Home A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective
Article
Licensed
Unlicensed Requires Authentication

A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective

  • Kajal Rawat , Neha Singh , Puja Kumari and Lekha Saha EMAIL logo
Published/Copyright: October 19, 2020
Become an author with De Gruyter Brill

Abstract

The gut microbiota plays an important role in neurological diseases via the gut–brain axis. Many factors such as diet, antibiotic therapy, stress, metabolism, age, geography and genetics are known to play a critical role in regulating the colonization pattern of the microbiota. Recent studies have shown the role of the low carbohydrate, adequate protein, and high fat “ketogenic diet” in remodeling the composition of the gut microbiome and thereby facilitating protective effects in various central nervous system (CNS) disorders. Gut microbes are found to be involved in the pathogenesis of various CNS disorders like epilepsy, Parkinson’s disease (PD), Alzheimer’s disease (AD), autism spectrum disorders (ASDs), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and stress, anxiety and depression. In vivo studies have shown an intricate link between gut microbes and KD and specific microbes/probiotics proved useful in in vivo CNS disease models. In the present review, we discuss the gut–brain bidirectional axis and the underlying mechanism of KD-based therapy targeting gut microbiome in in vivo animal models and clinical studies in neurological diseases. Also, we tried to infer how KD by altering the microbiota composition contributes towards the protective role in various CNS disorders. This review helps to uncover the mechanisms that are utilized by the KD and gut microbiota to modulate gut–brain axis functions and may provide novel opportunities to target therapies to the gut to treat neurologic disorders.


Corresponding author: Lekha Saha, Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Research Block B, Chandigarh, India, E-mail:

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: Authors state no conflict of interest.

References

Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., and Rubin, R.A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11: 22. https://doi.org/10.1186/1471-230x-11-22.10.1186/1471-230X-11-22Search in Google Scholar

Ahn, Y., Narous, M., Tobias, R., Rho, J.M., and Mychasiuk, R. (2014). The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci. 36: 371–380. https://doi.org/10.1159/000362645.10.1159/000362645Search in Google Scholar

Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., Holscher, H.D., and Woods, J.A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50: 747–757. https://doi.org/10.1249/mss.0000000000001495.10.1249/MSS.0000000000001495Search in Google Scholar

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5®), 5th ed. Washington, DC, USA: American Psychiatric Association.10.1176/appi.books.9780890425596Search in Google Scholar

Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H., and Heijtz, R.D. (2017). The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol. Psychiatr. 22: 257–266. https://doi.org/10.1038/mp.2016.182.10.1038/mp.2016.182Search in Google Scholar

Arnold, J.W., Roach, J., and Azcarate-Peril, M.A. (2016). Emerging technologies for gut microbiome research. Trends Microbiol. 24: 887–901. https://doi.org/10.1016/j.tim.2016.06.008.10.1016/j.tim.2016.06.008Search in Google Scholar

Azcárate-Peril, M.A., Sikes, M., and Bruno-Bárcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am. J. Physiol. Liver Physiol 301: G401–G424. https://doi.org/10.1152/ajpgi.00110.2011.10.1152/ajpgi.00110.2011Search in Google Scholar

Bahr, L.S., Bock, M., Liebscher, D., Bellmann-strobl, J., Franz, L., Prüß, A., Schumann, D., Piper, S.K., Kessler, C.S., Steckhan, N., et al. (2020). Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): protocol of a randomized controlled study. Trials 21: 1–9. https://doi.org/10.1186/s13063-019-3928-9.10.1186/s13063-019-3928-9Search in Google Scholar

Beloosesky, Y., Grosman, B., Marmelstein, V., and Grinblat, J. (2000). Convulsions induced by metronidazole treatment for Clostridium difficile-associated disease in chronic renal failure. Am. J. Med. Sci. 319: 338–339. https://doi.org/10.1016/s0002-9629(15)40762-1.10.1016/S0002-9629(15)40762-1Search in Google Scholar

Bendtsen, K.M.B., Krych, L., Sørensen, D.B., Pang, W., Nielsen, D.S., Josefsen, K., Hansen, L.H., Sørensen, S.J., and Hansen, A.K. (2012). Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PloS One 7: e46231, https://doi.org/10.1371/journal.pone.0046231.10.1371/journal.pone.0046231Search in Google Scholar PubMed PubMed Central

Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., Mccoy, K.D., et al. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599–609. https://doi.org/10.1053/j.gastro.2011.04.052.10.1053/j.gastro.2011.04.052Search in Google Scholar PubMed

Berk, M., Williams, L.J., Jacka, F.N., O’Neil, A., Pasco, J.A., Moylan, S., Allen, N.B., Stuart, A.L., Hayley, A.C., and Byrne, M.L. (2013). So depression is an inflammatory disease, but where does the inflammation come from?. BMC Med. 11: 1–16. https://doi.org/10.1186/1741-7015-11-200.10.1186/1741-7015-11-200Search in Google Scholar PubMed PubMed Central

Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., Zur, M., et al. (2019a). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572: 474–501. https://doi.org/10.1038/s41586-019-1443-5.10.1038/s41586-019-1443-5Search in Google Scholar PubMed

Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., and Zur, M. (2019b). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572: 474–480. https://doi.org/10.1038/s41586-019-1443-5.10.1038/s41586-019-1443-5Search in Google Scholar

Bourassa, M.W., Alim, I., Bultman, S.J., and Ratan, R.R. (2016). Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 625: 56–63. https://doi.org/10.1016/j.neulet.2016.02.009.10.1016/j.neulet.2016.02.009Search in Google Scholar PubMed PubMed Central

Braak, H., Rüb, U., Gai, W.P., and Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm. 110: 517–536. https://doi.org/10.1007/s00702-002-0808-2.10.1007/s00702-002-0808-2Search in Google Scholar PubMed

Caplliure-llopis, J., Carrera-juliá, T.P.S., Eraci, M.C., Mar, D.M., Enrique, J., and Rubia, D. (2020). Therapeutic alternative of the ketogenic mediterranean diet to improve mitochondrial activity in amyotrophic lateral sclerosis (ALS): a comprehensive review. Food Sci. Nutr. 8: 23–35, https://doi.org/10.1002/fsn3.1324.10.1002/fsn3.1324Search in Google Scholar PubMed PubMed Central

Cho, I., Yamanishi, S., Cox, L., Methé, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., et al. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488: 621–6. https://doi.org/10.1038/nature11400.10.1038/nature11400Search in Google Scholar PubMed PubMed Central

Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’connor, E.M., Cusack, S., Harris, H.M.B., Coakley, M., Lakshminarayanan, B., and O’Sullivan, O. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184. https://doi.org/10.1038/nature11319.10.1038/nature11319Search in Google Scholar PubMed

Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10: 735–742. https://doi.org/10.1038/nrmicro2876.10.1038/nrmicro2876Search in Google Scholar PubMed

Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science 326: 1694–1697. https://doi.org/10.1126/science.1177486.10.1126/science.1177486Search in Google Scholar

Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13: 701–712. https://doi.org/10.1038/nrn3346.10.1038/nrn3346Search in Google Scholar

Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V., and Dinan, T.G. (2020). The gut microbiome in neurological disorders. Lancet Neurol. 19: 179–194. https://doi.org/10.1016/s1474-4422(19)30356-4.10.1016/S1474-4422(19)30356-4Search in Google Scholar

De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D.I., Cristofori, F., Guerzoni, M.E., Gobbetti, M., and Francavilla, R. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PloS One 8: e76993. https://doi.org/10.1371/journal.pone.0076993.10.1371/journal.pone.0076993Search in Google Scholar

De Lau, L.M.L., and Breteler, M.M.B. (2006). Epidemiology of Parkinson’s disease. Lancet Neurol. 5: 525–535. https://doi.org/10.1016/s1474-4422(06)70471-9.10.1016/S1474-4422(06)70471-9Search in Google Scholar

Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2014). Microbiota is essential for social development in the mouse. Mol. Psychiatr. 19: 146–148. https://doi.org/10.1038/mp.2013.65.10.1038/mp.2013.65Search in Google Scholar PubMed PubMed Central

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43: 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009.10.1016/j.jpsychires.2008.03.009Search in Google Scholar PubMed

Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108: 3047–3052. https://doi.org/10.1073/pnas.1010529108.10.1073/pnas.1010529108Search in Google Scholar PubMed PubMed Central

Elder, J.H. (2008). The gluten-free, casein-free diet in autism: an overview with clinical implications. Nutr. Clin. Pract. 23: 583–588. https://doi.org/10.1177/0884533608326061.10.1177/0884533608326061Search in Google Scholar PubMed

