Abstract
Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer’s and Parkinson’s disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
Funding source: Fundación Miguel Alemán, A.C., UNAM, DGAPA, PAPIIT
Award Identifier / Grant number: IN20231
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by Fundación Miguel Alemán, A.C., UNAM, DGAPA, PAPIIT grant number, IN20231.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adami, P.V.M., Quijano, C., Magnani, N., Galeano, P., Evelson, P., Cassina, A., Do Carmo, S., Leal, M.C., Castaño, E.M., Cuello, A.C., et al. (2017). Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer’s disease. J. Cerebr. Blood Flow Metabol. 37: 69–84.10.1177/0271678X15615132Search in Google Scholar PubMed PubMed Central
Ahmad, T., Aggarwal, K., Pattnaik, B., Mukherjee, S., Sethi, T., Tiwari, B.K., Kumar, M., Micheal, A., Mabalirajan, U., Ghosh, B., et al. (2013). Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis. 4: e461–e461. https://doi.org/10.1038/cddis.2012.213.Search in Google Scholar PubMed PubMed Central
Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B.K., Jha, K.A., Barhanpurkar, A.P., et al. (2014). Miro1 regulates intercellular mitochondrial transport & amp: enhances mesenchymal stem cell rescue efficacy. EMBO J. 33. https://doi.org/10.1002/embj.201386030.Search in Google Scholar PubMed PubMed Central
Al Amir Dache, Z., Otandault, A., Tanos, R., Pastor, B., Meddeb, R., Sanchez, C., Arena, G., Lasorsa, L., Bennett, A., Grange, T., et al. (2020). Blood contains circulating cell-free respiratory competent mitochondria. Faseb. J. 34: 3616–3630. https://doi.org/10.1096/fj.201901917rr.Search in Google Scholar
Alikhani, N., Ankarcrona, M., and Glaser, E. (2009). Mitochondria and Alzheimer’s disease: amyloid-β peptide uptake and degradation by the presequence protease. hPreP. J. Bioenerg. Biomembr. 41: 447–451, https://doi.org/10.1007/s10863-009-9244-4.Search in Google Scholar PubMed
Alikhani, N., Guo, L., Yan, S., Du, H., Pinho, C.M., Chen, J.X., Glaser, E., and Yan, S.S. (2011). Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in alzheimer’s disease brain mitochondria. J. Alzheim. Dis. 27: 75–87. https://doi.org/10.3233/jad-2011-101716.Search in Google Scholar
Baek, S.H., Park, S.J., Jeong, J.I., Kim, S.H., Han, J.J.-W.W., Kyung, J.W., Baik, S.-H.H., Choi, Y., Choi, B.Y., Park, J.S., et al. (2017). Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an alzheimer’s disease model. J. Neurosci. 37: 5099–5110. https://doi.org/10.1523/jneurosci.2385-16.2017.Search in Google Scholar
Berridge, M.V., McConnell, M.J., Grasso, C., Bajzikova, M., Kovarova, J., and Neuzil, J. (2016). Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches, current opinion in genetics and development. Elsevier Current Trends.https://doi.org/10.1016/j.gde.2016.04.003.Search in Google Scholar PubMed
Bertero, E., Maack, C., and O’Rourke, B. (2018). Mitochondrial transplantation in humans: “magical” cure or cause for concern? J. Clin. Invest. 128: 5191–5194. https://doi.org/10.1172/jci124944.Search in Google Scholar
Bertero, E., O’Rourke, B., and Maack, C. (2020). Mitochondria do not survive calcium overload during transplantation. Circ. Res.https://doi.org/10.1161/CIRCRESAHA.119.316291.Search in Google Scholar PubMed PubMed Central
Bukoreshtliev, N.V., Wang, X., Hodneland, E., Gurke, S., Barroso, J.F.V., and Gerdes, H.H. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett. 583: 1481–1488. https://doi.org/10.1016/j.febslet.2009.03.065.Search in Google Scholar PubMed
Burté, F., Carelli, V., Chinnery, P.F., and Yu-Wai-Man, P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11: 11–24, https://doi.org/10.1038/nrneurol.2014.228.Search in Google Scholar PubMed
Chandel, N.S. (2014). Mitochondria as signaling organelles. BMC Biol. 12:34, https://doi.org/10.1186/1741-7007-12-34.Search in Google Scholar PubMed PubMed Central
Chang, J.C., Chang, H.S., Wu, Y.C., Cheng, W.L., Lin, T.T., Chang, H.J., Kuo, S.J., Chen, S.T., and Liu, C.S. (2019). Mitochondrial transplantation regulates antitumour activity chemoresistance and mitochondrial dynamics in breast cancer. J. Exp. Clin. Cancer Res 38. https://doi.org/10.1186/s13046-019-1028-z.Search in Google Scholar PubMed PubMed Central
Chang, J.C., Hoel, F., Liu, K.H., Wei, Y.H., Cheng, F.C., Kuo, S.J., Tronstad, K.J., and Liu, C.S. (2017). Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci. Rep. 7: 10710. https://doi.org/10.1038/s41598-017-10870-5.Search in Google Scholar PubMed PubMed Central
Chang, J.C., Wu, S.L., Liu, K.H., Chen, Y.H., Chuang, C.S, Cheng, F.C., Su, H.L., Wei, Y.H., Kuo, S.J., and Liu, C.S. (2016). Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl. Res. 170: 40–56e3. https://doi.org/10.1016/j.trsl.2015.12.003.Search in Google Scholar PubMed
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum. Mol. Genet. 18: R169–R176. https://doi.org/10.1093/hmg/ddp326.Search in Google Scholar PubMed PubMed Central
Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130: 548–562. https://doi.org/10.1016/j.cell.2007.06.026.Search in Google Scholar PubMed
