Startseite The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases

  • Jia-zhe Lin , Ming-rui Duan , Nuan Lin und Wei-jiang Zhao EMAIL logo
Veröffentlicht/Copyright: 1. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Chondroitin sulfate (CS) is a kind of linear polysaccharide that is covalently linked to proteins to form proteoglycans. Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein, with one or more CS chains covalently attached. CSPGs are precisely regulated and they exert a variety of physiological functions by binding to adhesion molecules and growth factors. Widely distributed in the nervous system in human body, CSPGs contribute to the major component of extracellular matrix (ECM), where they play an important role in the development and maturation of the nervous system, as well as in the pathophysiological response to damage to the central nervous system (CNS). While there are more than 30 types of CSPGs, this review covers the roles of the most important ones, including versican, aggrecan, neurocan and NG2 in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. The updated reports of the treatment of neurodegenerative diseases are involving CSPGs.


Corresponding author: Wei-jiang Zhao, Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China; and Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China, E-mail:
Jia-zhe Lin, Ming-rui Duan, and Nuan Lin contributed equally to this work.

Award Identifier / Grant number: 8117113881471279

Funding source: Jiangnan University

Award Identifier / Grant number: 1285081903200020

Award Identifier / Grant number: 1286010242190060

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National Natural Science Foundation of China (81471279 and 81171138 to W.Z.). Research start-up fund of Jiangnan University (1285081903200020 to W.Z.) and research start-up fund of Wuxi School of Medicine, Jiangnan University (1286010242190060 to W.Z.).

  3. Conflict of interest statement: Jia-zhe Lin, Ming-rui Duan, Nuan Lin and Wei-jiang Zhao declare no conflict of interest.

References

Ajmo, J.M., Bailey, L.A., Howell, M.D., Cortez, L.K., Pennypacker, K.R., Mehta, H.N., Morgan, D., Gordon, M.N., and Gottschall, P.E. (2010). Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J. Neurochem. 113: 784–795. https://doi.org/10.1111/j.1471-4159.2010.06647.x.Suche in Google Scholar

Akiyama, H., Tooyama, I., Kawamata, T., Ikeda, K., and McGeer, P.L. (1993). Morphological diversities of CD44 positive astrocytes in the cerebral cortex of normal subjects and patients with Alzheimer’s disease. Brain Res. 632: 249–259. https://doi.org/10.1016/0006-8993(93)91160-t.Suche in Google Scholar

Antonell, A., Tort-Merino, A., Ríos, J., Balasa, M., Borrego-Écija, S., Auge, J.M., Muñoz-García, C., Bosch, B., Falgàs, N., Rami, L., et al.. (2020). Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement. 16: 262–272. https://doi.org/10.1016/j.jalz.2019.09.001.Suche in Google Scholar

Asher, R.A., Morgenstern, D.A., Fidler, P.S., Adcock, K.H., Oohira, A., Braistead, J.E., Levine, J.M., Margolis, R.U., Rogers, J.H., and Fawcett, J.W. (2000). Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20: 2427–2438. https://doi.org/10.1523/jneurosci.20-07-02427.2000.Suche in Google Scholar

Bai, L., Hecker, J., Kerstetter, A., and Miller, R.H. (2013). Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci. Bull. 29: 239–250. https://doi.org/10.1007/s12264-013-1312-4.Suche in Google Scholar

Bartus, K., James, N.D., Bosch, K.D., and Bradbury, E.J. (2012). Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp. Neurol. 235: 5–17. https://doi.org/10.1016/j.expneurol.2011.08.008.Suche in Google Scholar

Bekku, Y., Saito, M., Moser, M., Fuchigami, M., Maehara, A., Nakayama, M., Kusachi, S., Ninomiya, Y., and Oohashi, T. (2012). Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J. Comp. Neurol. 520: 1721–1736. https://doi.org/10.1002/cne.23009.Suche in Google Scholar

Bignami, A. and Asher, R. (1992). Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int. J. Dev. Neurosci. 10: 45–57. https://doi.org/10.1016/0736-5748(92)90006-l.Suche in Google Scholar

Bignami, A. and Dahl, D. (1986). Brain-specific hyaluronate-binding protein. A product of white matter astrocytes?. J. Neurocytol. 15: 671–679. https://doi.org/10.1007/bf01611865.Suche in Google Scholar

Binamé, F., Sakry, D., Dimou, L., Jolivel, V., and Trotter, J. (2013). NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J. Neurosci. 33: 10858–10874. https://doi.org/10.1523/jneurosci.5010-12.2013.Suche in Google Scholar PubMed PubMed Central

Bouvier-Labit, C., Liprandi, A., Monti, G., Pellissier, J.F., and Figarella-Branger, D. (2002). CD44H is expressed by cells of the oligodendrocyte lineage and by oligodendrogliomas in humans. J. Neurooncol. 60: 127–134. https://doi.org/10.1023/a:1020630732625.10.1023/A:1020630732625Suche in Google Scholar

Brückner, G., Brauer, K., Härtig, W., Wolff, J.R., Rickmann, M.J., Derouiche, A., Delpech, B., Girard, N., Oertel, W.H., and Reichenbach, A. (1993). Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8: 183–200. https://doi.org/10.1002/glia.440080306.Suche in Google Scholar PubMed

Brückner, G., Morawski, M., and Arendt, T. (2008). Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit. Neuroscience 151: 489–504. https://doi.org/10.1016/j.neuroscience.2007.10.033.Suche in Google Scholar PubMed

Brinkmalm, G., Sjödin, S., Simonsen, A.H., Hasselbalch, S.G., Zetterberg, H., Brinkmalm, A., and Blennow, K. (2018). A parallel reaction monitoring mass spectrometric method for analysis of potential CSF biomarkers for Alzheimer’s disease. Proteomics Clin. Appl. 12. https://doi.org/10.1002/prca.201700131.Suche in Google Scholar PubMed

