Home Role of the gut microbiome in Alzheimer’s disease
Article
Licensed
Unlicensed Requires Authentication

Role of the gut microbiome in Alzheimer’s disease

  • Kian Chung Chok , Khuen Yen Ng , Rhun Yian Koh and Soi Moi Chye EMAIL logo
Published/Copyright: March 17, 2021
Become an author with De Gruyter Brill

Abstract

Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of individuals each year and this number is expected to significantly increase. The complicated microorganisms residing in human gut are closely associated with our health. Emerging evidence has suggested possible involvement of human gut microbiome in AD. Symbiotic gut microbiomes are known to maintain brain health by modulating host’s barriers integrity, metabolic system, immune system, nervous system and endocrine system. However, in the event of gut dysbiosis and barriers disruption, gut pathobionts disrupt homeostasis of the metabolic system, immune system, nervous system, and endocrine system, resulting in deterioration of neurological functions and subsequently promoting development of AD. Multiple therapeutic approaches, such as fecal microbiome transplant, antibiotics, prebiotics, probiotics, symbiotic, and diet are discussed as potential treatment options for AD by manipulating the gut microbiome to reverse pathological alteration in the systems above.


Corresponding author: Soi Moi Chye, Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R., and Begley, D.J. (2010). Structure and function of the blood-brain barrier. Neurobiol. Dis. 37: 13–25.10.1016/j.nbd.2009.07.030Search in Google Scholar PubMed

Akbari, E., Asemi, Z., Kakhaki, R.D., Bahmani, F., Kouchaki, E., Tamtaji, O.R., Hamidi, G.A., and Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8: 256.10.3389/fnagi.2016.00256Search in Google Scholar PubMed PubMed Central

Al-Obaidi, M.M.J. and Desa, M.N.M. (2018). Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial–host interactions facilitate the bacterial pathogen invading the brain. Cell. Mol. Neurobiol. 38: 1349–1368.10.1007/s10571-018-0609-2Search in Google Scholar PubMed

Alam, M., Alam, Q., Kamal, M., Abuzenadah, A., and Haque, A. (2014). A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer’s disease pathogenicity: an update. CNS Neurol. Disord. – Drug Targets 13: 383–390.10.2174/18715273113126660151Search in Google Scholar PubMed

Anderson, G. and Maes, M. (2019). The gut-brain axis: the role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions. Adv. Integr. Med. 2: 31–37.10.1016/j.aimed.2014.12.007Search in Google Scholar

Angelucci, F., Cechova, K., Amlerova, J., and Hort, J. (2019). Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation 16: 108.10.1186/s12974-019-1494-4Search in Google Scholar PubMed PubMed Central

Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H.Y., Ahima, R.S., Craft, S., Gandy, S., Buettner, C., Stoeckel, L.E., Holtzman, D.M., and Nathan, D.M. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14: 168–181.10.1038/nrneurol.2017.185Search in Google Scholar PubMed PubMed Central

Ashida, H., Ogawa, M., Kim, M., Mimuro, H., and Sasakawa, C. (2012). Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 8: 36–45.10.1038/nchembio.741Search in Google Scholar PubMed

Asti, A. and Gioglio, L. (2014). Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J. Alzheim. Dis. 39: 169–179.10.3233/JAD-131394Search in Google Scholar PubMed

Azm, S.A.N., Djazayeri, A., Safa, M., Azami, K., Ahmadvand, B., Sabbaghziarani, F., Sharifzadeh, M., and Vafa, M. (2018). Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl. Physiol. Nutr. Metabol. 43: 718–726.10.1139/apnm-2017-0648Search in Google Scholar PubMed

De Agüero, M.G., Ganal-Vonarburg, S.C., Fuhrer, T., Rupp, S., Uchimura, Y., Li, H., Steinert, A., Heikenwalder, M., Hapfelmeier, S., Sauer, U., McCoy, K.D., and Macpherson, A.J. (2016). The maternal microbiota drives early postnatal innate immune development. Science 351: 1296–1302.10.1126/science.aad2571Search in Google Scholar

Baker, J.M., Al-Nakkash, L., and Herbst-Kralovetz, M.M. (2017). Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas 103: 45–53.10.1016/j.maturitas.2017.06.025Search in Google Scholar

Balin, B.J. and Hudson, A.P. (2018). Herpes viruses and Alzheimer’s disease: new evidence in the debate. Lancet Neurol. 17: 839–841.10.1016/S1474-4422(18)30316-8Search in Google Scholar

Banerjee, A., Kim, B.J., Carmona, E.M., Cutting, A.S., Gurney, M.A., Carlos, C., Feuer, R., Prasadarao, N.V., and Doran, K.S. (2011). Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat. Commun. 2: 462.10.1038/ncomms1474Search in Google Scholar PubMed PubMed Central

Barreau, F. and Hugot, J.P. (2014). Intestinal barrier dysfunction triggered by invasive bacteria. Curr. Opin. Microbiol. 17: 91–98.10.1016/j.mib.2013.12.003Search in Google Scholar PubMed

Barton, E.S., White, D.W., Cathelyn, J.S., Brett-McClellan, K.A., Engle, M., Diamond, M.S., Miller, V.L., and Virgin IV, H.W. (2007). Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447: 326–329.10.1038/nature05762Search in Google Scholar PubMed

Bate, C. and Williams, A. (2011). Amyloid-β-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J. Biol. Chem. 286: 37955–37963.10.1074/jbc.M111.248724Search in Google Scholar PubMed PubMed Central

Bäuerl, C., Collado, M.C., Diaz Cuevas, A., Viña, J., and Pérez Martínez, G. (2018). Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett. Appl. Microbiol. 66: 464–471.10.1111/lam.12882Search in Google Scholar PubMed

Beydoun, M.A., Beydoun, H.A., and Wang, Y. (2008). Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes. Rev. 9: 204–218.10.1111/j.1467-789X.2008.00473.xSearch in Google Scholar PubMed PubMed Central

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkïla, J., Monti, D., Satokari, R., Franceschi, C., et al.. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS One 5: e10667.10.1371/journal.pone.0010667Search in Google Scholar PubMed PubMed Central

Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., et al.. (2016). Gut microbiota and extreme longevity. Curr. Biol. 2016: 1480–5.10.1016/j.cub.2016.04.016Search in Google Scholar PubMed

Block, J. (2019). Alzheimer’s disease might depend on enabling pathogens which do not necessarily cross the blood-brain barrier. Med. Hypotheses 125: 129–136.10.1016/j.mehy.2019.02.044Search in Google Scholar PubMed

Bonaz, B., Bazin, T., and Pellissier, S. (22018). The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 12: 49.10.3389/fnins.2018.00049Search in Google Scholar PubMed PubMed Central

Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J.S., Nasuti, C., Fiorini, D., Boarelli, M.C., Rossi, G., and Eleuteri, A.M. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7: 2426.10.1038/s41598-017-02587-2Search in Google Scholar PubMed PubMed Central

Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., Rossi, G., and Eleuteri, A.M. (2018). SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55: 7987–8000.10.1007/s12035-018-0973-4Search in Google Scholar PubMed PubMed Central

Bonfili, L., Cecarini, V., Gogoi, O., Berardi, S., Scarpona, S., Angeletti, M., Rossi, G., and Eleuteri, A.M. (2020). Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol. Aging 87: 35–43.10.1016/j.neurobiolaging.2019.11.004Search in Google Scholar PubMed

Boveri, M., Kinsner, A., Berezowski, V., Lenfant, A.M., Draing, C., Cecchelli, R., Dehouck, M.P., Hartung, T., Prieto, P., and Bal-Price, A. (2006). Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience 137: 1193–1209.10.1016/j.neuroscience.2005.10.011Search in Google Scholar PubMed