Chou, S.H.Y.H.-Y., Lan, J., Esposito, E., Ning, M.M., Balaj, L., Ji, X., Lo, E.H., and Hayakawa, K. (2017). Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48: 2231–2237. https://doi.org/10.1161/strokeaha.117.017758.Search in Google Scholar PubMed PubMed Central
Clark, M.A., and Shay, J.W. (1982). Mitochondrial transformation of mammalian cells. Nature 295: 605–607. https://doi.org/10.1038/295605a0.Search in Google Scholar PubMed
Cowan, D.B., Yao, R., Akurathi, V., Snay, E.R., Thedsanamoorthy, J.K., Zurakowski, D., Ericsson, M., Friehs, I., Wu, Y., Levitsky, S., et al. (2016). Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One 11: e0160889. https://doi.org/10.1371/journal.pone.0160889.Search in Google Scholar PubMed PubMed Central
Davis, C.O., Kim, K.-Y., Bushong, E.A., Mills, E.A., Boassa, D., Shih, T., Kinebuchi, M., Phan, S., Zhou, Y., Bihlmeyer, N.A., et al. (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U.S.A. 111: 9633–9638. https://doi.org/10.1073/pnas.1404651111.Search in Google Scholar PubMed PubMed Central
Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G., and Anandatheerthavarada, H.K. (2008). Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283: 9089–9100. https://doi.org/10.1074/jbc.m710012200.Search in Google Scholar
Divakaruni, S.S., Van Dyke, A.M., Chandra, R., LeGates, T.A., Contreras, M., Dharmasri, P.A., Higgs, H.N., Lobo, M.K., Thompson, S.M., and Blanpied, T.A. (2018). Long-term potentiation requires a rapid burst of dendritic mitochondrial fission during induction. Neuron 100: 860–875, e7. https://doi.org/10.1016/j.neuron.2018.09.025.Search in Google Scholar PubMed PubMed Central
Doulamis, I.P., Guariento, A., Duignan, T., Orfany, A., Kido, T., Zurakowski, D., del Nido, P.J., and McCully, J.D. (2019). Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur. J. Cardio. Thorac. Surg. 57: 836–845. https://doi.org/10.1093/ejcts/ezz326.Search in Google Scholar PubMed
Du, F., Yu, Q., Yan, S., Hu, G., Lue, L.F., Walker, D.G., Wu, L., Yan, S.F., Tieu, K., and Yan, S.S. (2017). PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 140: 3233–3251. https://doi.org/10.1093/brain/awx258.Search in Google Scholar PubMed PubMed Central
Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and ShiDu Yan, S. (2010). Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. U.S.A. 107: 18670–18675. https://doi.org/10.1073/pnas.1006586107.Search in Google Scholar PubMed PubMed Central
Dupont, M., Souriant, S., Lugo-Villarino, G., Maridonneau-Parini, I., and Vérollet, C. (2018). Tunneling nanotubes: intimate communication between myeloid cells. Front. Immunol. 9:43, https://doi.org/10.3389/fimmu.2018.00043.Search in Google Scholar PubMed PubMed Central
Emani, S.M., and McCully, J.D. (2018). Mitochondrial transplantation: applications for pediatric patients with congenital heart disease: AME Publishing Company, Translational Pediatrics, https://doi.org/10.21037/tp.2018.02.02.Search in Google Scholar PubMed PubMed Central
Emani, S.M., Piekarski, B.L., Harrild, D., del Nido, P.J., and McCully, J.D. (2017). Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 154: 286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018.Search in Google Scholar PubMed
Erecinska, M., Cherian, S., and Silver, I.A. (2004). Energy metabolism in mammalian brain during development. Prog. Neurobiol. 73: 397–445, https://doi.org/10.1016/j.pneurobio.2004.06.003.Search in Google Scholar PubMed
Falchi, A.M., Sogos, V., Saba, F., Piras, M., Congiu, T., and Piludu, M. (2013). Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem. Cell Biol. 139: 221–231. https://doi.org/10.1007/s00418-012-1045-x.Search in Google Scholar PubMed
Falkevall, A., Alikhani, N., Bhushan, S., Pavlov, P.F., Busch, K., Johnson, K.A., Eneqvist, T., Tjernberg, L., Ankarcrona, M., and Glaser, E. (2006). Degradation of the amyloid β-protein by the novel mitochondrial peptidasome. PreP. J. Biol. Chem. 281: 29096–29104. https://doi.org/10.1074/jbc.m602532200.Search in Google Scholar PubMed
Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., Lautrup, S., Hasan-Olive, M.M., Caponio, D., Dan, X., et al. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 1. https://doi.org/10.1038/s41593-018-0332-9.Search in Google Scholar PubMed PubMed Central
Fu, A., Hou, Y., Yu, Z., Zhao, Z., and Liu, Z. (2019). Healthy mitochondria inhibit the metastatic melanoma in lungs. Int. J. Biol. Sci. 15: 2707–2718. https://doi.org/10.7150/ijbs.38104.Search in Google Scholar PubMed PubMed Central
Gao, L., Zhang, Z., Lu, J., and Pei, G. (2019). Mitochondria are dynamically transferring between human neural cells and alexander disease-associated GFAP mutations impair the astrocytic transfer. Front. Cell. Neurosci. 13: 316. https://doi.org/10.3389/fncel.2019.00316.Search in Google Scholar PubMed PubMed Central
Giorgi, C., Agnoletto, C., Bononi, A., Bonora, M., de Marchi, E., Marchi, S., Missiroli, S., Patergnani, S., Poletti, F., Rimessi, A., et al. (2012). Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 12: 77–85, https://doi.org/10.1016/j.mito.2011.07.004.Search in Google Scholar PubMed PubMed Central
