Abstract
The gut microbiota plays an important role in neurological diseases via the gut–brain axis. Many factors such as diet, antibiotic therapy, stress, metabolism, age, geography and genetics are known to play a critical role in regulating the colonization pattern of the microbiota. Recent studies have shown the role of the low carbohydrate, adequate protein, and high fat “ketogenic diet” in remodeling the composition of the gut microbiome and thereby facilitating protective effects in various central nervous system (CNS) disorders. Gut microbes are found to be involved in the pathogenesis of various CNS disorders like epilepsy, Parkinson’s disease (PD), Alzheimer’s disease (AD), autism spectrum disorders (ASDs), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and stress, anxiety and depression. In vivo studies have shown an intricate link between gut microbes and KD and specific microbes/probiotics proved useful in in vivo CNS disease models. In the present review, we discuss the gut–brain bidirectional axis and the underlying mechanism of KD-based therapy targeting gut microbiome in in vivo animal models and clinical studies in neurological diseases. Also, we tried to infer how KD by altering the microbiota composition contributes towards the protective role in various CNS disorders. This review helps to uncover the mechanisms that are utilized by the KD and gut microbiota to modulate gut–brain axis functions and may provide novel opportunities to target therapies to the gut to treat neurologic disorders.
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
Research funding: None declared.
Conflict of interest statement: Authors state no conflict of interest.
References
Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., and Rubin, R.A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11: 22. https://doi.org/10.1186/1471-230x-11-22.10.1186/1471-230X-11-22Search in Google Scholar
Ahn, Y., Narous, M., Tobias, R., Rho, J.M., and Mychasiuk, R. (2014). The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci. 36: 371–380. https://doi.org/10.1159/000362645.10.1159/000362645Search in Google Scholar
Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., Holscher, H.D., and Woods, J.A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50: 747–757. https://doi.org/10.1249/mss.0000000000001495.10.1249/MSS.0000000000001495Search in Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5®), 5th ed. Washington, DC, USA: American Psychiatric Association.10.1176/appi.books.9780890425596Search in Google Scholar
Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H., and Heijtz, R.D. (2017). The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol. Psychiatr. 22: 257–266. https://doi.org/10.1038/mp.2016.182.10.1038/mp.2016.182Search in Google Scholar
Arnold, J.W., Roach, J., and Azcarate-Peril, M.A. (2016). Emerging technologies for gut microbiome research. Trends Microbiol. 24: 887–901. https://doi.org/10.1016/j.tim.2016.06.008.10.1016/j.tim.2016.06.008Search in Google Scholar
Azcárate-Peril, M.A., Sikes, M., and Bruno-Bárcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am. J. Physiol. Liver Physiol 301: G401–G424. https://doi.org/10.1152/ajpgi.00110.2011.10.1152/ajpgi.00110.2011Search in Google Scholar
Bahr, L.S., Bock, M., Liebscher, D., Bellmann-strobl, J., Franz, L., Prüß, A., Schumann, D., Piper, S.K., Kessler, C.S., Steckhan, N., et al. (2020). Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): protocol of a randomized controlled study. Trials 21: 1–9. https://doi.org/10.1186/s13063-019-3928-9.10.1186/s13063-019-3928-9Search in Google Scholar
Beloosesky, Y., Grosman, B., Marmelstein, V., and Grinblat, J. (2000). Convulsions induced by metronidazole treatment for Clostridium difficile-associated disease in chronic renal failure. Am. J. Med. Sci. 319: 338–339. https://doi.org/10.1016/s0002-9629(15)40762-1.10.1016/S0002-9629(15)40762-1Search in Google Scholar
Bendtsen, K.M.B., Krych, L., Sørensen, D.B., Pang, W., Nielsen, D.S., Josefsen, K., Hansen, L.H., Sørensen, S.J., and Hansen, A.K. (2012). Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PloS One 7: e46231, https://doi.org/10.1371/journal.pone.0046231.10.1371/journal.pone.0046231Search in Google Scholar PubMed PubMed Central
