sterzer, P., Meintzschel, F., Rosler, A., Lanfermann, H., Steinmetz, H., and Sitzer, M. (2001). Pravastatin improves cerebral vasomotor reactivity in patients with subcortical small-vessel disease. Stroke 32: 2817–2820, https://doi.org/10.1161/hs1201.099663.Search in Google Scholar PubMed
Strong, A.J., Fabricius, M., Boutelle, M.G., Hibbins, S.J., Hopwood, S.E., Jones, R., Parkin, M.C., and Lauritzen, M. (2002). Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33: 2738–2743, https://doi.org/10.1161/01.str.0000043073.69602.09.Search in Google Scholar PubMed
Sugimoto, K., Shirao, S., Koizumi, H., Inoue, T., Oka, F., Maruta, Y., Suehiro, E., Sadahiro, H., Oku, T., Yoneda, H., et al.. (2016). Continuous monitoring of spreading depolarization and cerebrovascular autoregulation after aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 25: e171–e177, https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.007.Search in Google Scholar PubMed
Svedung Wettervik, T., Hanell, A., Howells, T., Ronne Engstrom, E., Lewen, A., and Enblad, P. (2023). ICP, CPP, and PRx in traumatic brain injury and aneurysmal subarachnoid hemorrhage: association of insult intensity and duration with clinical outcome. J. Neurosurg. 138: 446–453, https://doi.org/10.3171/2022.5.jns22560.Search in Google Scholar PubMed
Svedung Wettervik, T., Howells, T., Lewen, A., Ronne-Engstrom, E., and Enblad, P. (2021). Temporal dynamics of ICP, CPP, PRx, and CPPopt in high-grade aneurysmal subarachnoid hemorrhage and the relation to clinical outcome. Neurocrit. Care 34: 390–402, https://doi.org/10.1007/s12028-020-01162-4.Search in Google Scholar PubMed PubMed Central
Symon, L., Branston, N.M., Strong, A.J., and Hope, T.D. (1977). The concepts of thresholds of ischaemia in relation to brain structure and function. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 11: 149–154, https://doi.org/10.1136/jcp.s3-11.1.149.Search in Google Scholar PubMed PubMed Central
Tackla, R., Hinzman, J.M., Foreman, B., Magner, M., Andaluz, N., and Hartings, J.A. (2015). Assessment of cerebrovascular autoregulation using regional cerebral blood flow in surgically managed brain trauma patients. Neurocrit. Care 23: 339–346, https://doi.org/10.1007/s12028-015-0146-5.Search in Google Scholar PubMed
Tanaka, A., Kimura, M., Nakayama, Y., Yoshinaga, S., and Tomonaga, M. (1997). Cerebral blood flow and autoregulation in normal pressure hydrocephalus. Neurosurgery 40: 1161–1165; discussion 65-7, https://doi.org/10.1097/00006123-199706000-00009.Search in Google Scholar PubMed
Tanaka, A., Yoshinaga, S., Nakayama, Y., and Tomonaga, M. (1998). Cerebral blood flow and the response to acetazolamide during the acute, subacute, and chronic stages of aneurysmal subarachnoid hemorrhage. Neurol. Med. Chir. 38: 623–630; discussion 30-2, https://doi.org/10.2176/nmc.38.623.Search in Google Scholar PubMed
Tarr, R.W., Johnson, D.W., Horton, J.A., Yonas, H., Pentheny, S., Durham, S., Jungreis, C.A., and Hecht, S.T. (1991). Impaired cerebral vasoreactivity after embolization of arteriovenous malformations: assessment with serial acetazolamide challenge xenon CT. AJNR Am. J. Neuroradiol. 12: 417–423.Search in Google Scholar
Tarr, R.W., Johnson, D.W., Rutigliano, M., Hecht, S.T., Pentheny, S., Jungreis, C.A., Horton, J.A., and Yonas, H. (1990). Use of acetazolamide-challenge xenon CT in the assessment of cerebral blood flow dynamics in patients with arteriovenous malformations. AJNR Am. J. Neuroradiol. 11: 441–448.Search in Google Scholar