Gollihue, J.L., Patel, S.P., Eldahan, K.C., Cox, D.H., Donahue, R.R., Taylor, B.K., Sullivan, P.G., and Rabchevsky, A.G. (2018). Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J. Neurotrauma 35: 1800–1818. https://doi.org/10.1089/neu.2017.5605.Search in Google Scholar PubMed PubMed Central
Gollihue, J.L., Patel, S.P., Mashburn, C., Eldahan, K.C., Sullivan, P.G., and Rabchevsky, A.G. (2017). Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J. Neurosci. Methods 287: 1–12. https://doi.org/10.1016/j.jneumeth.2017.05.023.Search in Google Scholar PubMed PubMed Central
Gollihue, J.L., and Rabchevsky, A.G. (2017). Prospects for therapeutic mitochondrial transplantation. Mitochondrion 35: 70–79, https://doi.org/10.1016/j.mito.2017.05.007.Search in Google Scholar PubMed PubMed Central
Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., and Ahmadiani, A. (2017). Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther. 23: 5–22, https://doi.org/10.1111/cns.12655.Search in Google Scholar PubMed PubMed Central
Grossman, L.I., Wildman, D.E., Schmidt, T.R., and Goodman, M. (2004). Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet. 20: 578–585, https://doi.org/10.1016/j.tig.2004.09.002.Search in Google Scholar PubMed
Grünewald, A., Rygiel, K.A., Hepplewhite, P.D., Morris, C.M., Picard, M., and Turnbull, D.M. (2016). Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann. Neurol. 79: 366–378. https://doi.org/10.1002/ana.24571.Search in Google Scholar PubMed PubMed Central
Gureev, A.P., Popov, V.N., and Starkov, A.A. (2020). Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the improvement of long-term potentiation. Exp. Neurol.https://doi.org/10.1016/j.expneurol.2020.113285.Search in Google Scholar PubMed PubMed Central
Hara, Y., Yuk, F., Puri, R., Janssen, W.G.M., Rapp, P.R., and Morrison, J.H. (2014). Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc. Natl. Acad. Sci. U.S.A. 111: 486–491. https://doi.org/10.1073/pnas.1311310110.Search in Google Scholar PubMed PubMed Central
Hayakawa, K., Chan, S.J., Mandeville, E.T., Park, J.H., Bruzzese, M., Montaner, J., Arai, K., Rosell, A., and Lo, E.H. (2018). Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 36: 1404–1410. https://doi.org/10.1002/stem.2856.Search in Google Scholar PubMed PubMed Central
Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E.H. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535: 551–555. https://doi.org/10.1038/nature18928.Search in Google Scholar PubMed PubMed Central
He, K., Shi, X., Zhang, X., Dang, S., Ma, X., Liu, F., Xu, M., Lv, Z., Han, D., Fang, X., et al. (2011). Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 92: 39–47. https://doi.org/10.1093/cvr/cvr189.Search in Google Scholar PubMed
Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R.L., Atwood, C.S., Johnson, A.B., Kress, Y., Vinters, H.V., Tabaton, M., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21: 3017–3023. https://doi.org/10.1523/jneurosci.21-09-03017.2001.Search in Google Scholar PubMed PubMed Central
Holm, M.M., Kaiser, J., and Schwab, M.E. (2018). Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci. 41: 360–372, https://doi.org/10.1016/j.tins.2018.03.006.Search in Google Scholar PubMed
Huang, P.J., Kuo, C.C., Lee, H.C., Shen, C.I., Cheng, F.C., Wu, S.F., Chang, J.C., Pan, H.C., Lin, S.Z., Liu, C.S., et al. (2016). Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 25: 913–927. https://doi.org/10.3727/096368915x689785.Search in Google Scholar
Islam, M.N., Das, S.R., Emin, M.T., Wei, M., Sun, L., Westphalen, K., Rowlands, D.J., Quadri, S.K., Bhattacharya, S., and Bhattacharya, J. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18: 759–765. https://doi.org/10.1038/nm.2736.Search in Google Scholar PubMed PubMed Central
Jagmag, S.A., Tripathi, N., Shukla, S.D., Maiti, S., and Khurana, S. (2016). Evaluation of models of Parkinson’s disease. Front. Neurosci. 9: 503, https://doi.org/10.3389/fnins.2015.00503.Search in Google Scholar PubMed PubMed Central
Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B., and Kanthasamy, A.G. (2014). Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1842: 1282–1294, https://doi.org/10.1016/j.bbadis.2013.09.007.Search in Google Scholar PubMed PubMed Central
Joshi, A.U., Minhas, P.S., Liddelow, S.A., Haileselassie, B., Andreasson, K.I., Dorn, G.W., and Mochly-Rosen, D. (2019). Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22: 1635–1648. https://doi.org/10.1038/s41593-019-0486-0.Search in Google Scholar PubMed PubMed Central
Kandimalla, R., Manczak, M., Fry, D., Suneetha, Y., Sesaki, H., and Reddy, P.H. (2016). Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum. Mol. Genet. 25: 4881–4897. https://doi.org/10.1093/hmg/ddw312.Search in Google Scholar PubMed PubMed Central
Kang, J.S., Tian, J.H., Pan, P.Y., Zald, P., Li, C., Deng, C., and Sheng, Z.H. (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132: 137–148. https://doi.org/10.1016/j.cell.2007.11.024.Search in Google Scholar PubMed PubMed Central