Evrensel, A., and Ceylan, M.E. (2015). The gut-brain axis: the missing link in depression. Clin. Psychopharmacol. Neuroscience 13: 239. https://doi.org/10.9758/cpn.2015.13.3.239.10.9758/cpn.2015.13.3.239Search in Google Scholar PubMed PubMed Central

Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016a). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7: 1479. https://doi.org/10.3389/fmicb.2016.01479.10.3389/fmicb.2016.01479Search in Google Scholar PubMed PubMed Central

Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016b). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7: 1–7. https://doi.org/10.3389/fmicb.2016.01479.10.3389/fmicb.2016.01479Search in Google Scholar

Finegold, S.M., Dowd, S.E., Gontcharova, V., Liu, C., Henley, K.E., Wolcott, R.D., Youn, E., Summanen, P.H., Granpeesheh, D., and Dixon, D. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16: 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008.10.1016/j.anaerobe.2010.06.008Search in Google Scholar PubMed

Foster, J.A., and Neufeld, K.-A.M. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36: 305–312. https://doi.org/10.1016/j.tins.2013.01.005.10.1016/j.tins.2013.01.005Search in Google Scholar PubMed

Fukao, T., Lopaschuk, G.D., and Mitchell, G.A. (2004). Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fat. Acids 70: 243–251. https://doi.org/10.1016/j.plefa.2003.11.001.10.1016/j.plefa.2003.11.001Search in Google Scholar PubMed

Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9: 286. https://doi.org/10.1038/nrgastro.2012.32.10.1038/nrgastro.2012.32Search in Google Scholar PubMed

Ghaisas, S., Maher, J., and Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158: 52–62. https://doi.org/10.1016/j.pharmthera.2015.11.012.10.1016/j.pharmthera.2015.11.012Search in Google Scholar PubMed PubMed Central

Gianchecchi, E., and Fierabracci, A. (2019). Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20020283.10.3390/ijms20020283Search in Google Scholar PubMed PubMed Central

Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359. https://doi.org/10.1126/science.1124234.10.1126/science.1124234Search in Google Scholar PubMed PubMed Central

Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheim. Dis. 26: 187–197. https://doi.org/10.3233/jad-2011-110080.10.3233/JAD-2011-110080Search in Google Scholar PubMed

Grochowska, M., Laskus, T. and Radkowski, M. (2019). Gut microbiota in neurological disorders 375–383. https://doi.org/10.1007/s00005-019-00561-6.10.1007/s00005-019-00561-6Search in Google Scholar PubMed PubMed Central

Gubert, C., Kong, G., Renoir, T., and Hannan, A.J. (2020). Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol. Dis. 134: 104621. https://doi.org/10.1016/j.nbd.2019.104621.10.1016/j.nbd.2019.104621Search in Google Scholar PubMed

Hajjo, H., and Geva-Zatorsky, N. (2020). Gut microbiota–host interactions now also brain-immune axis. Curr. Opin. Neurobiol. 62: 53–59. https://doi.org/10.1016/j.conb.2019.10.009.10.1016/j.conb.2019.10.009Search in Google Scholar PubMed

Hansen, S.N., Ipsen, D.H., Schou-Pedersen, A.M., Lykkesfeldt, J., and Tveden-Nyborg, P. (2018). Long term westernized diet leads to region-specific changes in brain signaling mechanisms. Neurosci. Lett. 676: 85–91. https://doi.org/10.1016/j.neulet.2018.04.014.10.1016/j.neulet.2018.04.014Search in Google Scholar PubMed

Hao, J., Liu, R., Turner, G., Shi, F.-D., and Rho, J.M. (2012). Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PloS One 7: e35476, https://doi.org/10.1371/journal.pone.0035476.10.1371/journal.pone.0035476Search in Google Scholar PubMed PubMed Central

Haroon, E., Raison, C.L., and Miller, A.H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37: 137–162. https://doi.org/10.1038/npp.2011.205.10.1038/npp.2011.205Search in Google Scholar PubMed PubMed Central

He, Z., Cui, B.-T., Zhang, T., Li, P., Long, C.-Y., Ji, G.-Z., and Zhang, F.-M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J. Gastroenterol. 23: 3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565.10.3748/wjg.v23.i19.3565Search in Google Scholar PubMed PubMed Central

Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108: 3047–3052. https://doi.org/10.1073/pnas.1010529108.10.1073/pnas.1010529108Search in Google Scholar PubMed PubMed Central

Holmes, E., Li, J.V., Marchesi, J.R., and Nicholson, J.K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metabol. 16: 559–564. https://doi.org/10.1016/j.cmet.2012.10.007.10.1016/j.cmet.2012.10.007Search in Google Scholar PubMed

Hornik, C.P., Benjamin, D.KJr, Smith, P.B., Pencina, M.J., Tremoulet, A.H., and Capparelli, E.V. (2016). Best pharmaceuticals for children act—pediatric trials network. Electronic health records and pharmacokinetic modeling to assess the relationship between ampicillin exposure and seizure risk in neonates. J. Pediatr. 178: 125–129. https://doi.org/10.1016/j.jpeds.2016.07.011.10.1016/j.jpeds.2016.07.011Search in Google Scholar PubMed PubMed Central

Hufeldt, M.R., Nielsen, D.S., Vogensen, F.K., Midtvedt, T., and Hansen, A.K. (2010). Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 60: 336–47.Search in Google Scholar

Humann, J., Mann, B., Gao, G., Moresco, P., Ramahi, J., Loh, L.N., Farr, A., Hu, Y., Durick-Eder, K., and Fillon, S.A. (2016). Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 19: 388–399. https://doi.org/10.1016/j.chom.2016.02.009.10.1016/j.chom.2016.02.009Search in Google Scholar PubMed PubMed Central

Jackson, A., Forsyth, C.B., Shaikh, M., Voigt, R.M., Engen, P.A., Ramirez, V., Keshavarzian, A., and Martino, D. (2019). Diet in Parkinson’s disease: critical role for the microbiome. Front. Neurol. 10: 1–21. https://doi.org/10.3389/fneur.2019.01245.10.3389/fneur.2019.01245Search in Google Scholar PubMed PubMed Central

Jangi, S., Gandhi, R., Li, N., Von Glehn, F., Yan, R., Melo, K., Mazzola, M., Patel, B., Glanz, B., and Cook, S. (2015). Alterations of the human gut microbiome in multiple sclerosis. In: Multiple sclerosis journal. Sage Publications Ltd, London ,UK, p. 168.10.1038/ncomms12015Search in Google Scholar PubMed PubMed Central

Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., and Shi, J. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48: 186–194. https://doi.org/10.1016/j.bbi.2015.03.016.10.1016/j.bbi.2015.03.016Search in Google Scholar PubMed

Jiang, H., Zhang, X., Yu, Z., Zhang, Z., Deng, M., Zhao, J., and Ruan, B. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 104: 130–136. https://doi.org/10.1016/j.jpsychires.2018.07.007.10.1016/j.jpsychires.2018.07.007Search in Google Scholar PubMed

Karl, J.P., Margolis, L.M., Madslien, E.H., Murphy, N.E., Castellani, J.W., Gundersen, Y., Hoke, A.V., Levangie, M.W., Kumar, R., and Chakraborty, N. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Liver Physiol 312: G559–G571. https://doi.org/10.1152/ajpgi.00066.2017.10.1152/ajpgi.00066.2017Search in Google Scholar PubMed

Karlsson, C.L.J., Önnerfält, J., Xu, J., Molin, G., Ahrné, S., and Thorngren-Jerneck, K. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20: 2257–2261. https://doi.org/10.1038/oby.2012.110.10.1038/oby.2012.110Search in Google Scholar PubMed

Kawabata, S., Higgins, G.A., and Gordon, J.W. (1991). Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354: 476–478. https://doi.org/10.1038/354476a0.10.1038/354476a0Search in Google Scholar PubMed

Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., and Shannon, K.M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30: 1351–1360. https://doi.org/10.1002/mds.26307.10.1002/mds.26307Search in Google Scholar PubMed

Khanna, S., and Tosh, P.K. (2014). A clinician’s primer on the role of the microbiome in human health and disease. In: Mayo clinic proceedings. Elsevier, pp. 107–114.10.1016/j.mayocp.2013.10.011Search in Google Scholar PubMed