Tas, J., Beqiri, E., van Kaam, R.C., Czosnyka, M., Donnelly, J., Haeren, R.H., van der Horst, I.C.C., Hutchinson, P.J., van Kuijk, S.M.J., Liberti, A.L., et al.. (2021). Targeting autoregulation-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial. J. Neurotrauma 38: 2790–2800, https://doi.org/10.1089/neu.2021.0197.Search in Google Scholar PubMed
Tenjin, H., Yamaki, T., Nakagawa, Y., Kuboyama, T., Ebisu, T., Kobori, N., Ueda, S., and Mizukawa, N. (1990). Impairment of CO2 reactivity in severe head injury patients: an investigation using thermal diffusion method. Acta Neurochir. 104: 121–125, https://doi.org/10.1007/bf01842829.Search in Google Scholar PubMed
ter Laan, M., van Dijk, J.M., Elting, J.W., Staal, M.J., and Absalom, A.R. (2013). Sympathetic regulation of cerebral blood flow in humans: a review. Br. J. Anaesth. 111: 361–367, https://doi.org/10.1093/bja/aet122.Search in Google Scholar PubMed
Thamjamrassri, T., Watanitanon, A., Moore, A., Chesnut, R.M., Vavilala, M.S., and Lele, A.V. (2022). A pilot prospective observational study of cerebral autoregulation and 12-month outcomes in children with complex mild traumatic brain injury: the argument for sufficiency conditions affecting TBI outcomes. J. Neurosurg Anesthesiol. 34: 384–391, https://doi.org/10.1097/ana.0000000000000775.Search in Google Scholar PubMed PubMed Central
Tian, F., Tarumi, T., Liu, H., Zhang, R., and Chalak, L. (2016). Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy. Neuroimage Clin. 11: 124–132, https://doi.org/10.1016/j.nicl.2016.01.020.Search in Google Scholar PubMed PubMed Central
Touho, H., Karasawa, J., Shishido, H., Morisako, T., Yamada, K., and Shibamoto, K. (1990). Hemodynamic evaluation in patients with superficial temporal artery-middle cerebral artery anastomosis--stable xenon CT-CBF study and acetazolamide. Neurol. Med. Chir. 30: 1003–1010, https://doi.org/10.2176/nmc.30.1003.Search in Google Scholar PubMed
Tran Dinh, Y.R., Lot, G., Benrabah, R., Baroudy, O., Cophignon, J., and Seylaz, J. (1993). Abnormal cerebral vasodilation in aneurysmal subarachnoid hemorrhage: use of serial 133Xe cerebral blood flow measurement plus acetazolamide to assess cerebral vasospasm. J. Neurosurg. 79: 490–493, https://doi.org/10.3171/jns.1993.79.4.0490.Search in Google Scholar PubMed
Troisi, E., Matteis, M., Silvestrini, M., Paolucci, S., Grasso, M.G., Pasqualetti, P., Vernieri, F., and Caltagirone, C. (2012). Altered cerebral vasoregulation predicts the outcome of patients with partial anterior circulation stroke. Eur. Neurol. 67: 200–205, https://doi.org/10.1159/000334851.Search in Google Scholar PubMed
Tseng, M.Y., Czosnyka, M., Richards, H., Pickard, J.D., and Kirkpatrick, P.J. (2005). Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke 36: 1627–1632, https://doi.org/10.1161/01.str.0000176743.67564.5d.Search in Google Scholar PubMed
Vajkoczy, P., Roth, H., Horn, P., Lucke, T., Thome, C., Hubner, U., Martin, G.T., Zappletal, C., Klar, E., Schilling, L., et al.. (2000). Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J. Neurosurg. 93: 265–274, https://doi.org/10.3171/jns.2000.93.2.0265.Search in Google Scholar PubMed
Van Roost, D., Schramm, J., Solymosi, L., and Hartmann, A. (1996). Presence and removal of arteriovenous malformation: impact of regional cerebral blood flow, as assessed with xenon/CT. Acta Neurol. Scand., Suppl. 166: 136–138, https://doi.org/10.1111/j.1600-0404.1996.tb00578.x.Search in Google Scholar PubMed
Vavilala, M.S., Lee, L.A., Boddu, K., Visco, E., Newell, D.W., Zimmerman, J.J., and Lam, A.M. (2004). Cerebral autoregulation in pediatric traumatic brain injury. Pediatr. Crit. Care Med. 5: 257–263, https://doi.org/10.1097/01.pcc.0000123545.69133.c3.Search in Google Scholar PubMed