Katrangi, E., D’Souza, G., Boddapati, S.V., Kulawiec, M., Singh, K.K., Bigger, B., and Weissig, V. (2007). Xenogenic transfer of isolated murine mitochondria into human ρ0 cells can improve respiratory function. Rejuvenation Res. 10: 561–570. https://doi.org/10.1089/rej.2007.0575.Search in Google Scholar PubMed
Kaza, A.K., Wamala, I., Friehs, I., Kuebler, J.D., Rathod, R.H., Berra, I., Ericsson, M., Yao, R., Thedsanamoorthy, J.K., Zurakowski, D., et al. (2017). Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thoracic Cardiovasc Surg. Mosby: 934–943. https://doi.org/10.1016/j.jtcvs.2016.10.077.Search in Google Scholar PubMed
Keller, K.E., Bradley, J.M., Sun, Y.Y., Yang, Y.F., and Acott, T.S. (2017). Tunneling nanotubes are novel cellular structures that communicate signals between trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 58: 5298–5307. https://doi.org/10.1167/iovs.17-22732.Search in Google Scholar PubMed PubMed Central
Kesner, E.E., Saada-Reich, A., and Lorberboum-Galski, H. (2016). Characteristics of mitochondrial transformation into human cells. Sci. Rep. 6. https://doi.org/10.1038/srep26057.Search in Google Scholar PubMed PubMed Central
Khamsi, R. (2004). Energetic cells may have boosted the brain. Nature. https://doi.org/10.1038/news041122-5.Search in Google Scholar
Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608. https://doi.org/10.1038/33416.Search in Google Scholar PubMed
Koyanagi, M., Brandes, R.P., Haendeler, J., Zeiher, A.M., and Dimmeler, S. (2005). Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?. Circ. Res. 96: 1039–1041. https://doi.org/10.1161/01.res.0000168650.23479.0c.Search in Google Scholar
Kuo, C.C., Su, H.L., Chang, T.L., Chiang, C.Y., Sheu, M.L., Cheng, F.C., Chen, C.J., Sheehan, J., and Pan, H.C. (2017). Prevention of axonal degeneration by perineurium injection of mitochondria in a sciatic nerve crush injury model. Neurosurgery 80: 475–488. https://doi.org/10.1093/neuros/nyw090.Search in Google Scholar PubMed
Laird, M.D., Clerc, P., Polster, B.M., and Fiskum, G. (2013). Augmentation of normal and glutamate-impaired neuronal respiratory capacity by exogenous alternative biofuels. Transl. Stroke Res. 4: 643–651. https://doi.org/10.1007/s12975-013-0275-0.Search in Google Scholar PubMed PubMed Central
Levy, M., Faas, G.C., Saggau, P., Craigen, W.J., and Sweatt, J.D. (2003). Mitochondrial regulation of synaptic plasticity in the hippocampus. J. Biol. Chem. 278: 17727–17734. https://doi.org/10.1074/jbc.m212878200.Search in Google Scholar
Li, X., Zhang, Y., Yeung, S.C., Liang, Y., Liang, X., Ding, Y., Ip, M.S.M., Tse, H.-F., Mak, J.C.W., and Lian, Q. (2014). Mitochondrial transfer of induced pluripotent stem cell–derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke–induced damage. Am. J. Respir. Cell Mol. Biol. 51: 455–465. https://doi.org/10.1165/rcmb.2013-0529oc.Search in Google Scholar
Li, Z., Okamoto, K.I., Hayashi, Y., and Sheng, M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119: 873–887. https://doi.org/10.1016/j.cell.2004.11.003.Search in Google Scholar PubMed
Lin, M.-Y., and Sheng, Z.-H. (2015). Regulation of mitochondrial transport in neurons. Exp. Cell Res. 334: 35–44. https://doi.org/10.1016/j.yexcr.2015.01.004.Search in Google Scholar PubMed PubMed Central
Liu, K., Guo, L., Zhou, Z., Pan, M., and Yan, C. (2019). Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc. Res. 123: 74–80. https://doi.org/10.1016/j.mvr.2019.01.001.Search in Google Scholar PubMed
Liu, K., Ji, K., Guo, L., Wu, W., Lu, H., Shan, P., and Yan, C. (2014). Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92: 10–18. https://doi.org/10.1016/j.mvr.2014.01.008.Search in Google Scholar PubMed
Manczak, M., Calkins, M.J., and Reddy, P.H. (2011). Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet. 20: 2495–2509. https://doi.org/10.1093/hmg/ddr139.Search in Google Scholar PubMed PubMed Central
Mandal, A., and Drerup, C.M. (2019). Axonal transport and mitochondrial function in neurons. Front. Cell. Neurosci. 13:373, https://doi.org/10.3389/fncel.2019.00373.Search in Google Scholar PubMed PubMed Central
Masuzawa, A., Black, K.M., Pacak, C.A., Ericsson, M., Barnett, R.J., Drumm, C., Seth, P., Bloch, D.B., Levitsky, S., Cowan, D.B., et al. (2013). Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. AJP Hear. Circ. Physiol. 304: H966–H982. https://doi.org/10.1152/ajpheart.00883.2012.Search in Google Scholar PubMed PubMed Central
McCully, J.D., Cowan, D.B., Emani, S.M., and del Nido, P.J. (2017). Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34: 127–134, https://doi.org/10.1016/j.mito.2017.03.004.Search in Google Scholar PubMed
McCully, J.D., Cowan, D.B., Pacak, C.A., Toumpoulis, I.K., Dayalan, H., and Levitsky, S. (2009). Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296: H94–H105. https://doi.org/10.1152/ajpheart.00567.2008.Search in Google Scholar PubMed PubMed Central
McCully, J.D., Emani, S.M., and Del Nido, P.J. (2020). Letter by McCully et al Regarding Article, “Mitochondria do not survive calcium overload. Circ. Res.https://doi.org/10.1161/CIRCRESAHA.120.316832.Search in Google Scholar PubMed