Broadley, S.A., Barnett, M.H., Boggild, M., Brew, B.J., Butzkueven, H., Heard, R., Hodgkinson, S., Kermode, A.G., Lechner-Scott, J., Macdonell, R.A.L., et al.. (2014). Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: an Australian and New Zealand perspective: part 2 new and emerging therapies and their efficacy. MS Neurology Group of the Australian and New Zealand Association of Neurologists. J. Clin. Neurosci. 21: 1847–1856. https://doi.org/10.1016/j.jocn.2014.01.018.Suche in Google Scholar PubMed

Busch, S.A. and Silver, J. (2007). The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 17: 120–127. https://doi.org/10.1016/j.conb.2006.09.004.Suche in Google Scholar PubMed

Butt, A.M., De La Rocha, I.C., and Rivera, A. (2019). Oligodendroglial cells in Alzheimer’s disease. Adv. Exp. Med. Biol. 1175: 325–333. https://doi.org/10.1007/978-981-13-9913-8_12.Suche in Google Scholar PubMed

Carulli, D., Rhodes, K.E., and Fawcett, J.W. (2007). Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J. Comp. Neurol. 501: 83–94. https://doi.org/10.1002/cne.21231.Suche in Google Scholar PubMed

Chang, A., Nishiyama, A., Peterson, J., Prineas, J., and Trapp, B.D. (2000). NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20: 6404–6412. https://doi.org/10.1523/jneurosci.20-17-06404.2000.Suche in Google Scholar

Cipriani, R., Chara, J.C., Rodríguez-Antigüedad, A., and Matute, C. (2017). Effects of FTY720 on brain neurogenic niches in vitro and after kainic acid-induced injury. J. Neuroinflamm. 14: 147. https://doi.org/10.1186/s12974-017-0922-6.Suche in Google Scholar PubMed PubMed Central

De Wit, J., De Winter, F., Klooster, J., and Verhaagen, J. (2005). Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol. Cell. Neurosci. 29: 40–55. https://doi.org/10.1016/j.mcn.2004.12.009.Suche in Google Scholar

Deepa, S.S., Carulli, D., Galtrey, C., Rhodes, K., Fukuda, J., Mikami, T., Sugahara, K., and Fawcett, J.W. (2006). Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 281: 17789–17800. https://doi.org/10.1074/jbc.m600544200.Suche in Google Scholar

DeWitt, D.A., Richey, P.L., Praprotnik, D., Silver, J., and Perry, G. (1994). Chondroitin sulfate proteoglycans are a common component of neuronal inclusions and astrocytic reaction in neurodegenerative diseases. Brain Res. 656: 205–209. https://doi.org/10.1016/0006-8993(94)91386-2.Suche in Google Scholar

DeWitt, D.A., Silver, J., Canning, D.R., and Perry, G. (1993). Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer’s disease. Exp. Neurol. 121: 149–152.10.1006/exnr.1993.1081Suche in Google Scholar PubMed

Dickson, D.W., Feany, M.B., Yen, S.H., Mattiace, L.A., and Davies, P. (1996). Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick’s disease, and corticobasal degeneration. J. Neural Transm. 47(Suppl): 31–46.10.1007/978-3-7091-6892-9_2Suche in Google Scholar PubMed

Doege, K., Sasaki, M., and Yamada, Y. (1990). Rat and human cartilage proteoglycan (aggrecan) gene structure. Biochem. Soc. Trans. 18: 200–202.10.1042/bst0180200Suche in Google Scholar PubMed

Domowicz, M.S., Pirok, E.W.3rd, Novak, T.E., and Schwartz, N.B. (2000). Role of the C-terminal G3 domain in sorting and secretion of aggrecan core protein and ubiquitin-mediated degradation of accumulated mutant precursors. J. Biol. Chem. 275: 35098–35105.10.1074/jbc.275.45.35098Suche in Google Scholar PubMed

Dong, Y.X., Zhang, H.Y., Li, H.Y., Liu, P.H., Sui, Y., and Sun, X.H. (2018). Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen. Res. 13: 908–914.10.4103/1673-5374.232486Suche in Google Scholar PubMed PubMed Central

Dzwonek, J. and Wilczynski, G.M. (2015). CD44: molecular interactions, signaling and functions in the nervous system. Front. Cell. Neurosci. 9: 175.10.3389/fncel.2015.00175Suche in Google Scholar PubMed PubMed Central

Eibl, R.H., Pietsch, T., Moll, J., Skroch-Angel, P., Heider, K.H., von Ammon, K., Wiestler, O.D., Ponta, H., Kleihues, P., and Herrlich, P. (1995). Expression of variant CD44 epitopes in human astrocytic brain tumors. J. Neurooncol. 26: 165–170.10.1007/BF01052619Suche in Google Scholar PubMed

Fagone, P., Mazzon, E., Cavalli, E., Bramanti, A., Petralia, M.C., Mangano, K., Al-Abed, Y., Bramati, P., and Nicoletti, F. (2018). Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. J. Neuroimmunol. 322: 46–56.10.1016/j.jneuroim.2018.06.009Suche in Google Scholar PubMed

Favuzzi, E., Marques-Smith, A., Deogracias, R., Winterflood, C.M., Sánchez-Aguilera, A., Mantoan, L., Maeso, P., Fernandes, C., Ewers, H., and Rico, B. (2017). Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron 95: 639–655, e610.10.1016/j.neuron.2017.06.028Suche in Google Scholar PubMed

Feany, M.B. and Dickson, D.W. (1995). Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am. J. Pathol. 146: 1388–1396.Suche in Google Scholar

Ferrer, I. and Andrés-Benito, P. (2020). White matter alterations in Alzheimer’s disease without concomitant pathologies. Neuropathol. Appl. Neurobiol. https://doi.org/10.1111/nan.12618.Suche in Google Scholar PubMed PubMed Central

Filipi, T., Hermanova, Z., Tureckova, J., Vanatko, O., Anderova, and Miroslava (2020). Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J. Clin. Med. 9: 261. https://doi.org/10.3390/jcm9010261.Suche in Google Scholar PubMed PubMed Central

Fogelstrand, P. and Borén, J. (2016). Catch and release: NG2-coated vascular smooth muscle cells capture lipoproteins for macrophages. Arterioscler. Thromb. Vasc. Biol. 36: 7–8.10.1161/ATVBAHA.115.306798Suche in Google Scholar PubMed