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., Mccoy, K.D., et al. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599–609. https://doi.org/10.1053/j.gastro.2011.04.052.10.1053/j.gastro.2011.04.052Search in Google Scholar PubMed
Berk, M., Williams, L.J., Jacka, F.N., O’Neil, A., Pasco, J.A., Moylan, S., Allen, N.B., Stuart, A.L., Hayley, A.C., and Byrne, M.L. (2013). So depression is an inflammatory disease, but where does the inflammation come from?. BMC Med. 11: 1–16. https://doi.org/10.1186/1741-7015-11-200.10.1186/1741-7015-11-200Search in Google Scholar PubMed PubMed Central
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., Zur, M., et al. (2019a). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572: 474–501. https://doi.org/10.1038/s41586-019-1443-5.10.1038/s41586-019-1443-5Search in Google Scholar PubMed
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., and Zur, M. (2019b). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572: 474–480. https://doi.org/10.1038/s41586-019-1443-5.10.1038/s41586-019-1443-5Search in Google Scholar
Bourassa, M.W., Alim, I., Bultman, S.J., and Ratan, R.R. (2016). Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 625: 56–63. https://doi.org/10.1016/j.neulet.2016.02.009.10.1016/j.neulet.2016.02.009Search in Google Scholar PubMed PubMed Central
Braak, H., Rüb, U., Gai, W.P., and Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm. 110: 517–536. https://doi.org/10.1007/s00702-002-0808-2.10.1007/s00702-002-0808-2Search in Google Scholar PubMed
Caplliure-llopis, J., Carrera-juliá, T.P.S., Eraci, M.C., Mar, D.M., Enrique, J., and Rubia, D. (2020). Therapeutic alternative of the ketogenic mediterranean diet to improve mitochondrial activity in amyotrophic lateral sclerosis (ALS): a comprehensive review. Food Sci. Nutr. 8: 23–35, https://doi.org/10.1002/fsn3.1324.10.1002/fsn3.1324Search in Google Scholar PubMed PubMed Central
Cho, I., Yamanishi, S., Cox, L., Methé, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., et al. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488: 621–6. https://doi.org/10.1038/nature11400.10.1038/nature11400Search in Google Scholar PubMed PubMed Central
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’connor, E.M., Cusack, S., Harris, H.M.B., Coakley, M., Lakshminarayanan, B., and O’Sullivan, O. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184. https://doi.org/10.1038/nature11319.10.1038/nature11319Search in Google Scholar PubMed
Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10: 735–742. https://doi.org/10.1038/nrmicro2876.10.1038/nrmicro2876Search in Google Scholar PubMed
Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science 326: 1694–1697. https://doi.org/10.1126/science.1177486.10.1126/science.1177486Search in Google Scholar
Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13: 701–712. https://doi.org/10.1038/nrn3346.10.1038/nrn3346Search in Google Scholar
Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V., and Dinan, T.G. (2020). The gut microbiome in neurological disorders. Lancet Neurol. 19: 179–194. https://doi.org/10.1016/s1474-4422(19)30356-4.10.1016/S1474-4422(19)30356-4Search in Google Scholar
De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D.I., Cristofori, F., Guerzoni, M.E., Gobbetti, M., and Francavilla, R. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PloS One 8: e76993. https://doi.org/10.1371/journal.pone.0076993.10.1371/journal.pone.0076993Search in Google Scholar
De Lau, L.M.L., and Breteler, M.M.B. (2006). Epidemiology of Parkinson’s disease. Lancet Neurol. 5: 525–535. https://doi.org/10.1016/s1474-4422(06)70471-9.10.1016/S1474-4422(06)70471-9Search in Google Scholar
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2014). Microbiota is essential for social development in the mouse. Mol. Psychiatr. 19: 146–148. https://doi.org/10.1038/mp.2013.65.10.1038/mp.2013.65Search in Google Scholar PubMed PubMed Central
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43: 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009.10.1016/j.jpsychires.2008.03.009Search in Google Scholar PubMed
Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108: 3047–3052. https://doi.org/10.1073/pnas.1010529108.10.1073/pnas.1010529108Search in Google Scholar PubMed PubMed Central
Elder, J.H. (2008). The gluten-free, casein-free diet in autism: an overview with clinical implications. Nutr. Clin. Pract. 23: 583–588. https://doi.org/10.1177/0884533608326061.10.1177/0884533608326061Search in Google Scholar PubMed
Evrensel, A., and Ceylan, M.E. (2015). The gut-brain axis: the missing link in depression. Clin. Psychopharmacol. Neuroscience 13: 239. https://doi.org/10.9758/cpn.2015.13.3.239.10.9758/cpn.2015.13.3.239Search in Google Scholar PubMed PubMed Central
Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016a). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7: 1479. https://doi.org/10.3389/fmicb.2016.01479.10.3389/fmicb.2016.01479Search in Google Scholar PubMed PubMed Central
Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016b). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7: 1–7. https://doi.org/10.3389/fmicb.2016.01479.10.3389/fmicb.2016.01479Search in Google Scholar
Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C., Henley, K.E., Wolcott, R.D., Youn, E., Summanen, P.H., Granpeesheh, D., and Dixon, D. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16: 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008.10.1016/j.anaerobe.2010.06.008Search in Google Scholar PubMed
Foster, J.A., and Neufeld, K.-A.M. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36: 305–312. https://doi.org/10.1016/j.tins.2013.01.005.10.1016/j.tins.2013.01.005Search in Google Scholar PubMed
Fukao, T., Lopaschuk, G.D., and Mitchell, G.A. (2004). Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fat. Acids 70: 243–251. https://doi.org/10.1016/j.plefa.2003.11.001.10.1016/j.plefa.2003.11.001Search in Google Scholar PubMed
Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9: 286. https://doi.org/10.1038/nrgastro.2012.32.10.1038/nrgastro.2012.32Search in Google Scholar PubMed
Ghaisas, S., Maher, J., and Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158: 52–62. https://doi.org/10.1016/j.pharmthera.2015.11.012.10.1016/j.pharmthera.2015.11.012Search in Google Scholar PubMed PubMed Central
Gianchecchi, E., and Fierabracci, A. (2019). Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20020283.10.3390/ijms20020283Search in Google Scholar PubMed PubMed Central
Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359. https://doi.org/10.1126/science.1124234.10.1126/science.1124234Search in Google Scholar PubMed PubMed Central
Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheim. Dis. 26: 187–197. https://doi.org/10.3233/jad-2011-110080.10.3233/JAD-2011-110080Search in Google Scholar PubMed
Grochowska, M., Laskus, T. and Radkowski, M. (2019). Gut microbiota in neurological disorders 375–383. https://doi.org/10.1007/s00005-019-00561-6.10.1007/s00005-019-00561-6Search in Google Scholar PubMed PubMed Central
Gubert, C., Kong, G., Renoir, T., and Hannan, A.J. (2020). Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol. Dis. 134: 104621. https://doi.org/10.1016/j.nbd.2019.104621.10.1016/j.nbd.2019.104621Search in Google Scholar PubMed
Hajjo, H., and Geva-Zatorsky, N. (2020). Gut microbiota–host interactions now also brain-immune axis. Curr. Opin. Neurobiol. 62: 53–59. https://doi.org/10.1016/j.conb.2019.10.009.10.1016/j.conb.2019.10.009Search in Google Scholar PubMed
Hansen, S.N., Ipsen, D.H., Schou-Pedersen, A.M., Lykkesfeldt, J., and Tveden-Nyborg, P. (2018). Long term westernized diet leads to region-specific changes in brain signaling mechanisms. Neurosci. Lett. 676: 85–91. https://doi.org/10.1016/j.neulet.2018.04.014.10.1016/j.neulet.2018.04.014Search in Google Scholar PubMed
Hao, J., Liu, R., Turner, G., Shi, F.-D., and Rho, J.M. (2012). Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PloS One 7: e35476, https://doi.org/10.1371/journal.pone.0035476.10.1371/journal.pone.0035476Search in Google Scholar PubMed PubMed Central
Haroon, E., Raison, C.L., and Miller, A.H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37: 137–162. https://doi.org/10.1038/npp.2011.205.10.1038/npp.2011.205Search in Google Scholar PubMed PubMed Central