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Guan, N.L., Kundu, P., et al.. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6: 263ra158.10.1126/scitranslmed.3009759Search in Google Scholar PubMed PubMed Central

Breitbart, M., Haynes, M., Kelley, S., Angly, F., Edwards, R.A., Felts, B., Mahaffy, J.M., Mueller, J., Nulton, J., Rayhawk, S., et al.. (2008). Viral diversity and dynamics in an infant gut. Res. Microbiol. 159: 367–373.10.1016/j.resmic.2008.04.006Search in Google Scholar PubMed

Brenner, S.R. (2013). Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-l-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-Dementia-Complex in. Med. Hypotheses 80: 103.10.1016/j.mehy.2012.10.010Search in Google Scholar PubMed

Bu, X.L., Xiang, Y., Jin, W.S., Wang, J., Shen, L.L., Huang, Z.L., Zhang, K., Liu, Y.H., Zeng, F., Liu, J.H., et al.. (2018). Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol. Psychiatr. 23: 1948–1956.10.1038/mp.2017.204Search in Google Scholar PubMed

Buffie, C.G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A., Ubeda, C., Xavier, J., and Pamer, E.G. (2012). Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80: 62–73.10.1128/IAI.05496-11Search in Google Scholar PubMed PubMed Central

Bukin, Y.S., Galachyants, Y.P., Morozov, I.V., Bukin, S.V., Zakharenko, A.S., and Zemskaya, T.I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6: 190007.10.1038/sdata.2019.7Search in Google Scholar PubMed PubMed Central

Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203–209.Search in Google Scholar

Carter, C.J. (2017). Genetic, transcriptome, proteomic, and epidemiological evidence for blood-brain barrier disruption and polymicrobial brain invasion as determinant factors in Alzheimer’s disease. J. Alzheimer’s Dis. Reports 1: 125–157.10.3233/ADR-170017Search in Google Scholar PubMed PubMed Central

Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U.P., Paghera, B., Muscio, C., et al.. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49: 60–68.10.1016/j.neurobiolaging.2016.08.019Search in Google Scholar PubMed

Cavallucci, V., Fidaleo, M., and Pani, G. (2020). Nutrients and neurogenesis: the emerging role of autophagy and gut microbiota. Curr. Opin. Pharmacol. 50: 46–52.10.1016/j.coph.2019.11.004Search in Google Scholar PubMed

Cecarini, V., Bonfili, L., Cuccioloni, M., Mozzicafreddo, M., Rossi, G., Buizza, L., Uberti, D., Angeletti, M., and Eleuteri, A.M. (2012). Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer’s disease. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1822: 1741–1751.10.1016/j.bbadis.2012.07.015Search in Google Scholar PubMed

Chen, D., Yang, X., Yang, J., Lai, G., Yong, T., Tang, X., Shuai, O., Zhou, G., Xie, Y., and Wu, Q. (2017). Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci. 9: 403.10.3389/fnagi.2017.00403Search in Google Scholar PubMed PubMed Central

Chen, M.L., Ge, Z., Fox, J.G., and Schauer, D.B. (20006). Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect. Immun. 74: 6581–6589.10.1128/IAI.00958-06Search in Google Scholar PubMed PubMed Central

Cheng, K., Ning, Z., Zhang, X., Mayne, J., and Figeys, D. (2018). Separation and characterization of human microbiomes by metaproteomics. TrAC – Trends Anal. Chem. 108: 221–230.10.1016/j.trac.2018.09.006Search in Google Scholar

Chiu, C., Miller, M.C., Monahan, R., Osgood, D.P., Stopa, E.G., and Silverberg, G.D. (2015). P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol. Aging 36: 2475–2482.10.1016/j.neurobiolaging.2015.05.020Search in Google Scholar PubMed

Cho, I., Yamanishi, S., Cox, L., Methé, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., et al.. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488: 621–626.10.1038/nature11400Search in Google Scholar PubMed PubMed Central

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatr. 18: 666–673.10.1038/mp.2012.77Search in Google Scholar PubMed

Clarke, G., Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F., and Dinan, T.G. (2014). Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28: 1221–1238.10.1210/me.2014-1108Search in Google Scholar PubMed PubMed Central

Collins, J., Borojevic, R., Verdu, E.F., Huizinga, J.D., and Ratcliffe, E.M. (2014). Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neuro Gastroenterol. Motil. 26: 98–107.10.1111/nmo.12236Search in Google Scholar PubMed

Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10: 735–742.10.1038/nrmicro2876Search in Google Scholar PubMed

Cong, X., Henderson, W.A., Graf, J., McGrath, J.M., and Gregory, K.E. (2015). Early life experience and gut microbiome: the brain-gut-microbiota signaling system. Adv. Neonatal Care 15: 314–323.10.1097/ANC.0000000000000191Search in Google Scholar PubMed PubMed Central

Cortés, A., Peachey, L.E., Jenkins, T.P., Scotti, R., and Cantacessi, C. (2019). Helminths and microbes within the vertebrate gut – not all studies are created equal. Parasitology 146: 1371–1378.10.1017/S003118201900088XSearch in Google Scholar PubMed

Cox, L.M., Schafer, M.J., Sohn, J., Vincentini, J., Weiner, H.L., Ginsberg, S.D., and Blaser, M.J. (2019). Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 9: 17904.10.1038/s41598-019-54187-xSearch in Google Scholar PubMed PubMed Central

Craig, L.A., Hong, N.S., and McDonald, R.J. (2011). Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev. 35: 1397–1409.10.1016/j.neubiorev.2011.03.001Search in Google Scholar PubMed

Crews, L. and Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet. 19: R12–R20.10.1093/hmg/ddq160Search in Google Scholar

Csernansky, J.G., Dong, H., Fagan, A.M., Wang, L., Xiong, C., Holtzman, D.M., and Morris, J.C. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatr. 163: 2164–2169.10.1176/ajp.2006.163.12.2164Search in Google Scholar

Daulatzai, M.A. (2014). Obesity and gut’s dysbiosis promote neuroinflammation, cognitive impairment, and vulnerability to Alzheimer’s disease: new directions and therapeutic implications. J. Mol. Genet. Med. s1: 005.10.4172/1747-0862.S1-005Search in Google Scholar

Davies, P. and Maloney, A.J.F. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 308: 1403.10.1016/S0140-6736(76)91936-XSearch in Google Scholar

de Cossío, L.F., Fourrier, C., Sauvant, J., Everard, A., Capuron, L., Cani, P.D., Layé, S., and Castanon, N. (2017). Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav. Immun. 64: 33–49.10.1016/j.bbi.2016.12.022Search in Google Scholar PubMed

Deane, R., Yan, S. D., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., et al.. (2003). RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9: 907–913.10.1038/nm890Search in Google Scholar PubMed

Dehhaghi, M., Kazemi Shariat Panahi, H., and Guillemin, G.J., and Microorganisms (2019). Tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 12: 1–10.10.1177/1178646919852996Search in Google Scholar PubMed PubMed Central

Deo, A.K., Borson, S., Link, J.M., Domino, K., Eary, J.F., Ke, B., Richards, T.L., Mankoff, D.A., Minoshima, S., O’Sullivan, F., et al.. (2014). Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J. Nucl. Med. 55: 1106–1111.10.2967/jnumed.113.130161Search in Google Scholar PubMed PubMed Central

Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., et al.. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339–1353.e21.10.1016/j.cell.2016.10.043Search in Google Scholar PubMed PubMed Central

Desbonnet, L., Clarke, G., Traplin, A., O’Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., Dinan, T.G., and Cryan, J.F. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48: 165–173.10.1016/j.bbi.2015.04.004Search in Google Scholar PubMed