Melentijevic, I., Toth, M.L., Arnold, M.L., Guasp, R.J., Harinath, G., Nguyen, K.C., Taub, D., Parker, J.A., Neri, C., Gabel, C.V., et al. (2017). C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542: 367–371. https://doi.org/10.1038/nature21362.Search in Google Scholar PubMed PubMed Central
Miliotis, S., Nicolalde, B., Ortega, M., Yepez, J., and Caicedo, A. (2019). Forms of extracellular mitochondria and their impact in health. Mitochondrion.10.1016/j.mito.2019.02.002Search in Google Scholar PubMed
Morris, M.C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19: 1173–1176. https://doi.org/10.1038/nbt1201-1173.Search in Google Scholar PubMed
Morrison, T.J., Jackson, M.V., Cunningham, E.K., Kissenpfennig, A., McAuley, D.F., O’Kane, C.M., and Krasnodembskaya, A.D. (2017). Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med. 196: 1275–1286. https://doi.org/10.1164/rccm.201701-0170oc.Search in Google Scholar
Moschoi, R., Imbert, V., Nebout, M., Chiche, J., Mary, D., Prebet, T., Saland, E., Castellano, R., Pouyet, L., Collette, Y., et al. (2016). Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128: 253–264. https://doi.org/10.1182/blood-2015-07-655860.Search in Google Scholar PubMed
Moskowitzova, K., Liu, K., Shin, B., Ramirez-Barbieri, G.F., Guariento, A., Blitzer, D., Cowan, D.B., Thedsanamoorthy, J.K., Yao, R., Orfany, A., et al. (2018). Mitochondrial transplantation prolongs cold preservation time in murine cardiac transplantation. J. Hear Lung Transplant. 37: S22–S23. https://doi.org/10.1016/j.healun.2018.01.033.Search in Google Scholar
Moskowitzova, K., Shin, B., Liu, K., Ramirez-Barbieri, G., Guariento, A., Blitzer, D., Thedsanamoorthy, J.K., Yao, R., Snay, E.R., Inkster, J.A.H., et al. (2019). Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation 38, 92–99. https://doi.org/10.1016/j.healun.2018.09.025.Search in Google Scholar PubMed PubMed Central
Mossmann, D., Vögtle, F.N., Taskin, A.A., Teixeira, P.F., Ring, J., Burkhart, J.M., Burger, N., Pinho, C.M., Tadic, J., Loreth, D., et al. (2014). Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metabol. 20: 662–669. https://doi.org/10.1016/j.cmet.2014.07.024.Search in Google Scholar PubMed
Murray, L.M.A., and Krasnodembskaya, A.D. (2019). Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells. 37: 14–25. https://doi.org/10.1002/stem.2922.Search in Google Scholar PubMed
Murthy, V.N., and Camilli, P. De. (2003). Cell biology of the presynaptic Terminal. Annu. Rev. Neurosci. 26: 701–728. https://doi.org/10.1146/annurev.neuro.26.041002.131445.Search in Google Scholar PubMed
Nakamura, K., Nemani, V.M., Azarbal, F., Skibinski, G., Levy, J.M., Egami, K., Munishkina, L., Zhang, J., Gardner, B., Wakabayashi, J., et al. (2011). Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286: 20710–20726. https://doi.org/10.1074/jbc.m110.213538.Search in Google Scholar
Nakamura, K., Nemani, V.M., Wallender, E.K., Kaehlcke, K., Ott, M., and Edwards, R.H. (2008). Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J. Neurosci. 28: 12305–12317. https://doi.org/10.1523/jneurosci.3088-08.2008.Search in Google Scholar PubMed PubMed Central
Nguyen, P.V., Marin, L., and Atwood, H.L. (1997). Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons. J. Neurophysiol. 78: 281–294. https://doi.org/10.1152/jn.1997.78.1.281.Search in Google Scholar PubMed
Nicolás-Ávila, J.A., Lechuga-Vieco, A.V., Esteban-Martínez, L., Sánchez-Díaz, M., Díaz-García, E., Santiago, D.J., Rubio-Ponce, A., Li, J.L., Balachander, A., Quintana, J.A., et al. (2020). A network of macrophages supports mitochondrial homeostasis in the heart. Cell, https://doi.org/10.1016/j.cell.2020.08.031.Search in Google Scholar PubMed
Pacak, C.A., Preble, J.M., Kondo, H., Seibel, P., Levitsky, S., del Nido, P.J., Cowan, D.B., and McCully, J.D. (2015). Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol. Open 4: 622–626. https://doi.org/10.1242/bio.201511478.Search in Google Scholar PubMed PubMed Central
Park, J.-S.S., Davis, R.L., and Sue, C.M. (2018). Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 18: 21. https://doi.org/10.1007/s11910-018-0829-3.Search in Google Scholar PubMed PubMed Central
Pepe, S., Marasco, S.F., Haas, S.J., Sheeran, F.L., Krum, H., and Rosenfeldt, F.L. (2007). Coenzyme Q10 in cardiovascular disease. Mitochondrion 7 Suppl: S154–S167, https://doi.org/10.1016/j.mito.2007.02.005.Search in Google Scholar PubMed
Perkins, G.A., Tjong, J., Brown, J.M., Poquiz, P.H., Scott, R.T., Kolson, D.R., Ellisman, M.H., and Spirou, G.A. (2010). The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J. Neurosci. 30: 1015–1026. https://doi.org/10.1523/jneurosci.1517-09.2010.Search in Google Scholar
Picard, M., and McEwen, B.S. (2014). Mitochondria impact brain function and cognition. Proc. Natl. Acad. Sci. U.S.A. 111: 7–8. https://doi.org/10.1073/pnas.1321881111.Search in Google Scholar PubMed PubMed Central
Pickrell, A.M., Huang, C.H., Kennedy, S.R., Ordureau, A., Sideris, D.P., Hoekstra, J.G., Harper, J.W., and Youle, R.J. (2015). Endogenous parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87: 371–381. https://doi.org/10.1016/j.neuron.2015.06.034.Search in Google Scholar PubMed PubMed Central