Klein, M.S., Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., Vogel, H.J., and Shearer, J. (2016). Metabolomic modeling to monitor host responsiveness to gut microbiota manipulation in the BTBRT + tf/j mouse. J. Proteome Res. 15: 1143–1150. https://doi.org/10.1021/acs.jproteome.5b01025.10.1021/acs.jproteome.5b01025Search in Google Scholar PubMed

Lindefeldt, M., Eng, A., Darban, H., Bjerkner, A., Zetterström, C.K., Allander, T., Andersson, B., Borenstein, E., Dahlin, M., and Prast-Nielsen, S. (2019). The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Biofilms and Microbiomes 5: 1–13. https://doi.org/10.1038/s41522-018-0073-2.10.1038/s41522-018-0073-2Search in Google Scholar PubMed PubMed Central

Liu, F., Li, J., Wu, F., Zheng, H., Peng, Q., and Zhou, H. (2019). Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry 9: 43. https://doi.org/10.1038/s41398-019-0389-6.10.1038/s41398-019-0389-6Search in Google Scholar PubMed PubMed Central

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230. https://doi.org/10.1038/nature11550.10.1038/nature11550Search in Google Scholar PubMed PubMed Central

Lubomski, M., Tan, A.H., Lim, S.-Y., Holmes, A.J., Davis, R.L., and Sue, C.M. (2019). Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. 267: 1–17. https://doi.org/10.1136/jnnp-2019-anzan.56.10.1007/s00415-019-09320-1Search in Google Scholar PubMed

Luczynski, P., Whelan, S.O., O’Sullivan, C., Clarke, G., Shanahan, F., Dinan, T.G., and Cryan, J.F. (2016). Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 44: 2654–2666. https://doi.org/10.1111/ejn.13291.10.1111/ejn.13291Search in Google Scholar PubMed PubMed Central

Lv, F., Chen, S., Wang, L., Jiang, R., Tian, H., Li, J., Yao, Y., and Zhuo, C. (2017). The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget 8: 100899. https://doi.org/10.18632/oncotarget.21284.10.18632/oncotarget.21284Search in Google Scholar PubMed PubMed Central

Ma, D., Wang, A.C., Parikh, I., Green, S.J., Hoffman, J.D., Chlipala, G., Murphy, M.P., Sokola, B.S., Bauer, B., Hartz, A.M.S., et al. (2018). Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 8. https://doi.org/10.1038/s41598-018-25190-5.10.1038/s41598-018-25190-5Search in Google Scholar PubMed PubMed Central

Macpherson, A.J., and Harris, N.L. (2004). Interaction between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4: 1626–1632. https://doi.org/10.1038/nri1373.10.1038/nri1373Search in Google Scholar PubMed

Masood, W. and Uppaluri, K.R. (2020). Ketogenic diet 4–7.Search in Google Scholar

Mathewson, N.D., Jenq, R., Mathew, A.V., Koenigsknecht, M., Hanash, A., Toubai, T., Oravecz-Wilson, K., Wu, S.-R., Sun, Y., and Rossi, C. (2016). Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17: 505–513. https://doi.org/10.1038/ni.3400.10.1038/ni.3400Search in Google Scholar PubMed PubMed Central

Matteoli, G., and Boeckxstaens, G.E. (2013). The vagal innervation of the gut and immune homeostasis. Gut 62: 1214–1222. https://doi.org/10.1136/gutjnl-2012-302550.10.1136/gutjnl-2012-302550Search in Google Scholar PubMed PubMed Central

Mazurek, M.O., Vasa, R.A., Kalb, L.G., Kanne, S.M., Rosenberg, D., Keefer, A., Murray, D.S., Freedman, B., and Lowery, L.A. (2013). Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J. Abnorm. Child Psychol. 41: 165–176. https://doi.org/10.1007/s10802-012-9668-x.10.1007/s10802-012-9668-xSearch in Google Scholar PubMed

Medel-Matus, J., Shin, D., Dorfman, E., Sankar, R., and Mazarati, A. (2018). Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 3: 290–294. https://doi.org/10.1002/epi4.12114.10.1002/epi4.12114Search in Google Scholar PubMed PubMed Central

Miller, R.G., Mitchell, J.D., Lyon, M., and Moore, D.H. (2007). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 2: 191–206, https://doi.org/10.1002/14651858.CD001447.10.1002/14651858.CD001447Search in Google Scholar PubMed

Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., Tomita, A., Sato, W., and Kim, S.-W. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PloS One 10, e0137429. https://doi.org/10.1371/journal.pone.0137429.10.1371/journal.pone.0137429Search in Google Scholar PubMed PubMed Central

Molendijk, M., Molero, P., Sánchez-Pedreño, F.O., Van der Does, W., and Martínez-González, M.A. (2018). Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 226: 346–354. https://doi.org/10.1016/j.jad.2017.09.022.10.1016/j.jad.2017.09.022Search in Google Scholar PubMed

Molendijk, M.L., Bus, B.A.A., Spinhoven, P., Penninx, B.W.J.H., Kenis, G., Prickaerts, J., Voshaar, R.C.O., and Elzinga, B.M. (2011). Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol. Psychiatr. 16: 1088–1095. https://doi.org/10.1038/mp.2010.98.10.1038/mp.2010.98Search in Google Scholar PubMed PubMed Central

Mörkl, S., Lackner, S., Meinitzer, A., Mangge, H., Lehofer, M., Halwachs, B., Gorkiewicz, G., Kashofer, K., Painold, A., and Holl, A.K. (2018). Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur. J. Nutr. 57: 2985–2997. https://doi.org/10.1007/s00394-018-1784-0.10.1007/s00394-018-1784-0Search in Google Scholar PubMed PubMed Central

Mychasiuk, R., and Rho, J.M. (2017). Genetic modifications associated with ketogenic diet treatment in the BTBRT+ Tf/J mouse model of autism spectrum disorder. Autism Res. 10: 456–471. https://doi.org/10.1002/aur.1682.10.1002/aur.1682Search in Google Scholar PubMed

Nagpal, R., Neth, B.J., Wang, S., Craft, S., and Yadav, H. (2019a). Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529–542. https://doi.org/10.1016/j.ebiom.2019.08.032.10.1016/j.ebiom.2019.08.032Search in Google Scholar PubMed PubMed Central

Nagpal, R., Neth, B.J., Wang, S., Craft, S., and Yadav, H. (2019b). Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529–542. https://doi.org/10.1016/j.ebiom.2019.08.032.10.1016/j.ebiom.2019.08.032Search in Google Scholar PubMed PubMed Central

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., and Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neuro Gastroenterol. Motil. 26: 1155–1162. https://doi.org/10.1111/nmo.12378.10.1111/nmo.12378Search in Google Scholar PubMed

Neufeld, K.-A.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol. 4: 492–494. https://doi.org/10.4161/cib.15702.10.4161/cib.15702Search in Google Scholar

Neunlist, M., Van Landeghem, L., Mahé, M.M., Derkinderen, P., Des Varannes, S.B., and Rolli-Derkinderen, M. (2013). The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10: 90–100. https://doi.org/10.1038/nrgastro.2012.221.10.1038/nrgastro.2012.221Search in Google Scholar PubMed

Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., and Shearer, J. (2016a). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7: 1–6. https://doi.org/10.1186/s13229-016-0099-3.10.1186/s13229-016-0099-3Search in Google Scholar PubMed PubMed Central

Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., and Shearer, J. (2016b). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7: 37. https://doi.org/10.1186/s13229-016-0099-3.10.1186/s13229-016-0099-3Search in Google Scholar

Nguyen, M.D., D’Aigle, T., Gowing, G., Julien, J.-P., and Rivest, S. (2004). Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 24: 1340–1349. https://doi.org/10.1523/jneurosci.4786-03.2004.10.1523/JNEUROSCI.4786-03.2004Search in Google Scholar PubMed PubMed Central

Olson, C.A., Vuong, H.E., Yano, J.M., Liang, Q.Y., Nusbaum, D.J., and Hsiao, E.Y. (2018). The Gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173: 1728–1741, e13. https://doi.org/10.1016/j.cell.2018.04.027.10.1016/j.cell.2018.04.027Search in Google Scholar PubMed PubMed Central

Panzer, A.R., and Lynch, S.V. (2015). Influence and effect of the human microbiome in allergy and asthma. Curr. Opin. Rheumatol. 27: 373–380. https://doi.org/10.1097/bor.0000000000000191.10.1097/BOR.0000000000000191Search in Google Scholar PubMed