He, Z., Cui, B.-T., Zhang, T., Li, P., Long, C.-Y., Ji, G.-Z., and Zhang, F.-M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J. Gastroenterol. 23: 3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565.10.3748/wjg.v23.i19.3565Search in Google Scholar PubMed PubMed Central
Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108: 3047–3052. https://doi.org/10.1073/pnas.1010529108.10.1073/pnas.1010529108Search in Google Scholar PubMed PubMed Central
Holmes, E., Li, J.V., Marchesi, J.R., and Nicholson, J.K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metabol. 16: 559–564. https://doi.org/10.1016/j.cmet.2012.10.007.10.1016/j.cmet.2012.10.007Search in Google Scholar PubMed
Hornik, C.P., Benjamin, D.KJr, Smith, P.B., Pencina, M.J., Tremoulet, A.H., and Capparelli, E.V. (2016). Best pharmaceuticals for children act—pediatric trials network. Electronic health records and pharmacokinetic modeling to assess the relationship between ampicillin exposure and seizure risk in neonates. J. Pediatr. 178: 125–129. https://doi.org/10.1016/j.jpeds.2016.07.011.10.1016/j.jpeds.2016.07.011Search in Google Scholar PubMed PubMed Central
Hufeldt, M.R., Nielsen, D.S., Vogensen, F.K., Midtvedt, T., and Hansen, A.K. (2010). Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 60: 336–47.Search in Google Scholar
Humann, J., Mann, B., Gao, G., Moresco, P., Ramahi, J., Loh, L.N., Farr, A., Hu, Y., Durick-Eder, K., and Fillon, S.A. (2016). Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 19: 388–399. https://doi.org/10.1016/j.chom.2016.02.009.10.1016/j.chom.2016.02.009Search in Google Scholar PubMed PubMed Central
Jackson, A., Forsyth, C.B., Shaikh, M., Voigt, R.M., Engen, P.A., Ramirez, V., Keshavarzian, A., and Martino, D. (2019). Diet in Parkinson’s disease: critical role for the microbiome. Front. Neurol. 10: 1–21. https://doi.org/10.3389/fneur.2019.01245.10.3389/fneur.2019.01245Search in Google Scholar PubMed PubMed Central
Jangi, S., Gandhi, R., Li, N., Von Glehn, F., Yan, R., Melo, K., Mazzola, M., Patel, B., Glanz, B., and Cook, S. (2015). Alterations of the human gut microbiome in multiple sclerosis. In: Multiple sclerosis journal. Sage Publications Ltd, London ,UK, p. 168.10.1038/ncomms12015Search in Google Scholar PubMed PubMed Central
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., and Shi, J. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48: 186–194. https://doi.org/10.1016/j.bbi.2015.03.016.10.1016/j.bbi.2015.03.016Search in Google Scholar PubMed
Jiang, H., Zhang, X., Yu, Z., Zhang, Z., Deng, M., Zhao, J., and Ruan, B. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 104: 130–136. https://doi.org/10.1016/j.jpsychires.2018.07.007.10.1016/j.jpsychires.2018.07.007Search in Google Scholar PubMed
Karl, J.P., Margolis, L.M., Madslien, E.H., Murphy, N.E., Castellani, J.W., Gundersen, Y., Hoke, A.V., Levangie, M.W., Kumar, R., and Chakraborty, N. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Liver Physiol 312: G559–G571. https://doi.org/10.1152/ajpgi.00066.2017.10.1152/ajpgi.00066.2017Search in Google Scholar PubMed
Karlsson, C.L.J., Önnerfält, J., Xu, J., Molin, G., Ahrné, S., and Thorngren-Jerneck, K. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20: 2257–2261. https://doi.org/10.1038/oby.2012.110.10.1038/oby.2012.110Search in Google Scholar PubMed
Kawabata, S., Higgins, G.A., and Gordon, J.W. (1991). Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354: 476–478. https://doi.org/10.1038/354476a0.10.1038/354476a0Search in Google Scholar PubMed
Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., and Shannon, K.M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30: 1351–1360. https://doi.org/10.1002/mds.26307.10.1002/mds.26307Search in Google Scholar PubMed
Khanna, S., and Tosh, P.K. (2014). A clinician’s primer on the role of the microbiome in human health and disease. In: Mayo clinic proceedings. Elsevier, pp. 107–114.10.1016/j.mayocp.2013.10.011Search in Google Scholar PubMed
Klein, M.S., Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., Vogel, H.J., and Shearer, J. (2016). Metabolomic modeling to monitor host responsiveness to gut microbiota manipulation in the BTBRT + tf/j mouse. J. Proteome Res. 15: 1143–1150. https://doi.org/10.1021/acs.jproteome.5b01025.10.1021/acs.jproteome.5b01025Search in Google Scholar PubMed