Fontanil, T., Mohamedi, Y., Moncada-Pazos, A., Cobo, T., Vega, J.A., Cobo, J.L., García-Suárez, O., Cobo, J., Obaya, Á.J., and Cal, S. (2019). Neurocan is a new substrate for the ADAMTS12 metalloprotease: potential implications in neuropathies. Cell. Physiol. Biochem. 52: 1003–1016.10.33594/000000069Suche in Google Scholar PubMed

Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., et al.. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344: 710–719.10.1056/NEJM200103083441002Suche in Google Scholar PubMed

Friedlander, D.R., Milev, P., Karthikeyan, L., Margolis, R.K., Margolis, R.U., and Grumet, M. (1994). The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J. Cell Biol. 125: 669–680.10.1083/jcb.125.3.669Suche in Google Scholar PubMed PubMed Central

Frischknecht, R. and Seidenbecher, C.I. (2012). Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int. J. Biochem. Cell Biol. 44: 1051–1054.10.1016/j.biocel.2012.03.022Suche in Google Scholar PubMed

Fujimoto, T., Kawashima, H., Tanaka, T., Hirose, M., Toyama-Sorimachi, N., Matsuzawa, Y., and Miyasaka, M. (2001). CD44 binds a chondroitin sulfate proteoglycan, aggrecan. Int. Immunol. 13: 359–366.10.1093/intimm/13.3.359Suche in Google Scholar PubMed

Galtrey, C.M. and Fawcett, J.W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54: 1–18.10.1016/j.brainresrev.2006.09.006Suche in Google Scholar PubMed

Ghazi-Visser, L., Laman, J.D., Nagel, S., van Meurs, M., van Riel, D., Tzankov, A., Frank, S., Adams, H., Wolk, K., Terracciano, L., et al.. (2013). CD44 variant isoforms control experimental autoimmune encephalomyelitis by affecting the lifespan of the pathogenic T cells. FASEB J. 27: 3683–3701.10.1096/fj.13-228809Suche in Google Scholar PubMed

Giamanco, K.A., Morawski, M., and Matthews, R.T. (2010). Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170: 1314–1327.10.1016/j.neuroscience.2010.08.032Suche in Google Scholar PubMed

Giger, R.J., Hollis, E.R.2nd, and Tuszynski, M.H. (2010). Guidance molecules in axon regeneration. Cold Spring Harb. Perspect. Biol. 2: a001867.10.1101/cshperspect.a001867Suche in Google Scholar PubMed PubMed Central

Girgrah, N., Letarte, M., Becker, L.E., Cruz, T.F., Theriault, E., and Moscarello, M.A. (1991). Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J. Neuropathol. Exp. Neurol. 50: 779–792.10.1097/00005072-199111000-00009Suche in Google Scholar PubMed

Goldschmidt, T., Antel, J., König, F.B., Brück, W., and Kuhlmann, T. (2009). Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72: 1914–1921.10.1212/WNL.0b013e3181a8260aSuche in Google Scholar PubMed

Gu, W.L., Fu, S.L., Wang, Y.X., Li, Y., Wang, X.F., Xu, X.M., and Lu, P.H. (2007). Expression and regulation of versican in neural precursor cells and their lineages. Acta Pharmacol. Sin. 28: 1519–1530.10.1111/j.1745-7254.2007.00659.xSuche in Google Scholar PubMed

Höök, M., Kjellén, L., and Johansson, S. (1984). Cell-surface glycosaminoglycans. Annu. Rev. Biochem. 53: 847–869.10.1146/annurev.bi.53.070184.004215Suche in Google Scholar PubMed

Härtig, W., Appel, S., Suttkus, A., Grosche, J., and Michalski, D. (2016). Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke. Neuroscience 337: 66–87.10.1016/j.neuroscience.2016.09.004Suche in Google Scholar PubMed

Harlow, D.E. and Macklin, W.B. (2014). Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp. Neurol. 251: 39–46.10.1016/j.expneurol.2013.10.017Suche in Google Scholar PubMed PubMed Central

He, Q., Lesley, J., Hyman, R., Ishihara, K., and Kincade, P.W. (1992). Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J. Cell Biol. 119: 1711–1719.10.1083/jcb.119.6.1711Suche in Google Scholar PubMed PubMed Central

Heinrich, C., Bergami, M., Gascón, S., Lepier, A., Viganò, F., Dimou, L., Sutor, B., Berninger, B., and Götz, M. (2014). Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 3: 1000–1014.10.1016/j.stemcr.2014.10.007Suche in Google Scholar PubMed PubMed Central

Hsu, S.C., Nadesan, P., Puviindran, V., Stallcup, W.B., Kirsch, D.G., and Alman, B.A. (2018). Effects of chondroitin sulfate proteoglycan 4 (NG2/CSPG4) on soft-tissue sarcoma growth depend on tumor developmental stage. J. Biol. Chem. 293: 2466–2475.10.1074/jbc.M117.805051Suche in Google Scholar PubMed PubMed Central

Hu, B., Kong, L.L., Matthews, R.T., and Viapiano, M.S. (2008). The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J. Biol. Chem. 283: 24848–24859.10.1074/jbc.M801433200Suche in Google Scholar PubMed PubMed Central

Ilieva, K.M., Cheung, A., Mele, S., Chiaruttini, G., Crescioli, S., Griffin, M., Nakamura, M., Spicer, J.F., Tsoka, S., Lacy, K.E., et al.. (2017). Chondroitin sulfate proteoglycan 4 and its potential as an antibody immunotherapy target across different tumor types. Front. Immunol. 8: 1911.10.3389/fimmu.2017.01911Suche in Google Scholar PubMed PubMed Central

John, N., Krügel, H., Frischknecht, R., Smalla, K.H., Schultz, C., Kreutz, M.R., Gundelfinger, E.D., and Seidenbecher, C.I. (2006). Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol. Cell. Neurosci. 31: 774–784.10.1016/j.mcn.2006.01.011Suche in Google Scholar PubMed