Paoli, A., Mancin, L., Bianco, A., Thomas, E., and Piccini, F. (2019). Ketogenic diet and Microbiota: friends or Enemies . Genes 10: 534. https://doi.org/10.3390/genes10070534.10.3390/genes10070534Search in Google Scholar PubMed PubMed Central

Park, S., Zhang, T., Wu, X., and Qiu, J.Y. (2020a). Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 67: 19–87, https://doi.org/10.3164/jcbn.19-87.10.3164/jcbn.19-87Search in Google Scholar PubMed PubMed Central

Park, S., Zhang, T., Wu, X., and Yi Qiu, J. (2020b). Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 67: 1–11, https://doi.org/10.3164/jcbn.19-87.10.3164/jcbn.19-87Search in Google Scholar

Pascale, A., Marchesi, N., Govoni, S., Coppola, A., and Gazzaruso, C. (2019). The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr. Opin. Pharmacol. 49: 1–5. https://doi.org/10.1016/j.coph.2019.03.011.10.1016/j.coph.2019.03.011Search in Google Scholar PubMed

Peng, A., Qiu, X., Lai, W., Li, W., Zhang, L., Zhu, X., He, S., Duan, J., and Chen, L. (2018). Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 147: 102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013.10.1016/j.eplepsyres.2018.09.013Search in Google Scholar PubMed

Petra, A.I., Panagiotidou, S., Hatziagelaki, E., Stewart, J.M., Conti, P., and Theoharides, T.C. (2015). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Therapeut. 37: 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002.10.1016/j.clinthera.2015.04.002Search in Google Scholar PubMed PubMed Central

Pray, L., Pillsbury, L., and Tomayko, E. (2013). The human microbiome, diet, and health. In The human microbiome, diet, and health, pp. 1–416, Bookshelf ID: NBK109559, https://doi.org/10.17226/13522.10.17226/13522Search in Google Scholar PubMed

Quigley, E.M.M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 17. https://doi.org/10.1007/s11910-017-0802-6.10.1007/s11910-017-0802-6Search in Google Scholar PubMed

Rao, S.S.C., Rehman, A., Yu, S., and De Andino, N.M. (2018). Brain fogginess, gas and bloating: a link between SIBO, probiotics and metabolic acidosis. Clin. Transl. Gastroenterol. 9. https://doi.org/10.1038/s41424-018-0030-7.10.1038/s41424-018-0030-7Search in Google Scholar PubMed PubMed Central

Reinshagen, M., Egger, B., Procaccino, F., and Eysselein, V.E. (1997). Neuropeptides in inflammatory bowel disease: an update. Inflamm. Bowel Dis 3: 303–313. https://doi.org/10.1097/00054725-199712000-00008.10.1097/00054725-199712000-00008Search in Google Scholar

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., and Mele, M.C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7. https://doi.org/10.3390/microorganisms7010014.10.3390/microorganisms7010014Search in Google Scholar PubMed PubMed Central

Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatr. 21: 738–748. https://doi.org/10.1038/mp.2016.50.10.1038/mp.2016.50Search in Google Scholar PubMed PubMed Central

Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167: 1469–1480, e12. https://doi.org/10.1016/j.cell.2016.11.018.10.1016/j.cell.2016.11.018Search in Google Scholar PubMed PubMed Central

Sartor, R.B. (1997). Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am. J. Gastroenterol. 92: 5S–11S.Search in Google Scholar

Scheperjans, F., Aho, V., Pereira, P.A.B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30: 350–358. https://doi.org/10.1002/mds.26069.10.1002/mds.26069Search in Google Scholar PubMed

Senghor, B., Sokhna, C., Ruimy, R., and Lagier, J.C. (2018). Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J: 1–9, 7–8. https://doi.org/10.1016/j.humic.2018.01.001.10.1016/j.humic.2018.01.001Search in Google Scholar

Sommer, F., and Bäckhed, F. (2013). The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238. https://doi.org/10.1038/nrmicro2974.10.1038/nrmicro2974Search in Google Scholar PubMed

Sutter, R., Rüegg, S., and Tschudin-Sutter, S. (2015). Seizures as adverse events of antibiotic drugs: a systematic review. Neurology 85: 1332–1341. https://doi.org/10.1212/wnl.0000000000002023.10.1212/WNL.0000000000002023Search in Google Scholar PubMed