Lindefeldt, M., Eng, A., Darban, H., Bjerkner, A., Zetterström, C.K., Allander, T., Andersson, B., Borenstein, E., Dahlin, M., and Prast-Nielsen, S. (2019). The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Biofilms and Microbiomes 5: 1–13. https://doi.org/10.1038/s41522-018-0073-2.10.1038/s41522-018-0073-2Search in Google Scholar PubMed PubMed Central
Liu, F., Li, J., Wu, F., Zheng, H., Peng, Q., and Zhou, H. (2019). Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry 9: 43. https://doi.org/10.1038/s41398-019-0389-6.10.1038/s41398-019-0389-6Search in Google Scholar PubMed PubMed Central
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230. https://doi.org/10.1038/nature11550.10.1038/nature11550Search in Google Scholar PubMed PubMed Central
Lubomski, M., Tan, A.H., Lim, S.-Y., Holmes, A.J., Davis, R.L., and Sue, C.M. (2019). Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. 267: 1–17. https://doi.org/10.1136/jnnp-2019-anzan.56.10.1007/s00415-019-09320-1Search in Google Scholar PubMed
Luczynski, P., Whelan, S.O., O’Sullivan, C., Clarke, G., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2016). Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 44: 2654–2666. https://doi.org/10.1111/ejn.13291.10.1111/ejn.13291Search in Google Scholar PubMed PubMed Central
Lv, F., Chen, S., Wang, L., Jiang, R., Tian, H., Li, J., Yao, Y., and Zhuo, C. (2017). The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget 8: 100899. https://doi.org/10.18632/oncotarget.21284.10.18632/oncotarget.21284Search in Google Scholar PubMed PubMed Central
Ma, D., Wang, A.C., Parikh, I., Green, S.J., Hoffman, J.D., Chlipala, G., Murphy, M.P., Sokola, B.S., Bauer, B., Hartz, A.M.S., et al. (2018). Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 8. https://doi.org/10.1038/s41598-018-25190-5.10.1038/s41598-018-25190-5Search in Google Scholar PubMed PubMed Central
Macpherson, A.J., and Harris, N.L. (2004). Interaction between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4: 1626–1632. https://doi.org/10.1038/nri1373.10.1038/nri1373Search in Google Scholar PubMed
Masood, W. and Uppaluri, K.R. (2020). Ketogenic diet 4–7.Search in Google Scholar
Mathewson, N.D., Jenq, R., Mathew, A.V., Koenigsknecht, M., Hanash, A., Toubai, T., Oravecz-Wilson, K., Wu, S.-R., Sun, Y., and Rossi, C. (2016). Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17: 505–513. https://doi.org/10.1038/ni.3400.10.1038/ni.3400Search in Google Scholar PubMed PubMed Central
Matteoli, G., and Boeckxstaens, G.E. (2013). The vagal innervation of the gut and immune homeostasis. Gut 62: 1214–1222. https://doi.org/10.1136/gutjnl-2012-302550.10.1136/gutjnl-2012-302550Search in Google Scholar PubMed PubMed Central
Mazurek, M.O., Vasa, R.A., Kalb, L.G., Kanne, S.M., Rosenberg, D., Keefer, A., Murray, D.S., Freedman, B., and Lowery, L.A. (2013). Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J. Abnorm. Child Psychol. 41: 165–176. https://doi.org/10.1007/s10802-012-9668-x.10.1007/s10802-012-9668-xSearch in Google Scholar PubMed
Medel-Matus, J., Shin, D., Dorfman, E., Sankar, R., and Mazarati, A. (2018). Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 3: 290–294. https://doi.org/10.1002/epi4.12114.10.1002/epi4.12114Search in Google Scholar PubMed PubMed Central
Miller, R.G., Mitchell, J.D., Lyon, M., and Moore, D.H. (2007). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 2: 191–206, https://doi.org/10.1002/14651858.CD001447.10.1002/14651858.CD001447Search in Google Scholar PubMed
Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., Tomita, A., Sato, W., and Kim, S.-W. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PloS One 10, e0137429. https://doi.org/10.1371/journal.pone.0137429.10.1371/journal.pone.0137429Search in Google Scholar PubMed PubMed Central
Molendijk, M., Molero, P., Sánchez-Pedreño, F.O., Van der Does, W., and Martínez-González, M.A. (2018). Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 226: 346–354. https://doi.org/10.1016/j.jad.2017.09.022.10.1016/j.jad.2017.09.022Search in Google Scholar PubMed