Jonesco, D.S., Karsdal, M.A., and Henriksen, K. (2020). The CNS-specific proteoglycan, brevican, and its ADAMTS4-cleaved fragment show differential serological levels in Alzheimer’s disease, other types of dementia and non-demented controls: a cross-sectional study. PLoS One 15: e0234632.10.1371/journal.pone.0234632Suche in Google Scholar PubMed PubMed Central

Kang, S.H., Li, Y., Fukaya, M., Lorenzini, I., Cleveland, D.W., Ostrow, L.W., Rothstein, J.D., and Bergles, D.E. (2013). Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16: 571–579.10.1038/nn.3357Suche in Google Scholar PubMed PubMed Central

Kauhausen, J.A., Thompson, L.H., and Parish, C.L. (2015). Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice. Mol. Cell. Neurosci. 69: 22–29.10.1016/j.mcn.2015.10.002Suche in Google Scholar PubMed

Kawashima, H., Atarashi, K., Hirose, M., Hirose, J., Yamada, S., Sugahara, K., and Miyasaka, M. (2002). Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J. Biol. Chem. 277: 12921–12930.10.1074/jbc.M200396200Suche in Google Scholar PubMed

Kawashima, H., Hirose, M., Hirose, J., Nagakubo, D., Plaas, A.H., and Miyasaka, M. (2000). Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 275: 35448–35456.10.1074/jbc.M003387200Suche in Google Scholar PubMed

Keough, M.B., Rogers, J.A., Zhang, P., Jensen, S.K., Stephenson, E.L., Chen, T., Hurlbert, M.G., Lau, L.W., Rawji, K.S., and Plemel, J.R., et al. (2016). An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat. Commun. 7: 11312.10.1038/ncomms11312Suche in Google Scholar PubMed PubMed Central

Khairallah, M.I., Kassem, L.A., Yassin, N.A., Gamal el Din, M.A., Zekri, M., and Attia, M. (2016). Activation of migration of endogenous stem cells by erythropoietin as potential rescue for neurodegenerative diseases. Brain Res. Bull. 121: 148–157.10.1016/j.brainresbull.2016.01.007Suche in Google Scholar PubMed

Kiani, C., Chen, L., Wu, Y.J., Yee, A.J., and Yang, B.B. (2002). Structure and function of aggrecan. Cell Res. 12: 19–32.10.1038/sj.cr.7290106Suche in Google Scholar PubMed

Kiani, C., Lee, V., Cao, L., Chen, L., Wu, Y., Zhang, Y., Adams, M.E., and Yang, B.B. (2001). Roles of aggrecan domains in biosynthesis, modification by glycosaminoglycans and product secretion. Biochem. J. 354: 199–207.10.1042/bj3540199Suche in Google Scholar

Kobayashi, T., Kakizaki, I., and Nakamura, T. (2019). Proteoglycan-substrate gel zymography for the detection of chondroitin sulfate-degrading enzymes. Anal. Biochem. 568: 51–52.10.1016/j.ab.2018.12.010Suche in Google Scholar PubMed

Kochlamazashvili, G., Henneberger, C., Bukalo, O., Dvoretskova, E., Senkov, O., Lievens, P.M., Westenbroek, R., Engel, A.K., Catterall, W.A., Rusakov, D.A., et al.. (2010). The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67: 116–128.10.1016/j.neuron.2010.05.030Suche in Google Scholar PubMed PubMed Central

Kopec, B.M., Zhao, L., Rosa-Molinar, E., and Siahaan, T.J. (2020). Non-invasive brain delivery and efficacy of BDNF in APP/PS1 transgenic mice as a model of Alzheimer’s disease. Med. Res. Arch. 8. https://doi.org/10.18103/mra.v8i2.2043.Suche in Google Scholar PubMed PubMed Central

Kretner, B., Fukumori, A., Kuhn, P.H., Pérez-Revuelta, B.I., Lichtenthaler, S.F., Haass, C., and Steiner, H. (2013). Important functional role of residue x of the presenilin GxGD protease active site motif for APP substrate cleavage specificity and substrate selectivity of γ-secretase. J. Neurochem. 125: 144–156.10.1111/jnc.12124Suche in Google Scholar PubMed

Kucharova, K., Chang, Y., Boor, A., Yong, V.W., and Stallcup, W.B. (2011). Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. J. Neuroinflamm. 8: 158.10.1186/1742-2094-8-158Suche in Google Scholar PubMed PubMed Central

Kurazono, S., Okamoto, M., Sakiyama, J., Mori, S., Nakata, Y., Fukuoka, J., Amano, S., Oohira, A., and Matsui, H. (2001). Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara’s epileptic rats. Brain Res. 898: 36–48.10.1016/S0006-8993(01)02128-XSuche in Google Scholar

Lammich, S., Okochi, M., Takeda, M., Kaether, C., Capell, A., Zimmer, A.K., Edbauer, D., Walter, J., Steiner, H., and Haass, C. (2002). Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J. Biol. Chem. 277: 44754–44759.10.1074/jbc.M206872200Suche in Google Scholar PubMed

Lau, L.W., Cua, R., Keough, M.B., Haylock-Jacobs, S., and Yong, V.W. (2013). Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14: 722–729.10.1038/nrn3550Suche in Google Scholar PubMed

Lendvai, D., Morawski, M., Négyessy, L., Gáti, G., Jäger, C., Baksa, G., Glasz, T., Attems, J., Tanila, H., Arendt, T., et al.. (2013). Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol. 125: 215–229.10.1007/s00401-012-1042-0Suche in Google Scholar PubMed PubMed Central

Leoni, G., Rattray, M., Fulton, D., Rivera, A., and Butt, A.M. (2014). Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan. J. Anat. 224: 216–227.10.1111/joa.12141Suche in Google Scholar

Li, F., Liu, W.C., Wang, Q., Sun, Y., Wang, H., and Jin, X. (2020). NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochem. Pharmacol. 171: 113720.10.1016/j.bcp.2019.113720Suche in Google Scholar PubMed

Li, W., Tang, Y., Fan, Z., Meng, Y., Yang, G., Luo, J., and Ke, Z.J. (2013). Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol. Neurodegener. 8: 27.10.1186/1750-1326-8-27Suche in Google Scholar PubMed PubMed Central