Velle, F., Lewen, A., Howells, T., Hanell, A., Nilsson, P., and Enblad, P. (2023). Cerebral pressure autoregulation and optimal cerebral perfusion pressure during neurocritical care of children with traumatic brain injury. J. Neurosurg Pediatr. 31: 503–513, https://doi.org/10.3171/2023.1.PEDS22352.Search in Google Scholar PubMed
Vernieri, F., Pasqualetti, P., Passarelli, F., Rossini, P.M., and Silvestrini, M. (1999). Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke 30: 593–598, https://doi.org/10.1161/01.str.30.3.593.Search in Google Scholar PubMed
Vernieri, F., Silvestrini, M., Tibuzzi, F., Pasqualetti, P., Altamura, C., Passarelli, F., Matteis, M., and Rossini, P.M. (2006). Hemoglobin oxygen saturation as a marker of cerebral hemodynamics in carotid artery occlusion: an integrated transcranial doppler and near-infrared spectroscopy study. J. Neurol. 253: 1459–1465, https://doi.org/10.1007/s00415-006-0244-6.Search in Google Scholar PubMed
Vinall, P.E. and Simeone, F.A. (1981). Cerebral autoregulation: an in vitro study. Stroke 12: 640–642, https://doi.org/10.1161/01.str.12.5.640.Search in Google Scholar PubMed
von Bornstadt, D., Houben, T., Seidel, J.L., Zheng, Y., Dilekoz, E., Qin, T., Sandow, N., Kura, S., Eikermann-Haerter, K., Endres, M., et al.. (2015). Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations. Neuron 85: 1117–1131, https://doi.org/10.1016/j.neuron.2015.02.007.Search in Google Scholar PubMed PubMed Central
Vorstrup, S., Brun, B., and Lassen, N.A. (1986a). Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 17: 1291–1298, https://doi.org/10.1161/01.str.17.6.1291.Search in Google Scholar PubMed
Vorstrup, S., Paulson, O.B., and Lassen, N.A. (1986b). Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography. Acta Neurol. Scand. 74: 439–451, https://doi.org/10.1111/j.1600-0404.1986.tb07869.x.Search in Google Scholar PubMed
Webster, M.W., Makaroun, M.S., Steed, D.L., Smith, H.A., Johnson, D.W., and Yonas, H. (1995). Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J. Vasc. Surg. 21: 338–344; discussion 44-5, https://doi.org/10.1016/s0741-5214(95)70274-1.Search in Google Scholar PubMed
Yamashita, T., Kashiwagi, S., Nakano, S., Takasago, T., Abiko, S., Shiroyama, Y., Hayashi, M., and Ito, H. (1991). The effect of EC-IC bypass surgery on resting cerebral blood flow and cerebrovascular reserve capacity studied with stable XE-CT and acetazolamide test. Neuroradiology 33: 217–222, https://doi.org/10.1007/bf00588221.Search in Google Scholar
Yamashita, T., Nakano, S., Ishihara, H., Kitahara, T., Kashiwagi, S., Katoh, S., Takasago, T., Wakuta, Y., Abiko, S., and Ito, H. (1996). Surgical modulation of the natural course of collateral circulation in chronic ischemic patients. Acta Neurol. Scand., Suppl. 166: 74–78, https://doi.org/10.1111/j.1600-0404.1996.tb00554.x.Search in Google Scholar PubMed
Yamauchi, H., Okazawa, H., Kishibe, Y., Sugimoto, K., and Takahashi, M. (2004). Oxygen extraction fraction and acetazolamide reactivity in symptomatic carotid artery disease. J. Neurol., Neurosurg. Psychiatry 75: 33–37.Search in Google Scholar
Yonas, H., Gur, D., Good, B.C., Latchaw, R.E., Wolfson, S.K.Jr., Good, W.F., Maitz, G.S., Colsher, J.G., Barnes, J.E., Colliander, K.G., et al.. (1985). Stable xenon CT blood flow mapping for evaluation of patients with extracranial-intracranial bypass surgery. J. Neurosurg. 62: 324–333, https://doi.org/10.3171/jns.1985.62.3.0324.Search in Google Scholar PubMed