Dethlefsen, L. and Relman, D.A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U. S. A 108: 4554–4561.10.1073/pnas.1000087107Search in Google Scholar PubMed PubMed Central

Dethlefsen, L., Huse, S., Sogin, M.L., and Relman, D.A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing. PLoS Biol. 6: 2383–2400.10.1371/journal.pbio.0060280Search in Google Scholar PubMed PubMed Central

Divyashri, G., Krishna, G., Muralidhara, and Prapulla, S.G. (2015). Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence. J. Med. Microbiol. 64: 1527–1540.10.1099/jmm.0.000184Search in Google Scholar PubMed

Do, T.M., Dodacki, A., Alata, W., Calon, F., Nicolic, S., Scherrmann, J.M., Farinotti, R., and Bourasset, F. (2015). Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer’s disease (3xTg-AD). J. Alzheim. Dis. 49: 287–300.10.3233/JAD-150350Search in Google Scholar PubMed

Dodacki, A., Wortman, M., Saubaméa, B., Chasseigneaux, S., Nicolic, S., Prince, N., Lochus, M., Raveu, A.L., Declèves, X., Scherrmann, J.M., et al.. (2017). Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci. Rep. 7: 13393.10.1038/s41598-017-13750-0Search in Google Scholar PubMed PubMed Central

Dodiya, H.B., Frith, M., Sidebottom, A., Cao, Y., Koval, J., Chang, E., and Sisodia, S.S. (2020). Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer’s transgenic mice. Sci. Rep. 10: 8183.10.1038/s41598-020-64797-5Search in Google Scholar PubMed PubMed Central

Dong, H., Wang, Y., Zhang, X., Zhang, X., Qian, Y., Ding, H., and Zhang, S. (2019). Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front. Cell. Neurosci. 13: 191.10.3389/fncel.2019.00191Search in Google Scholar PubMed PubMed Central

Dubin, K., Callahan, M.K., Ren, B., Khanin, R., Viale, A., Ling, L., No, D., Gobourne, A., Littmann, E., Huttenhower, C., et al.. (2016). Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7: 10391.10.1038/ncomms10391Search in Google Scholar PubMed PubMed Central

Duerkop, B.A. and Hooper, L.V. (2013). Resident viruses and their interactions with the immune system. Nat. Immunol. 14: 654–659.10.1038/ni.2614Search in Google Scholar PubMed PubMed Central

Duyckaerts, C., Clavaguera, F., and Potier, M.C. (2019). The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Curr. Opin. Neurol. 32: 266–271.10.1097/WCO.0000000000000672Search in Google Scholar PubMed

Van De Haar, H.J., Burgmans, S., Jansen, J.F.A., Van Osch, M.J.P., Van Buchem, M.A., Muller, M., Hofman, P.A.M., Verhey, F.R.J., and Backes, W.H. (2016). Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology 281: 527–535.10.1148/radiol.2016152244Search in Google Scholar PubMed

Elangovan, S., Borody, T., and Holsinger, R.M.D. (2019). Fecal microbiota transplantation decreases amyloid load and improves cognition in Alzheimer’s. BioRxiv 687376.10.1101/687376Search in Google Scholar

Elsworthy, R.J. and Aldred, S. (2019). Depression in Alzheimer’s disease: an alternative role for selective serotonin reuptake inhibitors? J. Alzheim. Dis. 69: 651–661.10.3233/JAD-180780Search in Google Scholar PubMed

Ennis, G.E., An, Y., Resnick, S.M., Ferrucci, L., O’Brien, R.J., and Moffat, S.D. (2017). Long-term cortisol measures predict Alzheimer disease risk. Neurology 88: 371–378.10.1212/WNL.0000000000003537Search in Google Scholar PubMed PubMed Central

Erny, D., De Angelis, A.L.H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al.. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18: 965–977.10.1038/nn.4030Search in Google Scholar PubMed PubMed Central

Fang, G., Shi, B., Wu, K., Chen, S., Gao, X., Xiao, S., Kang, J.X., Li, W., and Huang, R. (2019). The protective role of endogenous n-3 polyunsaturated fatty acids in Tau Alzheimer’s disease mouse model. Int. J. Neurosci. 129: 325–336.10.1080/00207454.2018.1533824Search in Google Scholar PubMed

Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20: 145–155.10.1038/nn.4476Search in Google Scholar PubMed PubMed Central

Gardener, S., Gu, Y., Rainey-Smith, S.R., Keogh, J.B., Clifton, P.M., Mathieson, S.L., Taddei, K., Mondal, A., Ward, V.K., Scarmeas, N., et al.. (2012). Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Transl. Psychiatr. 2: e164.10.1038/tp.2012.91Search in Google Scholar PubMed PubMed Central

Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., MacQueen, G., and Sherman, P.M. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60: 307–317.10.1136/gut.2009.202515Search in Google Scholar PubMed

Garwood, C.J., Pooler, A.M., Atherton, J., Hanger, D.P., and Noble, W. (2011). Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2: e167.10.1038/cddis.2011.50Search in Google Scholar PubMed PubMed Central

Geva-Zatorsky, N., Sefik, E., Kua, L., Pasman, L., Tan, T.G., Ortiz-Lopez, A., Yanortsang, T.B., Yang, L., Jupp, R., Mathis, D., et al.. (2017). Mining the human gut microbiota for immunomodulatory organisms. Cell 168: 928–943.e11.10.1016/j.cell.2017.01.022Search in Google Scholar PubMed PubMed Central

Giil, L.M., Midttun, O., Refsum, H., Ulvik, A., Advani, R., Smith, A.D., and Ueland, P.M. (2017). Kynurenine pathway metabolites in Alzheimer’s disease. J. Alzheim. Dis. 60: 495–504.10.3233/JAD-170485Search in Google Scholar PubMed

Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., and Knight, R. (2018). Current understanding of the human microbiome. Nat. Med. 24: 392–400.10.1038/nm.4517Search in Google Scholar PubMed PubMed Central

Gold, M. and El Khoury, J. (2015). β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin. Immunopathol. 37: 607–611.10.1007/s00281-015-0518-0Search in Google Scholar PubMed PubMed Central

Gong, C.X., Liu, F., and Iqbal, K. (2018). Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J. Alzheim. Dis. 64: S107–S117.10.3233/JAD-179921Search in Google Scholar PubMed

Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheim. Dis. 26: 187–197.10.3233/JAD-2011-110080Search in Google Scholar PubMed

Guernier, V., Brennan, B., Yakob, L., Milinovich, G., Clements, A.C.A., and Soares Magalhaes, R.J. (2017). Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children? BMC Infect. Dis. 17: 58.10.1186/s12879-016-2146-2Search in Google Scholar PubMed PubMed Central

Gulaj, E., Pawlak, K., Bien, B., and Pawlak, D. (2010). Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci. 55: 204–211.10.2478/v10039-010-0023-6Search in Google Scholar PubMed

Gunata, M., Parlakpinar, H., and Melatonin, Acet, H.A. (2020). A review of its potential functions and effects on neurological diseases. Rev. Neurol. 176: 148–165.10.1016/j.neurol.2019.07.025Search in Google Scholar PubMed

Gupta, A., Saha, S., and Khanna, S. (2020). Therapies to modulate gut microbiota: past, present and future. World J. Gastroenterol. 26: 777–788.10.3748/wjg.v26.i8.777Search in Google Scholar PubMed PubMed Central

Hanstock, T.L., Mallet, P.E., and Clayton, E.H. (2010). Increased plasma d-lactic acid associated with impaired memory in rats. Physiol. Behav. 101: 653–659.10.1016/j.physbeh.2010.09.018Search in Google Scholar PubMed