Swidsinski, A., Dörffel, Y., Loening-Baucke, V., Gille, C., Göktas, Ö., Reißhauer, A., Neuhaus, J., Weylandt, K.-H., Guschin, A., and Bock, M. (2017a). Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front. Microbiol. 8: 1141. https://doi.org/10.3389/fmicb.2017.01141.10.3389/fmicb.2017.01141Search in Google Scholar PubMed PubMed Central

Swidsinski, A., Dörffel, Y., Loening-baucke, V., Gille, C., Göktas, Ö., Reißhauer, A., Neuhaus, J., and Weylandt, K. (2017b). Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front. Microbiol. 8: 1–9. https://doi.org/10.3389/fmicb.2017.01141.10.3389/fmicb.2017.01141Search in Google Scholar

Tlaskalová-Hogenová, H., Štěpánková, R., Hudcovic, T., Tučková, L., Cukrowska, B., Lodinová-Žádnı́ková, R., Kozáková, H., Rossmann, P., Bártová, J., Sokol, D., et al. (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93: 97–108. https://doi.org/10.1016/j.imlet.2004.02.005.10.1016/j.imlet.2004.02.005Search in Google Scholar PubMed

Tomova, A., Husarova, V., Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., and Ostatnikova, D. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Beyond Behav. 138: 179–187. https://doi.org/10.1016/j.physbeh.2014.10.033.10.1016/j.physbeh.2014.10.033Search in Google Scholar PubMed

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009). The effect of diet on the human gut microbiome. A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med 1, 6ra14. https://doi.org/10.1126/scitranslmed.3000322.10.1126/scitranslmed.3000322Search in Google Scholar PubMed PubMed Central

Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7: 13537. https://doi.org/10.1038/s41598-017-13601-y.10.1038/s41598-017-13601-ySearch in Google Scholar PubMed PubMed Central

Westfall, S., Lomis, N., Kahouli, I., Dia, S.Y., Singh, S.P., and Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74: 3769–3787. https://doi.org/10.1007/s00018-017-2550-9.10.1007/s00018-017-2550-9Search in Google Scholar PubMed

Włodarek, D. (2019). Role of ketogenic diets in neurodegenerative diseases. Nutrients 11: 169, https://doi.org/10.3390/nu11010169.10.3390/nu11010169Search in Google Scholar PubMed PubMed Central

Xie, G., Zhou, Q., Qiu, C.Z., Dai, W.K., Wang, H.P., Li, Y.H., Liao, J.X., Lu, X.G., Lin, S.F., Ye, J.H., et al. (2017). Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 23: 6164–6171. https://doi.org/10.3748/wjg.v23.i33.6164.10.3748/wjg.v23.i33.6164Search in Google Scholar PubMed PubMed Central

Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264–276. https://doi.org/10.1016/j.cell.2015.02.047.10.1016/j.cell.2015.02.047Search in Google Scholar PubMed PubMed Central

Zhang, R., Miller, R.G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., and McGrath, M.S. (2009). Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 206: 121–124. https://doi.org/10.1016/j.jneuroim.2008.09.017.10.1016/j.jneuroim.2008.09.017Search in Google Scholar PubMed PubMed Central

Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Therapeut. 39: 322–336. https://doi.org/10.1016/j.clinthera.2016.12.014.10.1016/j.clinthera.2016.12.014Search in Google Scholar PubMed PubMed Central

Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., Sun, J., and City, K. (2018a). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Therapeut. 39: 322–336, https://doi.org/10.1016/j.clinthera.2016.12.014.10.1016/j.clinthera.2016.12.014Search in Google Scholar

Zhang, Y., Zhou, S., Zhou, Y., Yu, L., Zhang, L., and Wang, Y. (2018b). Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 145: 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015.10.1016/j.eplepsyres.2018.06.015Search in Google Scholar PubMed

Zhu, S., Jiang, Y., Xu, K., Cui, M., Ye, W., Zhao, G., Jin, L., and Chen, X. (2020). The progress of gut microbiome research related to brain disorders. J. Neuroinflammation 17: 1–20. https://doi.org/10.1186/s12974-020-1705-z.10.1186/s12974-020-1705-zSearch in Google Scholar PubMed PubMed Central

Received: 2020-05-06
Accepted: 2020-08-30
Published Online: 2020-10-19
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0078/html
Scroll to top button