Li, Y., Li, Z.X., Jin, T., Wang, Z.Y., and Zhao, P. (2017). Tau pathology promotes the reorganization of the extracellular matrix and inhibits the formation of perineuronal nets by regulating the expression and the distribution of hyaluronic acid synthases. J. Alzheimers Dis. 57: 395–409.10.3233/JAD-160804Suche in Google Scholar PubMed PubMed Central

Matthews, R.T., Kelly, G.M., Zerillo, C.A., Gray, G., Tiemeyer, M., and Hockfield, S. (2002). Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 22: 7536–7547.10.1523/JNEUROSCI.22-17-07536.2002Suche in Google Scholar

McKillop, W.M., Dragan, M., Schedl, A., and Brown, A. (2013). Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 61: 164–177.10.1002/glia.22424Suche in Google Scholar PubMed PubMed Central

McRae, P.A., Rocco, M.M., Kelly, G., Brumberg, J.C., and Matthews, R.T. (2007). Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J. Neurosci. 27: 5405–5413.10.1523/JNEUROSCI.5425-06.2007Suche in Google Scholar PubMed PubMed Central

Miguel, R.F., Pollak, A., and Lubec, G. (2005). Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer’s and Pick’s disease. Brain Res. Mol. Brain Res. 133: 1–5.10.1016/j.molbrainres.2004.09.008Suche in Google Scholar PubMed

Mizuno, H., Warita, H., Aoki, M., and Itoyama, Y. (2008). Accumulation of chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons in amyotrophic lateral sclerosis transgenic rats. J. Neurosci. Res. 86: 2512–2523.10.1002/jnr.21702Suche in Google Scholar PubMed

Mohan, H., Krumbholz, M., Sharma, R., Eisele, S., Junker, A., Sixt, M., Newcombe, J., Wekerle, H., Hohlfeld, R., Lassmann, H., et al.. (2010). Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 20: 966–975.10.1111/j.1750-3639.2010.00399.xSuche in Google Scholar PubMed PubMed Central

Mohan, V., Wyatt, E.V., Gotthard, I., Phend, K.D., Diestel, S., Duncan, B.W., Weinberg, R.J., Tripathy, A., and Maness, P.F. (2018). Neurocan inhibits Semaphorin 3F induced dendritic spine remodeling through NrCAM in cortical neurons. Front. Cell. Neurosci. 12: 346.10.3389/fncel.2018.00346Suche in Google Scholar PubMed PubMed Central

Morawski, M., Brückner, G., Arendt, T., and Matthews, R.T. (2012a). Aggrecan: beyond cartilage and into the brain. Int. J. Biochem. Cell Biol. 44: 690–693.10.1016/j.biocel.2012.01.010Suche in Google Scholar PubMed

Morawski, M., Brückner, G., Jäger, C., Seeger, G., and Arendt, T. (2010a). Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience 169: 1347–1363.10.1016/j.neuroscience.2010.05.022Suche in Google Scholar PubMed

Morawski, M., Brückner, G., Jäger, C., Seeger, G., Matthews, R.T., and Arendt, T. (2012b). Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol. 22: 547–561.10.1111/j.1750-3639.2011.00557.xSuche in Google Scholar PubMed PubMed Central

Morawski, M., Brückner, M.K., Riederer, P., Brückner, G., and Arendt, T. (2004). Perineuronal nets potentially protect against oxidative stress. Exp. Neurol. 188: 309–315.10.1016/j.expneurol.2004.04.017Suche in Google Scholar PubMed

Morawski, M., Pavlica, S., Seeger, G., Grosche, J., Kouznetsova, E., Schliebs, R., Brückner, G., and Arendt, T. (2010b). Perineuronal nets are largely unaffected in Alzheimer model Tg2576 mice. Neurobiol. Aging 31: 1254–1256.10.1016/j.neurobiolaging.2008.07.023Suche in Google Scholar PubMed

Moreno-Rodriguez, M., Perez, S.E., Nadeem, M., Malek-Ahmadi, M., and Mufson, E.J. (2020). Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer’s disease. J. Neuroinflamm. 17: 58.10.1186/s12974-020-1723-xSuche in Google Scholar PubMed PubMed Central

Moretto, G., Xu, R.Y., and Kim, S.U. (1993). CD44 expression in human astrocytes and oligodendrocytes in culture. J. Neuropathol. Exp. Neurol. 52: 419–423.10.1097/00005072-199307000-00009Suche in Google Scholar

Nagy, N., Kuipers, H.F., Marshall, P.L., Wang, E., Kaber, G., and Bollyky, P.L. (2019). Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol. 78-79: 292–313.10.1016/j.matbio.2018.03.022Suche in Google Scholar

Nastase, M.V., Janicova, A., Wygrecka, M., and Schaefer, L. (2017). Signaling at the crossroads: matrix-derived proteoglycan and reactive oxygen species signaling. Antioxid. Redox Signal. 27: 855–873.10.1089/ars.2017.7165Suche in Google Scholar

Naumov, A.V., Khovasova, N.O., Moroz, V.I., and Tkacheva, O.N. (2019). [The place of chondroitin sulfate and glucosamine sulfate in osteoarthritis pain therapy: a practical view from evidence-based medicine]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 119: 112–117.10.17116/jnevro2019119091112Suche in Google Scholar

Nielsen, H.M., Hall, S., Surova, Y., Nägga, K., Nilsson, C., Londos, E., Minthon, L., Hansson, O., and Wennström, M. (2014). Low levels of soluble NG2 in cerebrospinal fluid from patients with dementia with Lewy bodies. J. Alzheimers Dis. 40: 343–350.10.3233/JAD-132246Suche in Google Scholar

Nirzhor, S.S.R., Khan, R.I., and Neelotpol, S. (2018). The biology of glial cells and their complex roles in Alzheimer’s disease: new opportunities in therapy. Biomolecules 8. https://doi.org/10.3390/biom8030093.Suche in Google Scholar