Harach, T., Marungruang, N., Duthilleul, N., Cheatham, V., Mc Coy, K.D., Frisoni, G., Neher, J.J., Fåk, F., Jucker, M., Lasser, T., et al.. (2017). Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 7: 41802.10.1038/srep41802Search in Google Scholar PubMed PubMed Central

Hartman, A.L., Lough, D.M., Barupal, D.K., Fiehn, O., Fishbein, T., Zasloff, M., and Eisen, J.A. (2009). Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl. Acad. Sci. U. S. A 106: 17187–17192.10.1073/pnas.0904847106Search in Google Scholar PubMed PubMed Central

Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A 108: 3047–3052.10.1073/pnas.1010529108Search in Google Scholar PubMed PubMed Central

Hernandez-Rapp, J., Martin-Lannerée, S., Hirsch, T.Z., Launay, J.M., and Mouillet-Richard, S. (2014). Hijacking PrPc-dependent signal transduction: when prions impair Aβ clearance. Front. Aging Neurosci. 6: 25.10.3389/fnagi.2014.00025Search in Google Scholar PubMed PubMed Central

Hollister, E.B., Gao, C., and Versalovic, J. (2014). Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146: 1449–1458.10.1053/j.gastro.2014.01.052Search in Google Scholar PubMed PubMed Central

Honarpisheh, P., Reynolds, C.R., Conesa, M.P.B., Manchon, J.F.M., Putluri, N., Bhattacharjee, M.B., Urayama, A., McCullough, L.D., and Ganesh, B.P. (2020). Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. Int. J. Mol. Sci. 21: 1711.10.3390/ijms21051711Search in Google Scholar PubMed PubMed Central

Hooper, C., Killick, R., and Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 104: 1433–1439.10.1111/j.1471-4159.2007.05194.xSearch in Google Scholar PubMed PubMed Central

Hornef, M. (2015). Pathogens, commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR J. 56: 159–162.10.1093/ilar/ilv007Search in Google Scholar PubMed

Jakobsson, H.E., Jernberg, C., Andersson, A.F., Sjölund-Karlsson, M., Jansson, J.K., and Engstrand, L. (2010). Short-term antibiotic treatment has differing long- term impacts on the human throat and gut microbiome. PloS One 5: e9836.10.1371/journal.pone.0009836Search in Google Scholar PubMed PubMed Central

Jeon, S.G., Hong, S.B., Nam, Y., Tae, J., Yoo, A., Song, E.J., Kim, K. I., Lee, D., Park, J., Lee, S.M., et al.. (2019). Ghrelin in Alzheimer’s disease: pathologic roles and therapeutic implications. Ageing Res. Rev. 55: 100945.10.1016/j.arr.2019.100945Search in Google Scholar PubMed

Karczewski, J., Troost, F.J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R.J.M., and Wells, J.M. (2010). Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 298: G851–9.10.1152/ajpgi.00327.2009Search in Google Scholar PubMed

Kelly, J.R., Kennedy, P.J., Cryan, J.F., Dinan, T.G., Clarke, G., and Hyland, N.P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9: 392.10.3389/fncel.2015.00392Search in Google Scholar PubMed PubMed Central

Kim, K.S. (2008). Mechanisms of microbial traversal of the blood-brain barrier. Nat. Rev. Microbiol. 6: 625–634.10.1038/nrmicro1952Search in Google Scholar PubMed PubMed Central

Kim, M.S., Kim, Y., Choi, H., Kim, W., Park, S., Lee, D., Kim, D.K., Kim, H.J., Choi, H., Hyun, D.W., et al.. (2020). Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69: 283–294.10.1136/gutjnl-2018-317431Search in Google Scholar PubMed

King, A., Brain, A., Hanson, K., Dittmann, J., Vickers, J., and Fernandez-Martos, C. (2018). Disruption of leptin signalling in a mouse model of Alzheimer’s disease. Metab. Brain Dis. 33: 1097–1110.10.1007/s11011-018-0203-9Search in Google Scholar PubMed

Kobayashi, Y., Sugahara, H., Shimada, K., Mitsuyama, E., Kuhara, T., Yasuoka, A., Kondo, T., Abe, K., and Xiao, J.Z. (2017). Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 7: 13510.10.1038/s41598-017-13368-2Search in Google Scholar PubMed PubMed Central

Kobayashi, Y., Kuhara, T., Oki, M., and Xiao, J.Z. (2019). Effects of bifidobacterium breve a1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10: 511–520.10.3920/BM2018.0170Search in Google Scholar PubMed

Konopelski, P. and Ufnal, M. (2018). Indoles – gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metabol. 19: 883–890.10.2174/1389200219666180427164731Search in Google Scholar PubMed

Korecka, A., de Wouters, T., Cultrone, A., Lapaque, N., Pettersson, S., Doré, J., Blottière, H.M., and Arulampalam, V. (2013). ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 304: G1025–G1037.10.1152/ajpgi.00293.2012Search in Google Scholar PubMed

Kujala, P., Raymond, C.R., Romeijn, M., Godsave, S.F., van Kasteren, S.I., Wille, H., Prusiner, S.B., Mabbott, N.A., and Peters, P.J. (2011). Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog. 7: e1002449.10.1371/journal.ppat.1002449Search in Google Scholar PubMed PubMed Central

Kumar, P.S. (2017). From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease. J. Physiol. 595: 465–476.10.1113/JP272427Search in Google Scholar PubMed PubMed Central

Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P., and Bienenstock, J. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8: 15062.10.1038/ncomms15062Search in Google Scholar PubMed PubMed Central

Lee, C.Y.D. and Landreth, G.E. (2010). The role of microglia in amyloid clearance from the AD brain. J. Neural. Transm. 117: 949–960.10.1007/s00702-010-0433-4Search in Google Scholar PubMed PubMed Central

Li, Y., Sun, H., Chen, Z., Xu, H., Bu, G., and Zheng, H. (2016). Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci. 8: 31.10.3389/fnagi.2016.00031Search in Google Scholar PubMed PubMed Central

Lichtenstein, P., De Faire, U., Floderus, B., Svartengren, M., Svedberg, P., and Pedersen, N.L. (2002). The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. J. Intern. Med. 252: 184–205.10.1046/j.1365-2796.2002.01032.xSearch in Google Scholar PubMed

Liu, C.C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein e and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9: 106–118.10.1038/nrneurol.2012.263Search in Google Scholar PubMed PubMed Central

Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., and Gong, C.X. (2009). Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J. Neurochem. 111: 242–249.10.1111/j.1471-4159.2009.06320.xSearch in Google Scholar PubMed PubMed Central

Liu, Y., Wu, Z., Nakanishi, Y., Ni, J., Hayashi, Y., Takayama, F., Zhou, Y., Kadawaki, T., and Nakanishi, H. (2017). Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci. Rep. 7: 11759.10.1038/s41598-017-12173-1Search in Google Scholar PubMed PubMed Central

Loffredo, L., Ettorre, E., Zicari, A.M., Inghilleri, M., Nocella, C., Perri, L., Spalice, A., Fossati, C., De Lucia, M.C., Pigozzi, F., et al.. (2020). Oxidative stress and gut-derived lipopolysaccharides in neurodegenerative disease: role of NOX2. Oxid. Med. Cell. Longev. 2020: 8630275.10.1155/2020/8630275Search in Google Scholar PubMed PubMed Central

Logsdon, A.F., Erickson, M.A., Rhea, E.M., Salameh, T.S., and Banks, W.A. (2018). Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp. Biol. Med. 243: 159–165.10.1177/1535370217743766Search in Google Scholar

López, O.L. and DeKosky, S.T. (2008). Clinical symptoms in Alzheimer’s disease. Handb. Clin. Neurol. 89: 207–216.10.1016/S0072-9752(07)01219-5Search in Google Scholar