Yonas, H., Sekhar, L., Johnson, D.W., and Gur, D. (1989). Determination of irreversible ischemia by xenon-enhanced computed tomographic monitoring of cerebral blood flow in patients with symptomatic vasospasm. Neurosurgery 24: 368–372, https://doi.org/10.1227/00006123-198903000-00010.Search in Google Scholar PubMed
Yonas, H., Smith, H.A., Durham, S.R., Pentheny, S.L., and Johnson, D.W. (1993). Increased stroke risk predicted by compromised cerebral blood flow reactivity. J. Neurosurg. 79: 483–489, https://doi.org/10.3171/jns.1993.79.4.0483.Search in Google Scholar PubMed
Yoon, S., Zuccarello, M., and Rapoport, R.M. (2012). pCO(2) and pH regulation of cerebral blood flow. Front. Physiol. 3: 365, https://doi.org/10.3389/fphys.2012.00365.Search in Google Scholar PubMed PubMed Central
Yoshida, K., Nakamura, S., Watanabe, H., and Kinoshita, K. (1996). Early cerebral blood flow and vascular reactivity to acetazolamide in predicting the outcome after ruptured cerebral aneurysm. Acta Neurol. Scand., Suppl. 166: 131–134, https://doi.org/10.1111/j.1600-0404.1996.tb00576.x.Search in Google Scholar PubMed
Zaharchuk, G., Do, H.M., Marks, M.P., Rosenberg, J., Moseley, M.E., and Steinberg, G.K. (2011). Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke 42: 2485–2491, https://doi.org/10.1161/strokeaha.111.616466.Search in Google Scholar PubMed PubMed Central
Zeiler, F.A., Cardim, D., Donnelly, J., Menon, D.K., Czosnyka, M., and Smielewski, P. (2018a). Transcranial Doppler systolic flow index and ICP-derived cerebrovascular reactivity indices in traumatic brain injury. J. Neurotrauma 35: 314–322, https://doi.org/10.1089/neu.2017.5364.Search in Google Scholar PubMed
Zeiler, F.A., Czosnyka, M., and Smielewski, P. (2018b). Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology. Acta Neurochir. 160: 2149–2157, https://doi.org/10.1007/s00701-018-3687-5.Search in Google Scholar PubMed PubMed Central
Zeiler, F.A., Donnelly, J., Calviello, L., Smielewski, P., Menon, D.K., and Czosnyka, M. (2017a). Pressure autoregulation measurement techniques in adult traumatic brain injury, Part II: a scoping review of continuous methods. J. Neurotrauma 34: 3224–3237, https://doi.org/10.1089/neu.2017.5086.Search in Google Scholar PubMed
Zeiler, F.A., Donnelly, J., Cardim, D., Menon, D.K., Smielewski, P., and Czosnyka, M. (2018c). ICP versus laser Doppler cerebrovascular reactivity indices to assess brain autoregulatory capacity. Neurocrit. Care 28: 194–202, https://doi.org/10.1007/s12028-017-0472-x.Search in Google Scholar PubMed PubMed Central
Zeiler, F.A., Donnelly, J., Menon, D.K., Smielewski, P., Zweifel, C., Brady, K., and Czosnyka, M. (2017b). Continuous autoregulatory indices derived from multi-modal monitoring: each one is not like the other. J. Neurotrauma 34: 3070–3080, https://doi.org/10.1089/neu.2017.5129.Search in Google Scholar PubMed
Zeiler, F.A., Donnelly, J., Smielewski, P., Menon, D.K., Hutchinson, P.J., and Czosnyka, M. (2018d). Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J. Neurotrauma 35: 1107–1115, https://doi.org/10.1089/neu.2017.5472.Search in Google Scholar PubMed
Zeiler, F.A., Ercole, A., Cabeleira, M., Carbonara, M., Stocchetti, N., Menon, D.K., Smielewski, P., Czosnyka, M., Anke, A., Beer, R., et al.. (2019a). Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a collaborative European NeuroTrauma effectiveness research in traumatic brain injury (CENTER-TBI) study. J. Neurotrauma 36: 1505–1517, https://doi.org/10.1089/neu.2018.6182.Search in Google Scholar PubMed