Ogawa, T., Hagihara, K., Suzuki, M., and Yamaguchi, Y. (2001). Brevican in the developing hippocampal fimbria: differential expression in myelinating oligodendrocytes and adult astrocytes suggests a dual role for brevican in central nervous system fiber tract development. J. Comp. Neurol. 432: 285–295.10.1002/cne.1103Suche in Google Scholar

Oohira, A., Matsui, F., Tokita, Y., Yamauchi, S., and Aono, S. (2000). Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development. Arch. Biochem. Biophys. 374: 24–34.10.1006/abbi.1999.1598Suche in Google Scholar

Oohira, A., Matsui, F., Watanabe, E., Kushima, Y., and Maeda, N. (1994). Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum. Neuroscience 60: 145–157.10.1016/0306-4522(94)90210-0Suche in Google Scholar

Ozaltin, K., Lehocký, M., Kuceková, Z., Humpolíček, P., and Sáha, P. (2017). A novel multistep method for chondroitin sulphate immobilization and its interaction with fibroblast cells. Mater. Sci. Eng. C Mater. Biol. Appl. 70: 94–100.10.1016/j.msec.2016.08.065Suche in Google Scholar PubMed

Pérez-Revuelta, B.I., Fukumori, A., Lammich, S., Yamasaki, A., Haass, C., and Steiner, H. (2010). Requirement for small side chain residues within the GxGD-motif of presenilin for gamma-secretase substrate cleavage. J. Neurochem. 112: 940–950.10.1111/j.1471-4159.2009.06510.xSuche in Google Scholar

Pappas, A.G., Magkouta, S., Pateras, I.S., Skianis, I., Moschos, C., Vazakidou, M.E., Psarra, K., Gorgoulis, V.G., and Kalomenidis, I. (2019). Versican modulates tumor-associated macrophage properties to stimulate mesothelioma growth. Oncoimmunology 8: e1537427.10.1080/2162402X.2018.1537427Suche in Google Scholar

Patani, R., Balaratnam, M., Vora, A., and Reynolds, R. (2007). Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33: 277–287.10.1111/j.1365-2990.2007.00805.xSuche in Google Scholar

Patrikios, P., Stadelmann, C., Kutzelnigg, A., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P.S., Brück, W., Lucchinetti, C., and Lassmann, H. (2006). Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129: 3165–3172.10.1093/brain/awl217Suche in Google Scholar

Pendleton, J.C., Shamblott, M.J., Gary, D.S., Belegu, V., Hurtado, A., Malone, M.L., and McDonald, J.W. (2013). Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp. Neurol. 247: 113–121.10.1016/j.expneurol.2013.04.003Suche in Google Scholar

Piao, J.H., Wang, Y., and Duncan, I.D. (2013). CD44 is required for the migration of transplanted oligodendrocyte progenitor cells to focal inflammatory demyelinating lesions in the spinal cord. Glia 61: 361–367.10.1002/glia.22438Suche in Google Scholar

Pinner, E., Gruper, Y., Ben Zimra, M., Kristt, D., Laudon, M., Naor, D., and Zisapel, N. (2017). CD44 Splice variants as potential players in Alzheimer’s disease pathology. J. Alzheimers Dis. 58: 1137–1149.10.3233/JAD-161245Suche in Google Scholar

Prydz, K. (2015). Determinants of glycosaminoglycan (GAG) structure. Biomolecules 5: 2003–2022.10.3390/biom5032003Suche in Google Scholar

Rangaraju, S., Dammer, E.B., Raza, S.A., Rathakrishnan, P., Xiao, H., Gao, T., Duong, D.M., Pennington, M.W., Lah, J.J., Seyfried, N.T., et al.. (2018). Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener. 13: 24.10.1186/s13024-018-0254-8Suche in Google Scholar

Rauch, U., Karthikeyan, L., Maurel, P., Margolis, R.U., and Margolis, R.K. (1992). Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J. Biol. Chem. 267: 19536–19547.10.1016/S0021-9258(18)41808-XSuche in Google Scholar

Reed, M.J., Damodarasamy, M., Pathan, J.L., Erickson, M.A., Banks, W.A., and Vernon, R.B. (2018). The effects of normal aging on regional accumulation of hyaluronan and chondroitin sulfate proteoglycans in the mouse brain. J. Histochem. Cytochem. 66: 697–707.10.1369/0022155418774779Suche in Google Scholar

Rezaei, S., Dabirmanesh, B., Zare, L., Golestani, A., Javan, M., and Khajeh, K. (2020). Enhancing myelin repair in experimental model of multiple sclerosis using immobilized chondroitinase ABC I on porous silicon nanoparticles. Int. J. Biol. Macromol. 146: 162–170.10.1016/j.ijbiomac.2019.12.258Suche in Google Scholar

Rittchen, S., Boyd, A., Burns, A., Park, J., Fahmy, T.M., Metcalfe, S., and Williams, A. (2015). Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF). Biomaterials 56: 78–85.10.1016/j.biomaterials.2015.03.044Suche in Google Scholar

Sainath, R., Armijo-Weingart, L., Ketscheck, A., Xu, Z., Li, S., and Gallo, G. (2017). Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons. Dev. Neurobiol. 77: 1351–1370.10.1002/dneu.22535Suche in Google Scholar

Sato, N. and Morishita, R. (2015). The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front. Aging Neurosci. 7: 199.10.3389/fnagi.2015.00199Suche in Google Scholar

Satoh, K., Suzuki, N., and Yokota, H. (2000). ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs) is transcriptionally induced in beta-amyloid treated rat astrocytes. Neurosci. Lett. 289: 177–180.10.1016/S0304-3940(00)01285-4Suche in Google Scholar

Schäfer, M.K.E. and Tegeder, I. (2018). NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol. 68-69: 571–588.10.1016/j.matbio.2017.10.002Suche in Google Scholar PubMed

Schmalfeldt, M., Bandtlow, C.E., Dours-Zimmermann, M.T., Winterhalter, K.H., and Zimmermann, D.R. (2000). Brain derived versican V2 is a potent inhibitor of axonal growth. J. Cell Sci. 113: 807–816.10.1242/jcs.113.5.807Suche in Google Scholar PubMed