Lukiw, W.J. (2020). Gastrointestinal (GI) tract microbiome-derived neurotoxins—potent neuro-inflammatory signals from the GI tract via the systemic circulation into the brain. Front. Cell. Infect. Microbiol. 10: 22.10.3389/fcimb.2020.00022Search in Google Scholar

Lukiw, W.J., Li, W., Bond, T., and Zhao, Y. (2019). Facilitation of gastrointestinal (GI) tract microbiome-derived lipopolysaccharide (LPS) entry into human neurons by amyloid beta-42 (Aβ42) peptide. Front. Cell. Neurosci. 13: 545.10.3389/fncel.2019.00545Search in Google Scholar

Lundmark, K., Westermark, G.T., Olsén, A., and Westermark, P. (2005). Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc. Natl. Acad. Sci. U. S. A 102: 6098–6102.10.1073/pnas.0501814102Search in Google Scholar

Lurain, N.S., Hanson, B.A., Martinson, J., Leurgans, S.E., Landay, A.L., Bennett, D.A., and Schneider, J.A. (2013). Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis. 208: 564–572.10.1093/infdis/jit210Search in Google Scholar

MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M.A., Thompson, J.W., et al.. (2019). Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—an emerging role for gut microbiome. Alzheimer’s Dementia 15: 76–92.10.1016/j.jalz.2018.07.217Search in Google Scholar

Maitre, M., Klein, C., Patte-Mensah, C., and Mensah-Nyagan, A.G. (2020). Tryptophan metabolites modify brain Aβ peptide degradation: a role in Alzheimer’s disease? Prog. Neurobiol. 190: 101800.10.1016/j.pneurobio.2020.101800Search in Google Scholar

Mann, D.M.A., Tucker, C.M., and Yates, P.O. (1988). Alzheimer’s disease: an olfactory connection? Mech. Ageing Dev. 42: 1–15.10.1016/0047-6374(88)90058-9Search in Google Scholar

Manrique, P., Dills, M., and Young, M.J. (2017). The human gut phage community and its implications for health and disease. Viruses 9: 141.10.3390/v9060141Search in Google Scholar PubMed PubMed Central

Marchesi, J.R. and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3: 31.10.1186/s40168-015-0094-5Search in Google Scholar PubMed PubMed Central

Marques, F., Sousa, J.C., Sousa, N., and Palha, J.A. (2013). Blood-brain-barriers in aging and in Alzheimer’s disease. Mol. Neurodegener. 8: 38.10.1186/1750-1326-8-38Search in Google Scholar PubMed PubMed Central

Martin, I., Kaisar, M.M.M., Wiria, A.E., Hamid, F., Djuardi, Y., Sartono, E., Rosa, B.A., Mitreva, M., Supali, T., Houwing-Duistermaat, J.J., et al.. (2019). The effect of gut microbiome composition on human immune responses: an exploration of interference by helminth infections. Front. Genet. 10: 1028.10.3389/fgene.2019.01028Search in Google Scholar PubMed PubMed Central

Mazmanian, S.K., Cui, H.L., Tzianabos, A.O., and Kasper, D.L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107–118.10.1016/j.cell.2005.05.007Search in Google Scholar PubMed

McGregor, G. and Harvey, J. (2018). Food for thought: leptin regulation of hippocampal function and its role in Alzheimer’s disease. Neuropharmacology 136: 298–306.10.1016/j.neuropharm.2017.09.038Search in Google Scholar PubMed

Mehta, D., Jackson, R., Paul, G., Shi, J., and Sabbagh, M. (2017). Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expet Opin. Invest. Drugs 26: 735–739.10.1080/13543784.2017.1323868Search in Google Scholar PubMed PubMed Central

Miklossy, J. (2008). Chronic inflammation and amyloidogenesis in Alzheimer’s disease – role of spirochetes. J. Alzheim. Dis. 13: 381–391.10.3233/JAD-2008-13404Search in Google Scholar

Mima, K., Nishihara, R., Qian, Z.R., Cao, Y., Sukawa, Y., Nowak, J.A., Yang, J., Dou, R., Masugi, Y., Song, M., et al.. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65: 1973–1980.10.1136/gutjnl-2015-310101Search in Google Scholar PubMed PubMed Central

Minter, M.R., Hinterleitner, R., Meisel, M., Zhang, C., Leone, V., Zhang, X., Oyler-Castrillo, P., Zhang, X., Musch, M.W., Shen, X., et al.. (2017). Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci. Rep. 7.10.1038/s41598-017-11047-wSearch in Google Scholar PubMed PubMed Central

Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al.. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6: 30028.10.1038/srep30028Search in Google Scholar PubMed PubMed Central

Möhle, L., Mattei, D., Heimesaat, M.M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I.R., et al.. (2016). Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15: 1945–1956.10.1016/j.celrep.2016.04.074Search in Google Scholar

Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease: FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imag. 32: 486–510.10.1007/s00259-005-1762-7Search in Google Scholar

Musa, N.H., Mani, V., Lim, S.M., Vidyadaran, S., Abdul Majeed, A.B., and Ramasamy, K. (2017). Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J. Dairy Res. 84: 488–495.10.1017/S0022029917000620Search in Google Scholar

Nagpal, R., Wang, S., Neth, B., Kawas, M., Craft, S., and Yadav, H. (2019). Ketogenic diet improves gut microbiome and Alzheimer’s disease markers (FS09-02-19). Curr. Dev. Nutr. 3(Suppl. 1).10.1093/cdn/nzz044.FS09-02-19Search in Google Scholar

Naseer, M., Bibi, F., Alqahtani, M., Chaudhary, A., Azhar, E., Kamal, M., and Yasir, M. (2014). Role of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease. CNS Neurol. Disord. – Drug Targets 13: 305–311.10.2174/18715273113126660147Search in Google Scholar

Nazhand, A., Souto, E.B., Lucarini, M., Souto, S.B., Durazzo, A., and Santini, A. (2020). Ready to use therapeutical beverages: focus on functional beverages containing probiotics, prebiotics and synbiotics. Beverages 6: 1–18.10.3390/beverages6020026Search in Google Scholar

Nichols, E., Szoeke, C.E.I., Vollset, S.E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M.T.E., Akinyemi, R.O., Alahdab, F., Asgedom, S.W., et al.. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18: 88–106.10.1016/S1474-4422(18)30403-4Search in Google Scholar

Nilsson, P., Loganathan, K., Sekiguchi, M., Matsuba, Y., Hui, K., Tsubuki, S., Tanaka, M., Iwata, N., Saito, T., and Saido, T.C. (2013). Aβ secretion and plaque formation depend on autophagy. Cell Rep. 5: 61–69.10.1016/j.celrep.2013.08.042Search in Google Scholar PubMed

Nimgampalle, M. and Yellamma, K. (2017). Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res. 11: KC01–KC05.10.7860/JCDR/2017/26106.10428Search in Google Scholar PubMed PubMed Central

Noack, J., Dongowski, G., Hartmann, L., and Blaut, M. (2000). The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J. Nutr. 130: 1225–1231.10.1093/jn/130.5.1225Search in Google Scholar PubMed

O’Donovan, S.M., Crowley, E.K., Brown, J.R.M., O’Sullivan, O., O’Leary, O.F., Timmons, S., Nolan, Y.M., Clarke, D.J., Hyland, N.P., Joyce, S.A., et al.. (2020). Nigral overexpression of α-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neuro Gastroenterol. Motil. 32: e13726.10.1111/nmo.13726Search in Google Scholar PubMed

Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., and O’Leary, O.F. (2015). Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatr. 78: e7–e9.10.1016/j.biopsych.2014.12.023Search in Google Scholar PubMed

Oriach, C.S., Robertson, R.C., Stanton, C., Cryan, J.F., and Dinan, T.G. (2016). Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin. Nutr. Exp. 6: 25–38.10.1016/j.yclnex.2016.01.003Search in Google Scholar

Ouanes, S. and Popp, J. (2019). High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front. Aging Neurosci. 11: 43.10.3389/fnagi.2019.00043Search in Google Scholar

Pandey, K.R., Naik, S.R., and Vakil, B.V. (2015). Probiotics, prebiotics and synbiotics- a review. J. Food Sci. Technol. 52: 7577–7587.10.1007/s13197-015-1921-1Search in Google Scholar

Park, R., Kook, S.Y., Park, J.C., and Mook-Jung, I. (2014). Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-κB signaling. Cell Death Dis. 5: e1299.10.1038/cddis.2014.258Search in Google Scholar

Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A.H., Forslund, K., Hildebrand, F., Prifti, E., Falony, G., et al.. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535: 376–381.10.1038/nature18646Search in Google Scholar

Perry, E.K., Tomlinson, B.E., Blessed, G., Perry, R.H., Cross, A.J., and Crow, T.T. (1981). Noradrenergic and cholinergic systems in senile dementia of Alzheimer type. Lancet 318: 149.10.1016/S0140-6736(81)90327-5Search in Google Scholar

Pflanzner, T., Petsch, B., André-Dohmen, B., Müller-Schiffmann, A., Tschickardt, S., Weggen, S., Stitz, L., Korth, C., and Pietrzik, C.U. (2012). Cellular prion protein participates in amyloid-Β transcytosis across the blood-brain barrier. J. Cerebr. Blood Flow Metabol. 32: 628–632.10.1038/jcbfm.2012.7Search in Google Scholar PubMed PubMed Central

Pisa, D., Alonso, R., Rábano, A., Rodal, I., and Carrasco, L. (2015). Different brain regions are infected with fungi in Alzheimer’s disease. Sci. Rep. 5: 15015.10.1038/srep15015Search in Google Scholar PubMed PubMed Central

Pistollato, F., Iglesias, R.C., Ruiz, R., Aparicio, S., Crespo, J., Lopez, L.D., Manna, P.P., Giampieri, F., and Battino, M. (2018). Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol. Res. 131: 32–43.10.1016/j.phrs.2018.03.012Search in Google Scholar PubMed

Plagman, A., Hoscheidt, S., McLimans, K.E., Klinedinst, B., Pappas, C., Anantharam, V., Kanthasamy, A., and Willette, A.A. (2019). Cholecystokinin and Alzheimer’s disease: a biomarker of metabolic function, neural integrity, and cognitive performance. Neurobiol. Aging 76: 201–207.10.1016/j.neurobiolaging.2019.01.002Search in Google Scholar PubMed PubMed Central

Poyet, M., Groussin, M., Gibbons, S.M., Avila-Pacheco, J., Jiang, X., Kearney, S.M., Perrotta, A.R., Berdy, B., Zhao, S., Lieberman, T.D., et al.. (2019). A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 25: 1442–1452.10.1038/s41591-019-0559-3Search in Google Scholar PubMed

Pritchard, A.B., Crean, S.J., Olsen, I., and Singhrao, S.K. (2017). Periodontitis, microbiomes and their role in Alzheimer’s Disease. Front. Aging Neurosci. 9: 336.10.3389/fnagi.2017.00336Search in Google Scholar PubMed PubMed Central

Quadri, P., Fragiacomo, C., Pezzati, R., Zanda, E., Forloni, G., Tettamanti, M., and Lucca, U. (2004). Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am. J. Clin. Nutr. 80: 114–122.Search in Google Scholar

Queipo-Ortuño, M.I., Seoane, L.M., Murri, M., Pardo, M., Gomez-Zumaquero, J.M., Cardona, F., Casanueva, F., and Tinahones, F.J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS One 8: e65465.10.1371/journal.pone.0065465Search in Google Scholar PubMed PubMed Central

Readhead, B., Haure-Mirande, J.V., Funk, C.C., Richards, M.A., Shannon, P., Haroutunian, V., Sano, M., Liang, W.S., Beckmann, N.D., Price, N.D., et al.. (2018). Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99: 64–82.e7.10.1016/j.neuron.2018.05.023Search in Google Scholar PubMed PubMed Central

Reemst, K., Noctor, S.C., Lucassen, P.J., and Hol, E.M. (2016). The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 10: 566.10.3389/fnhum.2016.00566Search in Google Scholar PubMed PubMed Central

Riviere, G., Riviere, K.H., and Smith, K.S. (2002). Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol. Immunol. 17: 113–118.10.1046/j.0902-0055.2001.00100.xSearch in Google Scholar PubMed

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P.I., Godneva, A., Kalka, I.N., Bar, N., et al.. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature 555: 210–215.10.1038/nature25973Search in Google Scholar PubMed

Ruotolo, R., Minato, I., La Vitola, P., Artioli, L., Curti, C., Franceschi, V., Brindani, N., Amidani, D., Colombo, L., Salmona, M., et al.. (2020). Flavonoid-derived human phenyl-γ-valerolactone metabolites selectively detoxify amyloid-β oligomers and prevent memory impairment in a mouse model of Alzheimer’s disease. Mol. Nutr. Food Res. 64: e1900890.10.1002/mnfr.201900890Search in Google Scholar

Russell, S.L., Gold, M.J., Hartmann, M., Willing, B.P., Thorson, L., Wlodarska, M., Gill, N., Blanchet, M.R., Mohn, W.W., McNagny, K.M., et al.. (2012). Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13: 440–447.10.1038/embor.2012.32Search in Google Scholar PubMed PubMed Central

Santos Rocha, C., Hirao, L.A., Weber, M.G., Méndez-Lagares, G., Chang, W.L.W., Jiang, G., Deere, J.D., Sparger, E.E., Roberts, J., Barry, P.A., et al.. (2018). Subclinical cytomegalovirus infection is associated with altered host immunity, gut microbiota, and vaccine responses. J. Virol. 92: e00167-18.10.1128/JVI.00167-18Search in Google Scholar PubMed PubMed Central

Schluter, J., Peled, J., Taylor, B., Smith, M., Markey, K., Taur, Y., Niehus, R., Staffas, A., Dai, A., Fontana, E., et al.. (2020). The gut microbiota influences how circulating immune cells in humans change from one day to the next. Nature 588: 303–307.10.1038/s41586-020-2971-8Search in Google Scholar

Seminara, R.S., Jeet, C., Biswas, S., Kanwal, B., Iftikhar, W., Sakibuzzaman, M., and Rutkofsky, I.H. (2018). The neurocognitive effects of ghrelin-induced signaling on the Hippocampus: a promising approach to Alzheimer’s disease. Cureus 10: e3285.10.7759/cureus.3285Search in Google Scholar PubMed PubMed Central

Seo, D.O. and Holtzman, D.M. (2020). Gut microbiota: from the forgotten organ to a potential key player in the pathology of Alzheimer’s disease. J. Gerontol. A. Biol. Sci. Med. Sci. 75: 1232–1241.10.1093/gerona/glz262Search in Google Scholar PubMed PubMed Central

Shen, H., Guan, Q., Zhang, X., Yuan, C., Tan, Z., Zhai, L., Hao, Y., Gu, Y., and Han, C. (2020). New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 100: 109884.10.1016/j.pnpbp.2020.109884Search in Google Scholar PubMed

Shen, L., Liu, L., and Ji, H.F. (2017). Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheim. Dis. 56: 385–390.10.3233/JAD-160884Search in Google Scholar PubMed