Piel, D.A., Gruber, P.J., Weinheimer, C.J., Courtois, M.R., Robertson, C.M., Coopersmith, C.M., Deutschman, C.S., and Levy, R.J. (2007). Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit. Care Med. 35: 2120–2127. https://doi.org/10.1097/01.ccm.0000278914.85340.fe.Search in Google Scholar PubMed
Plotnikov, E.Y., Khryapenkova, T.G., Galkina, S.I., Sukhikh, G.T., and Zorov, D.B. (2010). Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp. Cell Res. 316: 2447–2455. https://doi.org/10.1016/j.yexcr.2010.06.009.Search in Google Scholar PubMed
Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Prim. 3: 1–21. https://doi.org/10.1038/nrdp.2017.13.Search in Google Scholar PubMed
Pontzer, H., Brown, M.H., Raichlen, D.A., Dunsworth, H., Hare, B., Walker, K., Luke, A., Dugas, L.R., Durazo-Arvizu, R., Schoeller, D., et al. (2016). Metabolic acceleration and the evolution of human brain size and life history. Nature 533: 390–392. https://doi.org/10.1038/nature17654.Search in Google Scholar PubMed PubMed Central
Preble, J.M., Pacak, C.A., Kondo, H., MacKay, A.A., Cowan, D.B., and McCully, J.D. (2014). Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J. Vis. Exp.: e51682. https://doi.org/10.3791/51682.Search in Google Scholar PubMed PubMed Central
Querfurth, H.W., and LaFerla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362: 329–344. https://doi.org/10.1056/nejmra0909142.Search in Google Scholar
Ramirez-Barbieri, G., Moskowitzova, K., Shin, B., Blitzer, D., Orfany, A., Guariento, A., Iken, K., Friehs, I., Zurakowski, D., del Nido, P.J., et al. (2018). Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 46: 103–115. https://doi.org/10.1016/j.mito.2018.03.002.Search in Google Scholar PubMed
Rangaraju, V., Calloway, N., and Ryan, T.A. (2014). Activity-driven local ATP synthesis is required for synaptic function. Cell 156: 825–835. https://doi.org/10.1016/j.cell.2013.12.042.Search in Google Scholar PubMed PubMed Central
Rangaraju, V., Lauterbach, M., and Schuman, E.M. (2019a). Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176: 73–84.e15. https://doi.org/10.1016/j.cell.2018.12.013.Search in Google Scholar PubMed
Rangaraju, V., Lewis, T.L., Hirabayashi, Y., Bergami, M., Motori, E., Cartoni, R., Kwon, S.K., and Courchet, J. (2019b). Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease. J. Neurosci. 39: 8200–8208. https://doi.org/10.1523/jneurosci.1157-19.2019.Search in Google Scholar PubMed PubMed Central
Raoof, A.R., Vlist, M.V.D., Willemen, H.L.D.M., and Prado, J. (2020). Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. bioRxiv. https://doi.org/10.1101/2020.02.12.940445.Search in Google Scholar
Rizzuto, R. (2001). Intracellular Ca2+ pools in neuronal signalling. Curr. Opin. Neurobiol. 11: 306–311, https://doi.org/10.1016/s0959-4388(00)00212-9.Search in Google Scholar PubMed
Robey, R.B., and Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25: 4683–4696, https://doi.org/10.1038/sj.onc.1209595.Search in Google Scholar PubMed
Robicsek, O., Ene, H.M., Karry, R., Ytzhaki, O., Asor, E., McPhie, D., Cohen, B.M., Ben-Yehuda, R., Weiner, I., and Ben-Shachar, D. (2018). Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr. Bull. 44: 432–442. https://doi.org/10.1093/schbul/sbx077.Search in Google Scholar PubMed PubMed Central
Roushandeh, A.M., Kuwahara, Y., and Roudkenar, M.H. (2019). Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 71: 647–663. https://doi.org/10.1007/s10616-019-00302-9.Search in Google Scholar PubMed PubMed Central
Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543: 443–446. https://doi.org/10.1038/nature21695.Search in Google Scholar PubMed PubMed Central
Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H.-H. (2004). Nanotubular highways for intercellular organelle transport. Science 303: 1007–1010. https://doi.org/10.1126/science.1093133.Search in Google Scholar PubMed
Sarter, M., and Parikh, V. (2005). Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 6: 48–56, https://doi.org/10.1038/nrn1588.Search in Google Scholar PubMed
Saxton, W.M., and Hollenbeck, P.J. (2012). The axonal transport of mitochondria. J. Cell Sci. 125: 2095–2104. https://doi.org/10.1242/jcs.053850.Search in Google Scholar PubMed PubMed Central
Scarffe, L.A., Stevens, D.A., Dawson, V.L., and Dawson, T.M. (2014). Parkin and PINK1: much more than mitophagy. Trends Neurosci. 37: 315–324. https://doi.org/10.1016/j.tins.2014.03.004.Search in Google Scholar PubMed PubMed Central
Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol 5. https://doi.org/10.1101/cshperspect.a011304.Search in Google Scholar PubMed PubMed Central
Scott, I., and Youle, R.J. (2010). Mitochondrial fission and fusion. Essays Biochem. 47: 85–98. https://doi.org/10.1042/bse0470085.Search in Google Scholar PubMed PubMed Central
Sharpley, M.S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., Lin, C.S., Masubuchi, S., Friend, N., Koike, M., et al. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151: 333–343. https://doi.org/10.1016/j.cell.2012.09.004.Search in Google Scholar PubMed PubMed Central