Molendijk, M.L., Bus, B.A.A., Spinhoven, P., Penninx, B.W.J.H., Kenis, G., Prickaerts, J., Voshaar, R.C.O., and Elzinga, B.M. (2011). Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol. Psychiatr. 16: 1088–1095. https://doi.org/10.1038/mp.2010.98.10.1038/mp.2010.98Search in Google Scholar PubMed PubMed Central
Mörkl, S., Lackner, S., Meinitzer, A., Mangge, H., Lehofer, M., Halwachs, B., Gorkiewicz, G., Kashofer, K., Painold, A., and Holl, A.K. (2018). Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur. J. Nutr. 57: 2985–2997. https://doi.org/10.1007/s00394-018-1784-0.10.1007/s00394-018-1784-0Search in Google Scholar PubMed PubMed Central
Mychasiuk, R., and Rho, J.M. (2017). Genetic modifications associated with ketogenic diet treatment in the BTBRT+ Tf/J mouse model of autism spectrum disorder. Autism Res. 10: 456–471. https://doi.org/10.1002/aur.1682.10.1002/aur.1682Search in Google Scholar PubMed
Nagpal, R., Neth, B.J., Wang, S., Craft, S., and Yadav, H. (2019a). Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529–542. https://doi.org/10.1016/j.ebiom.2019.08.032.10.1016/j.ebiom.2019.08.032Search in Google Scholar PubMed PubMed Central
Nagpal, R., Neth, B.J., Wang, S., Craft, S., and Yadav, H. (2019b). Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529–542. https://doi.org/10.1016/j.ebiom.2019.08.032.10.1016/j.ebiom.2019.08.032Search in Google Scholar PubMed PubMed Central
Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., and Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neuro Gastroenterol. Motil. 26: 1155–1162. https://doi.org/10.1111/nmo.12378.10.1111/nmo.12378Search in Google Scholar PubMed
Neufeld, K.-A.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol. 4: 492–494. https://doi.org/10.4161/cib.15702.10.4161/cib.15702Search in Google Scholar
Neunlist, M., Van Landeghem, L., Mahé, M.M., Derkinderen, P., Des Varannes, S.B., and Rolli-Derkinderen, M. (2013). The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10: 90–100. https://doi.org/10.1038/nrgastro.2012.221.10.1038/nrgastro.2012.221Search in Google Scholar PubMed
Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., and Shearer, J. (2016a). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7: 1–6. https://doi.org/10.1186/s13229-016-0099-3.10.1186/s13229-016-0099-3Search in Google Scholar PubMed PubMed Central
Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., and Shearer, J. (2016b). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7: 37. https://doi.org/10.1186/s13229-016-0099-3.10.1186/s13229-016-0099-3Search in Google Scholar
Nguyen, M.D., D’Aigle, T., Gowing, G., Julien, J.-P., and Rivest, S. (2004). Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 24: 1340–1349. https://doi.org/10.1523/jneurosci.4786-03.2004.10.1523/JNEUROSCI.4786-03.2004Search in Google Scholar PubMed PubMed Central
Olson, C.A., Vuong, H.E., Yano, J.M., Liang, Q.Y., Nusbaum, D.J., and Hsiao, E.Y. (2018). The Gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173: 1728–1741, e13. https://doi.org/10.1016/j.cell.2018.04.027.10.1016/j.cell.2018.04.027Search in Google Scholar PubMed PubMed Central
Panzer, A.R., and Lynch, S.V. (2015). Influence and effect of the human microbiome in allergy and asthma. Curr. Opin. Rheumatol. 27: 373–380. https://doi.org/10.1097/bor.0000000000000191.10.1097/BOR.0000000000000191Search in Google Scholar PubMed
Paoli, A., Mancin, L., Bianco, A., Thomas, E., and Piccini, F. (2019). Ketogenic diet and Microbiota: friends or Enemies . Genes 10: 534. https://doi.org/10.3390/genes10070534.10.3390/genes10070534Search in Google Scholar PubMed PubMed Central
Park, S., Zhang, T., Wu, X., and Qiu, J.Y. (2020a). Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 67: 19–87, https://doi.org/10.3164/jcbn.19-87.10.3164/jcbn.19-87Search in Google Scholar PubMed PubMed Central
Park, S., Zhang, T., Wu, X., and Yi Qiu, J. (2020b). Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 67: 1–11, https://doi.org/10.3164/jcbn.19-87.10.3164/jcbn.19-87Search in Google Scholar
Pascale, A., Marchesi, N., Govoni, S., Coppola, A., and Gazzaruso, C. (2019). The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr. Opin. Pharmacol. 49: 1–5. https://doi.org/10.1016/j.coph.2019.03.011.10.1016/j.coph.2019.03.011Search in Google Scholar PubMed