Shepherd, C.E., Affleck, A.J., Bahar, A.Y., Carew-Jones, F., Gregory, G., Small, D.H., and Halliday, G.M. (2020). Alzheimer’s amyloid-β and tau protein accumulation is associated with decreased expression of the LDL receptor-associated protein in human brain tissue. Brain Behav. 10: e01672.10.1002/brb3.1672Search in Google Scholar PubMed PubMed Central

Shukla, M., Govitrapong, P., Boontem, P., Reiter, R.J., and Satayavivad, J. (2017). Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol. 15: 1010–1031.10.2174/1570159X15666170313123454Search in Google Scholar PubMed PubMed Central

Simard, A.R., Soulet, D., Gowing, G., Julien, J.P., and Rivest, S. (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49: 489–502.10.1016/j.neuron.2006.01.022Search in Google Scholar PubMed

Singhrao, S.K., Chukkapalli, S., Poole, S., Velsko, I., Crean, S.J., and Kesavalu, L. (2017). Chronic porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE-/- mice brains. J. Oral Microbiol. 9: 1270602.10.1080/20002297.2016.1270602Search in Google Scholar PubMed PubMed Central

Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M., Glickman, J.N., and Garrett, W.S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569–573.10.1126/science.1241165Search in Google Scholar PubMed PubMed Central

Sochocka, M., Diniz, B.S., and Leszek, J. (2017). Inflammatory response in the CNS: friend or foe? Mol. Neurobiol. 54: 8071–8089.10.1007/s12035-016-0297-1Search in Google Scholar PubMed PubMed Central

Sordillo, L.A., Sordillo, P.P., and Alfano, R.R. (2020). Abnormal tryptophan metabolism in Alzheimer’s disease (ALZ): label-free spectroscopy suggests an alternative theory of ALZ causation. 112341. https://doi.org/10.1117/12.2550309.Search in Google Scholar

Spinedi, E. and Cardinali, D.P. (2019). Neuroendocrine-metabolic dysfunction and sleep disturbances in neurodegenerative disorders: focus on Alzheimer’s disease and melatonin. Neuroendocrinology 108: 354–364.10.1159/000494889Search in Google Scholar PubMed

Spitzer, P., Condic, M., Herrmann, M., Oberstein, T.J., Scharin-Mehlmann, M., Gilbert, D.F., Friedrich, O., Grömer, T., Kornhuber, J., Lang, R., et al.. (2016). Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci. Rep. 6: 32228.10.1038/srep32228Search in Google Scholar PubMed PubMed Central

Stefano Corazziari, E. (2009). Intestinal mucus barrier in normal and inflamed colon. J. Pediatr. Gastroenterol. Nutr. 48: S54–S55.10.1097/MPG.0b013e3181a117eaSearch in Google Scholar PubMed

Storck, S.E., Hartz, A.M.S., Bernard, J., Wolf, A., Kachlmeier, A., Mahringer, A., Weggen, S., Pahnke, J., and Pietrzik, C.U. (2018). The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM. Brain Behav. Immun. 73: 21–33.10.1016/j.bbi.2018.07.017Search in Google Scholar PubMed PubMed Central

Strandwitz, P., Kim, K.H., Terekhova, D., Liu, J.K., Sharma, A., Levering, J., McDonald, D., Dietrich, D., Ramadhar, T.R., Lekbua, A., et al.. (2019). GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4: 396–403.10.1038/s41564-018-0307-3Search in Google Scholar PubMed PubMed Central

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2014). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558: 263–275.10.1113/jphysiol.2004.063388Search in Google Scholar PubMed PubMed Central

Sullivan, E.L., Nousen, E.K., and Chamlou, K.A. (2014). Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol. Behav. 123: 236–242.10.1016/j.physbeh.2012.07.014Search in Google Scholar PubMed PubMed Central

Sun, J., Xu, J., Ling, Y., Wang, F., Gong, T., Yang, C., Ye, S., Ye, K., Wei, D., Song, Z., et al.. (2019). Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatr. 9: 189.10.1038/s41398-019-0525-3Search in Google Scholar PubMed PubMed Central

Sun, J., Yuan, B., Wu, Y., Gong, Y., Guo, W., Fu, S., Luan, Y., and Wang, W. (2020a). Sodium butyrate protects N2a cells against Aβ toxicity in vitro. Mediat. Inflamm. 2020: 7605160.10.1155/2020/7605160Search in Google Scholar PubMed PubMed Central

Surawicz, C.M., Brandt, L.J., Binion, D.G., Ananthakrishnan, A.N., Curry, S.R., Gilligan, P.H., McFarland, L.V., Mellow, M., and Zuckerbraun, B.S. (2013). Guidelines for diagnosis, treatment, and prevention of clostridium difficile infections. Am. J. Gastroenterol. 108: 478–498.10.1038/ajg.2013.4Search in Google Scholar PubMed

Swidsinski, A., Loening-Baucke, V., Theissig, F., Engelhardt, H., Bengmark, S., Koch, S., Lochs, H., and Dörffel, Y. (2007). Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56: 343–350.10.1136/gut.2006.098160Search in Google Scholar PubMed PubMed Central

Takizawa, C., Thompson, P.L., Van Walsem, A., Faure, C., and Maier, W.C. (2014). Epidemiological and economic burden of Alzheimer’s disease: a systematic literature review of data across Europe and the United States of America. J. Alzheim. Dis. 43: 1271–1284.10.3233/JAD-141134Search in Google Scholar PubMed

Talwar, P., Sinha, J., Grover, S., Rawat, C., Kushwaha, S., Agarwal, R., Taneja, V., and Kukreti, R. (2016). Dissecting complex and multifactorial nature of alzheimer’s disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol. Neurobiol. 53: 4833–4864.10.1007/s12035-015-9390-0Search in Google Scholar PubMed

Tang, Y., Min, Z., Xiang, X.J., Liu, L., Ma, Y.L., Zhu, B.L., Song, L., Tang, J., Deng, X.J., Yan, Z., et al.. (2018). Estrogen-related receptor alpha is involved in Alzheimer’s disease-like pathology. Exp. Neurol. 305: 89–96.10.1016/j.expneurol.2018.04.003Search in Google Scholar PubMed

Tiwari, V. and Patel, A.B. (2012). Impaired glutamatergic and GABAergic function at early age in AβPPswe-PS1dE9 mice: implications for Alzheimer’s disease. J. Alzheim. Dis. 28: 765–769.10.3233/JAD-2011-111502Search in Google Scholar PubMed

Tran, L. and Greenwood-Van Meerveld, B. (2013). Age-associated remodeling of the intestinal epithelial barrier. J. Gerontol. A. Biol. Sci. Med. Sci. 68: 1045–1056.10.1093/gerona/glt106Search in Google Scholar PubMed PubMed Central

Tran, T.T.T., Corsini, S., Kellingray, L., Hegarty, C., Le Gall, G., Narbad, A., Müller, M., Tejera, N., O’Toole, P.W., Minihane, A.M., et al.. (2019). APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J 33: 8221–8231.10.1096/fj.201900071RSearch in Google Scholar PubMed PubMed Central

Tschiffely, A.E., Schuh, R.A., Prokai-Tatrai, K., Ottinger, M.A., and Prokai, L. (2018). An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer’s disease. Horm. Behav. 98: 16–21.10.1016/j.yhbeh.2017.11.015Search in Google Scholar PubMed PubMed Central

Tu, S., Okamoto, S., Lipton, S.A., and Xu, H. (2014). Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9: 48.10.1186/1750-1326-9-48Search in Google Scholar PubMed PubMed Central