Zeiler, F.A., Ercole, A., Cabeleira, M., Zoerle, T., Stocchetti, N., Menon, D.K., Smielewski, P., Czosnyka, M., and Participants, C.-T.H.R.S.-S., and Investigators (2019b). Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study. Acta Neurochir. 161: 1217–1227, https://doi.org/10.1007/s00701-019-03844-1.Search in Google Scholar PubMed PubMed Central
Zhang, Y., Tan, J., Li, P., Zhang, X., Yang, Y., Liu, Y., Fu, Q., Cao, J., Mi, W., Zhang, H., et al.. (2021). The perioperative application of continuous cerebral autoregulation monitoring for cerebral protection in elderly patients. Ann. Palliat Med. 10: 4582–4592, https://doi.org/10.21037/apm-21-707.Search in Google Scholar PubMed
Zhou, Y., Rodgers, Z.B., and Kuo, A.H. (2015). Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn. Reson. Imaging 33: 566–576, https://doi.org/10.1016/j.mri.2015.02.018.Search in Google Scholar PubMed PubMed Central
Zipfel, J., Hegele, D., Hockel, K., Kerscher, S.R., Heimberg, E., Czosnyka, M., Neunhoeffer, F., and Schuhmann, M.U. (2022). Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv. Syst. 38: 1717–1726, https://doi.org/10.1007/s00381-022-05579-4.Search in Google Scholar PubMed PubMed Central
Zipfel, J., Hockel, K.L., Gerbig, I., Heimberg, E., Schuhmann, M.U., and Neunhoeffer, F. (2021). Impaired autoregulation following resuscitation correlates with outcome in pediatric patients: a pilot study. Acta Neurochir. Suppl. 131: 97–101, https://doi.org/10.1007/978-3-030-59436-7_21.Search in Google Scholar PubMed
Zweifel, C., Castellani, G., Czosnyka, M., Helmy, A., Manktelow, A., Carrera, E., Brady, K.M., Hutchinson, P.J., Menon, D.K., Pickard, J.D., et al.. (2010a). Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J. Neurotrauma 27: 1951–1958, https://doi.org/10.1089/neu.2010.1388.Search in Google Scholar PubMed
Zweifel, C., Czosnyka, M., Lavinio, A., Castellani, G., Kim, D.J., Carrera, E., Pickard, J.D., Kirkpatrick, P.J., and Smielewski, P. (2010b). A comparison study of cerebral autoregulation assessed with transcranial doppler and cortical laser doppler flowmetry. Neurol. Res. 32: 425–428, https://doi.org/10.1179/174313209x459165.Search in Google Scholar PubMed
Zweifel, C., Lavinio, A., Steiner, L.A., Radolovich, D., Smielewski, P., Timofeev, I., Hiler, M., Balestreri, M., Kirkpatrick, P.J., Pickard, J.D., et al.. (2008). Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg. Focus 25: E2, https://doi.org/10.3171/foc.2008.25.10.e2.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework
- A systematic review and meta-analysis of the preclinical and clinical results of low-field magnetic stimulation in cognitive disorders
- Research advancements on nerve guide conduits for nerve injury repair
- From nasal respiration to brain dynamic
- Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia
- Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence
- Functional alterations in overweight/obesity: focusing on the reward and executive control network
Articles in the same Issue
- Frontmatter
- The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework
- A systematic review and meta-analysis of the preclinical and clinical results of low-field magnetic stimulation in cognitive disorders
- Research advancements on nerve guide conduits for nerve injury repair
- From nasal respiration to brain dynamic
- Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia
- Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence
- Functional alterations in overweight/obesity: focusing on the reward and executive control network