Shi, X., Zhao, M., Fu, C., and Fu, A. (2017). Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion 34: 91–100. https://doi.org/10.1016/j.mito.2017.02.005.Search in Google Scholar PubMed
Shin, B., Cowan, D.B., Emani, S.M., del Nido, P.J., and McCully, J.D. (2017). Mitochondrial transplantation in myocardial ischemia and reperfusion injury Advances in experimental medicine and biology. Cham: Springer, 595–619 https://doi.org/10.1007/978-3-319-55330-6_31.Search in Google Scholar PubMed
Shin, B., Saeed, M.Y., Esch, J.J., Guariento, A., Blitzer, D., Moskowitzova, K., Ramirez-Barbieri, G., Orfany, A., Thedsanamoorthy, J.K., Cowan, D.B., et al. (2019). A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: safety and efficacy. JACC Basic to Transl. Sci. 4: 871–888. https://doi.org/10.1016/j.jacbts.2019.08.007.Search in Google Scholar PubMed PubMed Central
Silver, I., and Erecińska, M. (1998). Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv. Exp. Med. Biol. 454: 7–16. https://doi.org/10.1007/978-1-4615-4863-8_2.Search in Google Scholar PubMed
Sisakhtnezhad, S., and Khosravi, L. (2015). Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur. J. Cell Biol. 94: 429–443, https://doi.org/10.1016/j.ejcb.2015.06.010.Search in Google Scholar PubMed
Smith, G.M., and Gallo, G. (2018). The role of mitochondria in axon development and regeneration. Dev. Neurobiol. 78: 221–237, https://doi.org/10.1002/dneu.22546.Search in Google Scholar PubMed PubMed Central
Song, X., Hu, W., Yu, H., Wang, H., Zhao, Y, Korngold, R., and Zhao, Yong. (2020). Existence of circulating mitochondria in human and animal peripheral blood. Int. J. Mol. Sci. 21: 2122. https://doi.org/10.3390/ijms21062122.Search in Google Scholar PubMed PubMed Central
Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., Moullan, N., Potenza, F., Schmid, A.W., Rietsch, S., et al. (2017). Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552: 187–193. https://doi.org/10.1038/nature25143.Search in Google Scholar PubMed PubMed Central
Spees, J.L., Olson, S.D., Whitney, M.J., and Prockop, D.J. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U.S.A. 103: 1283–1288. https://doi.org/10.1073/pnas.0510511103.Search in Google Scholar PubMed PubMed Central
Suen, D.F., Norris, K.L., and Youle, R.J. (2008). Mitochondrial dynamics and apoptosis. Genes Dev. 22: 1577–1590. https://doi.org/10.1101/gad.1658508.Search in Google Scholar PubMed PubMed Central
Sun, C., Liu, X., Wang, B., Wang, Z., Liu, Y., Di, C., Si, J., Li, H., Wu, Q., Xu, D., et al. (2019). Endocytosis-mediated mitochondrial transplantation: transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics 9: 3595–3607. https://doi.org/10.7150/thno.33100.Search in Google Scholar PubMed PubMed Central
Sun, T., Qiao, H., Pan, P.Y., Chen, Y., and Sheng, Z.H. (2013). Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 4: 413–419. https://doi.org/10.1016/j.celrep.2013.06.040.Search in Google Scholar PubMed PubMed Central
Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461: 367–372. https://doi.org/10.1038/nature08368.Search in Google Scholar PubMed PubMed Central
Tanaka, D., Nakada, K., Takao, K., Ogasawara, E., Kasahara, A., Sato, A., Yonekawa, H., Miyakawa, T., and Hayashi, J.I. (2008). Normal mitochondrial respiratory function is essential for spatial remote memory in mice. Mol. Brain 1: 21. https://doi.org/10.1186/1756-6606-1-21.Search in Google Scholar PubMed PubMed Central
Todorova, V., and Blokland, A. (2016). Mitochondria and synaptic plasticity in the mature and aging nervous system. Curr. Neuropharmacol. 15: 166–173. https://doi.org/10.2174/1570159x14666160414111821.Search in Google Scholar PubMed PubMed Central
Torralba, D., Baixauli, F., and Sánchez-Madrid, F. (2016). Mitochondria know No boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4: 107. https://doi.org/10.3389/fcell.2016.00107.Search in Google Scholar PubMed PubMed Central
Tseng, N., Lambie, S.C., Huynh, C.Q., Sanford, B., Patel, M., Herson, P.S., and Ormond, D.R. (2020). Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: the role of Miro1. J. Cerebr. Blood Flow Metabol. 271678X20928147, https://doi.org/10.1177/0271678x20928147.Search in Google Scholar
Verstreken, P., Ly, C.V., Venken, K.J.T., Koh, T.-W.W., Zhou, Y., and Bellen, H.J. (2005). Synaptic Mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47: 365–378. https://doi.org/10.1016/j.neuron.2005.06.018.Search in Google Scholar PubMed
Wang, L., Guo, L., Lu, L., Sun, H., Shao, M., Beck, S.J., Li, L., Ramachandran, J., Du, Y., and Du, H. (2016). Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer’s disease. PLoS One 11: e0150441. https://doi.org/10.1371/journal.pone.0150441.Search in Google Scholar PubMed PubMed Central
Wang, X., Bukoreshtliev, N.V., and Gerdes, H.H. (2012). Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 7 https://doi.org/10.1371/journal.pone.0047429.Search in Google Scholar PubMed PubMed Central
Wang, X., Su, B., Lee, H.-g. H., Li, X., Perry, G., Smith, M., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29: 9090–9103. https://doi.org/10.1523/jneurosci.1357-09.2009.Search in Google Scholar PubMed PubMed Central
Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G., and Zhu, X. (2008). Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U.S.A. 105: 19318–19323. https://doi.org/10.1073/pnas.0804871105.Search in Google Scholar PubMed PubMed Central
Wang, Y., Ni, J., Gao, C., Xie, L., Zhai, L., Cui, G., and Yin, X. (2019). Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 93: 240–249. https://doi.org/10.1016/j.pnpbp.2019.04.010.Search in Google Scholar PubMed
Wu, T.H., Sagullo, E., Case, D., Zheng, X., Li, Y., Hong, J.S., Teslaa, T., Patananan, A.N., McCaffery, J.M., Niazi, K., et al. (2016). Mitochondrial transfer by photothermal nanoblade restores metabolite profile in mammalian cells. Cell Metabol. 23: 921–929. https://doi.org/10.1016/j.cmet.2016.04.007.Search in Google Scholar PubMed PubMed Central
Yao, J., Irwin, R.W., Zhao, L., Nilsen, J., Hamilton, R.T., and Brinton, R.D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 106: 14670–14675. https://doi.org/10.1073/pnas.0903563106.Search in Google Scholar PubMed PubMed Central
Yao, Y., Fan, X.L., Jiang, D., Zhang, Y., Li, X., Xu, Z.B., Fang, S.B, Chiu, S., Tse, H.F., Lian, Q., et al. (2018). Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Rep 11: 1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012.Search in Google Scholar PubMed PubMed Central
Youle, R.J., and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337: 1062–1065. https://doi.org/10.1126/science.1219855.Search in Google Scholar PubMed PubMed Central
Zhang, B., Gao, Y., Li, Q., Sun, D., Dong, X., Li, X., Xin, W., and Zhang, J. (2020). Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury. World Neurosurg 138. https://doi.org/10.1016/j.wneu.2019.11.172.Search in Google Scholar PubMed
Zhang, L., Trushin, S., Christensen, T.A., Bachmeier, B.V., Gateno, B., Schroeder, A., Yao, J., Itoh, K., Sesaki, H., Poon, W.W., et al. (2016). Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s Disease. Sci. Rep. 6: 18725. https://doi.org/10.1038/srep18725.Search in Google Scholar PubMed PubMed Central
Zhang, Z., Ma, Z., Yan, C., Pu, K., Wu, M., Bai, J., Li, Y., and Wang, Q. (2019). Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav. Brain Res. 356: 322–331. https://doi.org/10.1016/j.bbr.2018.09.005.Search in Google Scholar PubMed
Zhao, Y., Jiang, Z., Delgado, E., Li, H., Zhou, H., Hu, W., Perez-Basterrechea, M., Janostakova, A., Tan, Q., Wang, J., et al. (2017). Platelet-derived mitochondria display embryonic stem cell markers and improve pancreatic islet b-cell function in humans. Stem Cells Transl. Med. 6: 1684–1697. https://doi.org/10.1002/sctm.17-0078.Search in Google Scholar PubMed PubMed Central
Zhao, Z., Yu, Z., Hou, Y., Zhang, L., and Fu, A. (2020). Improvement of cognitive and motor performance with mitotherapy in aged mice. Int. J. Biol. Sci. 16: 849–858. https://doi.org/10.7150/ijbs.40886.Search in Google Scholar PubMed PubMed Central
Zheng, Y.R., Zhang, X.N., and Chen, Z. (2019). Mitochondrial transport serves as a mitochondrial quality control strategy in axons: implications for central nervous system disorders. CNS Neurosci. Ther. 25: 876–886, https://doi.org/10.1111/cns.13122.Search in Google Scholar PubMed PubMed Central
Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94: 909–50. https://doi.org/10.1152/physrev.00026.2013.Search in Google Scholar PubMed PubMed Central
Zozina, V.I., Covantev, S., Goroshko, O.A., Krasnykh, L.M., and Kukes, V.G. (2018). Coenzyme Q10 in cardiovascular and metabolic diseases: current state of the problem. Curr. Cardiol. Rev. 14: 164–174. https://doi.org/10.2174/1573403x14666180416115428.Search in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior
- A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective
- Genetic parkinsonisms and cancer: a systematic review and meta-analysis
- Prevalence of sports-related spinal injury stratified by competition level and return to play guidelines
- The basal ganglia corticostriatal loops and conditional learning
- VEGF levels in patients with glioma: a systematic review and meta-analysis
- The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders
- CNS implications of COVID-19: a comprehensive review
- COVID-19 in age-related neurodegenerative diseases: is there a role for vitamin D3 as a possible therapeutic strategy?
Articles in the same Issue
- Frontmatter
- Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior
- A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective
- Genetic parkinsonisms and cancer: a systematic review and meta-analysis
- Prevalence of sports-related spinal injury stratified by competition level and return to play guidelines
- The basal ganglia corticostriatal loops and conditional learning
- VEGF levels in patients with glioma: a systematic review and meta-analysis
- The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders
- CNS implications of COVID-19: a comprehensive review
- COVID-19 in age-related neurodegenerative diseases: is there a role for vitamin D3 as a possible therapeutic strategy?