Peng, A., Qiu, X., Lai, W., Li, W., Zhang, L., Zhu, X., He, S., Duan, J., and Chen, L. (2018). Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 147: 102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013.10.1016/j.eplepsyres.2018.09.013Search in Google Scholar PubMed
Petra, A.I., Panagiotidou, S., Hatziagelaki, E., Stewart, J.M., Conti, P., and Theoharides, T.C. (2015). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Therapeut. 37: 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002.10.1016/j.clinthera.2015.04.002Search in Google Scholar PubMed PubMed Central
Pray, L., Pillsbury, L., and Tomayko, E. (2013). The human microbiome, diet, and health. In The human microbiome, diet, and health, pp. 1–416, Bookshelf ID: NBK109559, https://doi.org/10.17226/13522.10.17226/13522Search in Google Scholar PubMed
Quigley, E.M.M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 17. https://doi.org/10.1007/s11910-017-0802-6.10.1007/s11910-017-0802-6Search in Google Scholar PubMed
Rao, S.S.C., Rehman, A., Yu, S., and De Andino, N.M. (2018). Brain fogginess, gas and bloating: a link between SIBO, probiotics and metabolic acidosis. Clin. Transl. Gastroenterol. 9. https://doi.org/10.1038/s41424-018-0030-7.10.1038/s41424-018-0030-7Search in Google Scholar PubMed PubMed Central
Reinshagen, M., Egger, B., Procaccino, F., and Eysselein, V.E. (1997). Neuropeptides in inflammatory bowel disease: an update. Inflamm. Bowel Dis 3: 303–313. https://doi.org/10.1097/00054725-199712000-00008.10.1097/00054725-199712000-00008Search in Google Scholar
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7. https://doi.org/10.3390/microorganisms7010014.10.3390/microorganisms7010014Search in Google Scholar PubMed PubMed Central
Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatr. 21: 738–748. https://doi.org/10.1038/mp.2016.50.10.1038/mp.2016.50Search in Google Scholar PubMed PubMed Central
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167: 1469–1480, e12. https://doi.org/10.1016/j.cell.2016.11.018.10.1016/j.cell.2016.11.018Search in Google Scholar PubMed PubMed Central
Sartor, R.B. (1997). Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am. J. Gastroenterol. 92: 5S–11S.Search in Google Scholar
Scheperjans, F., Aho, V., Pereira, P.A.B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30: 350–358. https://doi.org/10.1002/mds.26069.10.1002/mds.26069Search in Google Scholar PubMed
Senghor, B., Sokhna, C., Ruimy, R., and Lagier, J.C. (2018). Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J: 1–9, 7–8. https://doi.org/10.1016/j.humic.2018.01.001.10.1016/j.humic.2018.01.001Search in Google Scholar
Sommer, F., and Bäckhed, F. (2013). The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238. https://doi.org/10.1038/nrmicro2974.10.1038/nrmicro2974Search in Google Scholar PubMed
Sutter, R., Rüegg, S., and Tschudin-Sutter, S. (2015). Seizures as adverse events of antibiotic drugs: a systematic review. Neurology 85: 1332–1341. https://doi.org/10.1212/wnl.0000000000002023.10.1212/WNL.0000000000002023Search in Google Scholar PubMed
Swidsinski, A., Dörffel, Y., Loening-Baucke, V., Gille, C., Göktas, Ö., Reißhauer, A., Neuhaus, J., Weylandt, K.-H., Guschin, A., and Bock, M. (2017a). Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front. Microbiol. 8: 1141. https://doi.org/10.3389/fmicb.2017.01141.10.3389/fmicb.2017.01141Search in Google Scholar PubMed PubMed Central
Swidsinski, A., Dörffel, Y., Loening-baucke, V., Gille, C., Göktas, Ö., Reißhauer, A., Neuhaus, J., and Weylandt, K. (2017b). Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front. Microbiol. 8: 1–9. https://doi.org/10.3389/fmicb.2017.01141.10.3389/fmicb.2017.01141Search in Google Scholar
Tlaskalová-Hogenová, H., Štěpánková, R., Hudcovic, T., Tučková, L., Cukrowska, B., Lodinová-Žádnı́ková, R., Kozáková, H., Rossmann, P., Bártová, J., Sokol, D., et al. (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93: 97–108. https://doi.org/10.1016/j.imlet.2004.02.005.10.1016/j.imlet.2004.02.005Search in Google Scholar PubMed