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1: 6ra14.10.1126/scitranslmed.3000322Search in Google Scholar PubMed PubMed Central

De Vadder, F., Grasset, E., Holm, L.M., Karsenty, G., Macpherson, A.J., Olofsson, L.E., and Bäckhed, F. (2018). Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. U. S. A 115: 6458–6463.10.1073/pnas.1720017115Search in Google Scholar PubMed PubMed Central

Vagelatos, N.T. and Eslick, G.D. (2013). Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol. Rev. 35: 152–160.10.1093/epirev/mxs012Search in Google Scholar PubMed

Vassilaki, M., Aakre, J.A., Syrjanen, J.A., Mielke, M.M., Geda, Y.E., Kremers, W.K., Machulda, M.M., Alhurani, R.E., Staubo, S.C., Knopman, D.S., et al.. (2018). Mediterranean diet, its components, and amyloid imaging biomarkers. J. Alzheim. Dis. 64: 281–290.10.3233/JAD-171121Search in Google Scholar PubMed PubMed Central

Vendrik, K.E.W., Ooijevaar, R.E., de Jong, P.R.C., Laman, J.D., van Oosten, B.W., van Hilten, J.J., Ducarmon, Q.R., Keller, J.J., Kuijper, E.J., and Contarino, M.F. (2020). Fecal microbiota transplantation in neurological disorders. Front. Cell. Infect. Microbiol. 10: 98.10.3389/fcimb.2020.00098Search in Google Scholar PubMed PubMed Central

Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al.. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7: 13537.10.1038/s41598-017-13601-ySearch in Google Scholar PubMed PubMed Central

Vogt, N.M., Romano, K.A., Darst, B.F., Engelman, C.D., Johnson, S.C., Carlsson, C.M., Asthana, S., Blennow, K., Zetterberg, H., Bendlin, B.B., et al.. (2018). The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimer’s Res. Ther. 10: 124.10.1186/s13195-018-0451-2Search in Google Scholar PubMed PubMed Central

Waldor, M.K. and Mekalanos, J.J. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1913.10.1126/science.272.5270.1910Search in Google Scholar PubMed

Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., et al.. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5: 220–230.10.1038/ismej.2010.118Search in Google Scholar PubMed PubMed Central

Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., Xie, Z., Chu, X., Yang, J., Wang, H., et al.. (2019). Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 29: 787–803.10.1038/s41422-019-0216-xSearch in Google Scholar PubMed PubMed Central

Wenzel, T.J., Gates, E.J., Ranger, A.L., and Klegeris, A. (2020). Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 105: 103493.10.1016/j.mcn.2020.103493Search in Google Scholar PubMed

Westfall, S., Lomis, N., and Prakash, S. (2019). A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PloS One 14: e0214985.10.1371/journal.pone.0214985Search in Google Scholar PubMed PubMed Central

White, R.A., Callister, S.J., Moore, R.J., Baker, E.S., and Jansson, J.K. (2016). The past, present and future of microbiome analyses. Nat. Protoc. 11: 2049–2053.10.1038/nprot.2016.148Search in Google Scholar

Widner, B., Leblhuber, F., Walli, J., Tilz, G.P., Demel, U., and Fuchs, D. (2000). Tryptophan degradation and immune activation in Alzheimer’s disease. J. Neural. Transm. 107: 343–353.10.1007/s007020050029Search in Google Scholar

Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C., and Siuzdak, G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U. S. A 106: 3698–3703.10.1073/pnas.0812874106Search in Google Scholar

Xu, J., Zhang, Y., Qiu, C., and Cheng, F. (2017). Global and regional economic costs of dementia: a systematic review. Lancet 390: S47.10.1016/S0140-6736(17)33185-9Search in Google Scholar

Yan, Q., Gu, Y., Li, X., Yang, W., Jia, L., Chen, C., Han, X., Huang, Y., Zhao, L., Li, P., et al.. (2017). Alterations of the gut microbiome in hypertension. Front. Cell. Infect. Microbiol. 7: 381.10.3389/fcimb.2017.00381Search in Google Scholar PubMed PubMed Central

Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264–276.10.1016/j.cell.2015.02.047Search in Google Scholar PubMed PubMed Central

Yin, J., Li, Y., Han, H., Chen, S., Gao, J., Liu, G., Wu, X., Deng, J., Yu, Q., Huang, X., et al.. (2018). Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal Res. 65: e12524.10.1111/jpi.12524Search in Google Scholar PubMed

Zeller, G., Tap, J., Voigt, A.Y., Sunagawa, S., Kultima, J.R., Costea, P.I., Amiot, A., Böhm, J., Brunetti, F., Habermann, N., et al.. (2014). Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol. Syst. Biol. 10: 766.10.15252/msb.20145645Search in Google Scholar PubMed PubMed Central

Zhan, X., Stamova, B., Jin, L.W., Decarli, C., Phinney, B., and Sharp, F.R. (2016). Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 87: 2324–2332.10.1212/WNL.0000000000003391Search in Google Scholar PubMed PubMed Central

Zhang, P., Xu, S., Zhu, Z., and Xu, J. (2019). Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur. J. Med. Chem. 176: 228–247.10.1016/j.ejmech.2019.05.020Search in Google Scholar PubMed

Zhao, Y. and Lukiw, W.J. (2015). Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci. 1: e138.Search in Google Scholar

Zhao, J., O’Connor, T., and Vassar, R. (2011). The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation 8: 150.10.1186/1742-2094-8-150Search in Google Scholar PubMed PubMed Central

Zhao, Y., Dua, P., and Lukiw, W.J. (2015). Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD). J. Alzheimer’s Dis. Park. 05: 177.10.4172/2161-0460.1000177Search in Google Scholar

Zhao, Y., Jaber, V., and Lukiw, W.J. (2017a). Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front. Cell. Infect. Microbiol. 7: 318.10.3389/fcimb.2017.00318Search in Google Scholar PubMed PubMed Central

Zhao, Y., Cong, L., Jaber, V., and Lukiw, W.J. (2017b). Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front. Immunol. 8: 1064.10.3389/fimmu.2017.01064Search in Google Scholar PubMed PubMed Central

Zhu, D., Ma, Y., Ding, S., Jiang, H., and Fang, J. (2018). Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. Biomed Res. Int. 2018: 2607679.10.1155/2018/2607679Search in Google Scholar PubMed PubMed Central

Zhuang, Z.Q., Shen, L.L., Li, W.W., Fu, X., Zeng, F., Gui, L., Lü, Y., Cai, M., Zhu, C., Tan, Y.L., et al.. (2018). Gut microbiota is altered in patients with alzheimer’s disease. J. Alzheim. Dis. 63: 1337–1346.10.3233/JAD-180176Search in Google Scholar PubMed

Zlokovic, B.V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12: 723–738.10.1038/nrn3114Search in Google Scholar PubMed PubMed Central

Zuo, T., Lu, X.J., Zhang, Y., Cheung, C.P., Lam, S., Zhang, F., Tang, W., Ching, J.Y.L., Zhao, R., Chan, P.K.S., et al.. (2019). Gut mucosal virome alterations in ulcerative colitis. Gut 68: 1169–1179.10.1136/gutjnl-2018-318131Search in Google Scholar PubMed PubMed Central

Zurita, M.F., Cárdenas, P.A., Sandoval, M.E., Peña, M.C., Fornasini, M., Flores, N., Monaco, M.H., Berding, K., Donovan, S.M., Kuntz, T., et al.. (2020). Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: a case-control study in Ecuador. Gut Microb. 11: 453–464.10.1080/19490976.2019.1662260Search in Google Scholar PubMed PubMed Central

Received: 2020-10-25
Accepted: 2021-02-19
Published Online: 2021-03-17
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0122/html
Scroll to top button