Schmidt, S., Arendt, T., Morawski, M., and Sonntag, M. (2020). Neurocan contributes to perineuronal net development. Neuroscience 442: 69–86.10.1016/j.neuroscience.2020.06.040Suche in Google Scholar PubMed

Schultz, N., Brännström, K., Byman, E., Moussaud, S., Nielsen, H.M., Olofsson, A., and Wennström, M. (2018). Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell 17: e12728.10.1111/acel.12728Suche in Google Scholar PubMed PubMed Central

Schultz, N., Nielsen, H.M., Minthon, L., and Wennström, M. (2014). Involvement of matrix metalloproteinase-9 in amyloid-β 1-42-induced shedding of the pericyte proteoglycan NG2. J. Neuropathol. Exp. Neurol. 73: 684–692.10.1097/NEN.0000000000000084Suche in Google Scholar PubMed PubMed Central

Seidenbecher, C.I., Richter, K., Rauch, U., Fässler, R., Garner, C.C., and Gundelfinger, E.D. (1995). Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. J. Biol. Chem. 270: 27206–27212.10.1074/jbc.270.45.27206Suche in Google Scholar PubMed

Sepuru, K.M. and Rajarathnam, K. (2019). Structural basis of chemokine interactions with heparan sulfate, chondroitin sulfate, and dermatan sulfate. J. Biol. Chem. 294: 15650–15661.10.1074/jbc.RA119.009879Suche in Google Scholar PubMed PubMed Central

Silver, J. and Miller, J.H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5: 146–156.10.1038/nrn1326Suche in Google Scholar PubMed

Snow, A.D., Kinsella, M.G., Parks, E., Sekiguchi, R.T., Miller, J.D., Kimata, K., and Wight, T.N. (1995). Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the β-amyloid protein of Alzheimer’s disease. Arch. Biochem. Biophys. 320: 84–95.10.1006/abbi.1995.1345Suche in Google Scholar PubMed

Snow, A.D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., Hassell, J., and Wight, T.N. (1988). The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am. J. Pathol. 133: 456–463.Suche in Google Scholar

Snow, A.D., Mar, H., Nochlin, D., Sekiguchi, R.T., Kimata, K., Koike, Y., and Wight, T.N. (1990). Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer’s disease and Down’s syndrome. Am. J. Pathol. 137: 1253–1270.Suche in Google Scholar

Sobel, R.A. (2001). The extracellular matrix in multiple sclerosis: an update. Braz. J. Med. Biol. Res. 34: 603–609.10.1590/S0100-879X2001000500007Suche in Google Scholar

Sobel, R.A. and Ahmed, A.S. (2001). White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J. Neuropathol. Exp. Neurol. 60: 1198–1207.10.1093/jnen/60.12.1198Suche in Google Scholar PubMed

Stephenson, E.L. and Yong, V.W. (2018). Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol. 71-72: 432–442.10.1016/j.matbio.2018.04.010Suche in Google Scholar PubMed

Su, H., Na, N., Zhang, X., and Zhao, Y. (2017). The biological function and significance of CD74 in immune diseases. Inflamm. Res. 66: 209–216.10.1007/s00011-016-0995-1Suche in Google Scholar PubMed

Suttkus, A., Holzer, M., Morawski, M., and Arendt, T. (2016). The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. Neuroscience 313: 225–235.10.1016/j.neuroscience.2015.11.040Suche in Google Scholar PubMed

Suttkus, A., Rohn, S., Jäger, C., Arendt, T., and Morawski, M. (2012). Neuroprotection against iron-induced cell death by perineuronal nets - an in vivo analysis of oxidative stress. Am. J. Neurodegener. Dis. 1: 122–129.Suche in Google Scholar

Suttkus, A., Rohn, S., Weigel, S., Glöckner, P., Arendt, T., and Morawski, M. (2014). Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 5: e1119.10.1038/cddis.2014.25Suche in Google Scholar PubMed PubMed Central

Tanaka, Y. and Mizoguchi, K. (2009). Influence of aging on chondroitin sulfate proteoglycan expression and neural stem/progenitor cells in rat brain and improving effects of a herbal medicine, yokukansan. Neuroscience 164: 1224–1234.10.1016/j.neuroscience.2009.08.060Suche in Google Scholar PubMed

Tortorella, M., Pratta, M., Liu, R.Q., Abbaszade, I., Ross, H., Burn, T., and Arner, E. (2000). The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J. Biol. Chem. 275: 25791–25797.10.1074/jbc.M001065200Suche in Google Scholar PubMed

Toyama-Sorimachi, N., Kitamura, F., Habuchi, H., Tobita, Y., Kimata, K., and Miyasaka, M. (1997). Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. J. Biol. Chem. 272: 26714–26719.10.1074/jbc.272.42.26714Suche in Google Scholar PubMed

Trotter, J. (2005). NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases. J. Neurol. Sci. 233: 37–42.10.1016/j.jns.2005.03.024Suche in Google Scholar PubMed

Uberti, D., Cenini, G., Bonini, S.A., Barcikowska, M., Styczynska, M., Szybinska, A., and Memo, M. (2010). Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients. Neurodegener. Dis. 7: 143–147.10.1159/000289225Suche in Google Scholar PubMed

Ullah, M.F., Ahmad, A., Bhat, S.H., Abu-Duhier, F.M., Barreto, G.E., and Ashraf, G.M. (2019). Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci. Biobehav. Rev. 102: 95–105.10.1016/j.neubiorev.2019.04.003Suche in Google Scholar PubMed

Unger, M.S., Schernthaner, P., Marschallinger, J., Mrowetz, H., and Aigner, L. (2018). Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J. Neuroinflamm. 15: 274.10.1186/s12974-018-1304-4Suche in Google Scholar PubMed PubMed Central

Vanzulli, I., Papanikolaou, M., De-La-Rocha, I.C., Pieropan, F., Rivera, A.D., Gomez-Nicola, D., Verkhratsky, A., Rodríguez, J.J., and Butt, A.M. (2020). Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 94: 130–139.10.1016/j.neurobiolaging.2020.05.016Suche in Google Scholar PubMed PubMed Central