Tomova, A., Husarova, V., Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., and Ostatnikova, D. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Beyond Behav. 138: 179–187. https://doi.org/10.1016/j.physbeh.2014.10.033.10.1016/j.physbeh.2014.10.033Search in Google Scholar PubMed
Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009). The effect of diet on the human gut microbiome. A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med 1, 6ra14. https://doi.org/10.1126/scitranslmed.3000322.10.1126/scitranslmed.3000322Search in Google Scholar PubMed PubMed Central
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7: 13537. https://doi.org/10.1038/s41598-017-13601-y.10.1038/s41598-017-13601-ySearch in Google Scholar PubMed PubMed Central
Westfall, S., Lomis, N., Kahouli, I., Dia, S.Y., Singh, S.P., and Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74: 3769–3787. https://doi.org/10.1007/s00018-017-2550-9.10.1007/s00018-017-2550-9Search in Google Scholar PubMed
Włodarek, D. (2019). Role of ketogenic diets in neurodegenerative diseases. Nutrients 11: 169, https://doi.org/10.3390/nu11010169.10.3390/nu11010169Search in Google Scholar PubMed PubMed Central
Xie, G., Zhou, Q., Qiu, C.Z., Dai, W.K., Wang, H.P., Li, Y.H., Liao, J.X., Lu, X.G., Lin, S.F., Ye, J.H., et al. (2017). Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 23: 6164–6171. https://doi.org/10.3748/wjg.v23.i33.6164.10.3748/wjg.v23.i33.6164Search in Google Scholar PubMed PubMed Central
Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264–276. https://doi.org/10.1016/j.cell.2015.02.047.10.1016/j.cell.2015.02.047Search in Google Scholar PubMed PubMed Central
Zhang, R., Miller, R.G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., and McGrath, M.S. (2009). Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 206: 121–124. https://doi.org/10.1016/j.jneuroim.2008.09.017.10.1016/j.jneuroim.2008.09.017Search in Google Scholar PubMed PubMed Central
Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Therapeut. 39: 322–336. https://doi.org/10.1016/j.clinthera.2016.12.014.10.1016/j.clinthera.2016.12.014Search in Google Scholar PubMed PubMed Central
Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., Sun, J., and City, K. (2018a). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Therapeut. 39: 322–336, https://doi.org/10.1016/j.clinthera.2016.12.014.10.1016/j.clinthera.2016.12.014Search in Google Scholar
Zhang, Y., Zhou, S., Zhou, Y., Yu, L., Zhang, L., and Wang, Y. (2018b). Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 145: 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015.10.1016/j.eplepsyres.2018.06.015Search in Google Scholar PubMed
Zhu, S., Jiang, Y., Xu, K., Cui, M., Ye, W., Zhao, G., Jin, L., and Chen, X. (2020). The progress of gut microbiome research related to brain disorders. J. Neuroinflammation 17: 1–20. https://doi.org/10.1186/s12974-020-1705-z.10.1186/s12974-020-1705-zSearch in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior
- A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective
- Genetic parkinsonisms and cancer: a systematic review and meta-analysis
- Prevalence of sports-related spinal injury stratified by competition level and return to play guidelines
- The basal ganglia corticostriatal loops and conditional learning
- VEGF levels in patients with glioma: a systematic review and meta-analysis
- The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders
- CNS implications of COVID-19: a comprehensive review
- COVID-19 in age-related neurodegenerative diseases: is there a role for vitamin D3 as a possible therapeutic strategy?
Articles in the same Issue
- Frontmatter
- Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior
- A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective
- Genetic parkinsonisms and cancer: a systematic review and meta-analysis
- Prevalence of sports-related spinal injury stratified by competition level and return to play guidelines
- The basal ganglia corticostriatal loops and conditional learning
- VEGF levels in patients with glioma: a systematic review and meta-analysis
- The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders
- CNS implications of COVID-19: a comprehensive review
- COVID-19 in age-related neurodegenerative diseases: is there a role for vitamin D3 as a possible therapeutic strategy?