Verma, P. and Dalal, K. (2011). ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J. Cell. Biochem. 112: 3507–3514.10.1002/jcb.23298Suche in Google Scholar PubMed

Viapiano, M.S. and Matthews, R.T. (2006). From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol. Med. 12: 488–496.10.1016/j.molmed.2006.08.007Suche in Google Scholar PubMed

Wang, B. and Wang, X.P. (2019). Does ceruloplasmin defend against neurodegenerative diseases?. Curr. Neuropharmacol. 17: 539–549.10.2174/1570159X16666180508113025Suche in Google Scholar PubMed PubMed Central

Wang, T. and Yang, F. (2017). A comparative study of chondroitin sulfate and heparan sulfate for directing three-dimensional chondrogenesis of mesenchymal stem cells. Stem Cell Res. Ther. 8: 284.10.1186/s13287-017-0728-6Suche in Google Scholar PubMed PubMed Central

Wang, X., Wei, Y., Liu, X., Xing, C., Han, G., Chen, G., Hou, C., Dambuza, I.M., Shen, B., Li, Y., et al.. (2015). IL-15-secreting γδT cells induce memory T cells in experimental allergic encephalomyelitis (EAE) mice. Mol. Immunol. 66: 402–408.10.1016/j.molimm.2015.04.021Suche in Google Scholar PubMed

Westling, J., Fosang, A.J., Last, K., Thompson, V.P., Tomkinson, K.N., Hebert, T., McDonagh, T., Collins-Racie, L.A., LaVallie, E.R., Morris, E.A., et al.. (2002). ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J. Biol. Chem. 277: 16059–16066.10.1074/jbc.M108607200Suche in Google Scholar PubMed

Winkler, C.W., Foster, S.C., Itakura, A., Matsumoto, S.G., Asari, A., McCarty, O.J., and Sherman, L.S. (2013). Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: implications for inflammatory demyelinating disease. Matrix Biol. 32: 160–168.10.1016/j.matbio.2013.01.002Suche in Google Scholar PubMed PubMed Central

Wlodarczyk, J., Mukhina, I., Kaczmarek, L., and Dityatev, A. (2011). Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev. Neurobiol. 71: 1040–1053.10.1002/dneu.20958Suche in Google Scholar PubMed

Wong, G.T., Manfra, D., Poulet, F.M., Zhang, Q., Josien, H., Bara, T., Engstrom, L., Pinzon-Ortiz, M., Fine, J.S., Lee, H.J., et al.. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279: 12876–12882.10.1074/jbc.M311652200Suche in Google Scholar PubMed

Xu, J.-P., Zhao, J., and Li, S. (2011). Roles of NG2 glial cells in diseases of the central nervous system. Neurosci. Bull. 27: 413–421.10.1007/s12264-011-1838-2Suche in Google Scholar PubMed PubMed Central

Yamada, T., Calne, D.B., Akiyama, H., McGeer, E.G., and McGeer, P.L. (1993). Further observations on Tau-positive glia in the brains with progressive supranuclear palsy. Acta Neuropathol. 85: 308–315.10.1007/BF00227727Suche in Google Scholar PubMed

Yamaguchi, Y. (2000). Lecticans: organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57: 276–289.10.1007/PL00000690Suche in Google Scholar PubMed

Yan, H., Zhu, X., Xie, J., Zhao, Y., and Liu, X. (2016). β-amyloid increases neurocan expression through regulating Sox9 in astrocytes: a potential relationship between Sox9 and chondroitin sulfate proteoglycans in Alzheimer’s disease. Brain Res. 1646: 377–383.10.1016/j.brainres.2016.06.010Suche in Google Scholar PubMed

Yavarpour-Bali, H., Ghasemi-Kasman, M., and Shojaei, A. (2020). Direct reprogramming of terminally differentiated cells into neurons: a novel and promising strategy for Alzheimer’s disease treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 98: 109820.10.1016/j.pnpbp.2019.109820Suche in Google Scholar PubMed

Zhang, D. and Zhou, Y. (2014). The protective effects of Donepezil (DP) against cartilage matrix destruction induced by TNF-α. Biochem. Biophys. Res. Commun. 454: 115–118.10.1016/j.bbrc.2014.10.046Suche in Google Scholar PubMed

Zhang, H., Cheng, J., Li, Z., and Xi, Y. (2019). Identification of hub genes and molecular mechanisms in infant acute lymphoblastic leukemia with MLL gene rearrangement. Peer J 7: e7628.10.7717/peerj.7628Suche in Google Scholar

Zhang, S.Z., Wang, Q.Q., Yang, Q.Q., Gu, H.Y., Yin, Y.Q., Li, Y.D., Hou, J.C., Chen, R., Sun, Q.Q., Sun, Y.F., et al.. (2019). NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC Med. 17: 204.10.1186/s12916-019-1439-xSuche in Google Scholar PubMed PubMed Central

Zhang, Z.W., Zhang, J.P., Zhou, T.T., Feng, W.H., and Jiao, B.H. (2011). Does the expression of versican isoforms contribute to the pathogenesis of neurodegenerative diseases? Arch. Med. Res. 42: 258–260.10.1016/j.arcmed.2011.04.010Suche in Google Scholar PubMed

Zhao, J., Yu, Y., Wu, Z., Wang, L., and Li, W. (2017). Memantine inhibits degradation of the articular cartilage extracellular matrix induced by advanced glycation end products (AGEs). Biomed. Pharmacother. 91: 1193–1198. https://doi.org/10.1016/j.biopha.2017.04.054.Suche in Google Scholar PubMed

Zhong, J., Lan, C., Zhang, C., Yang, Y., Chen, W.X., Zhang, K.Y., Zhao, H.L., Fang, X.Y., Li, H.H., Tan, L., et al.. (2019). Chondroitin sulfate proteoglycan represses neural stem/progenitor cells migration via PTPσ/α-actinin4 signaling pathway. J. Cell. Biochem. https://doi.org/10.1002/jcb.28379.Suche in Google Scholar PubMed

Received: 2020-12-09
Accepted: 2021-02-07
Published Online: 2021-03-01
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0146/pdf
Button zum nach oben scrollen