Abstract
To evaluate the therapeutic efficacy of passive cellular immunotherapy for glioma, a total of 979 patients were assigned to the meta-analysis. PubMed and the Cochrane Central Register of Controlled Trials were searched initially from February 2018 and updated in April 2019. The overall survival (OS) rates and Karnofsky performance status (KPS) values of patients who underwent passive cellular immunotherapy were compared to those of patients who did not undergo immunotherapy. The proportion of survival rates was also evaluated in one group of clinical trials. Pooled analysis was performed with random- or fixed-effects models. Clinical trials of lymphokine-activated killer cells, cytotoxic T lymphocytes, autologous tumor-specific T lymphocytes, chimeric antigen receptor T cells, cytokine-induced killer cells, cytomegalovirus-specific T cells, and natural killer cell therapies were selected. Results showed that treatment of glioma with passive cellular immunotherapy was associated with a significantly improved 0.5-year OS (p = 0.003) as well as improved 1-, 1.5-, and 3-year OS (p ≤ 0.05). A meta-analysis of 206 patients in one group of clinical trials with 12-month follow-up showed that the overall pooled survival rate was 37.9% (p = 0.003). Analysis of KPS values demonstrated favorable results for the immunotherapy arm (p < 0.001). Thus, the present meta-analysis showed that passive cellular immunotherapy prolongs survival and improves quality of life for glioma patients, suggesting that it has some clinical benefits.
Compliance with ethical standards
Ethical approval: This article does not contain any studies involving human participants or animals performed by any of the authors.
Data sharing statement: The authors confirm that all data underlying the findings are fully available without restriction. All the data underlying the results described in our manuscript can be found and are freely available to other researchers in the body of the manuscript and the supplementary. No additional data are available.
Declaration of conflict of interest: None.
References
Ahmed, N., Brawley, V., Hegde, M., Bielamowicz, K., Kalra, M., Landi, D., Robertson, C., Gray, T.L., Diouf, O., Wakefield, A., et al. (2017). HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma. JAMA Oncol. 3, 1094–1101.10.1001/jamaoncol.2017.0184Suche in Google Scholar PubMed PubMed Central
Ammirati, M., Galicich, J.H., Arbit, E., and Liao, Y. (1987). Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 21, 607–614.10.1227/00006123-198711000-00001Suche in Google Scholar PubMed
Artene, S.-A., Turcu-Stiolica, A., Ciurea, M.E., Folcuti, C., Tataranu, L.G., Alexandru, O., Purcaru, O.S., Tache, D.E., Boldeanu, M.V., Silosi, C., et al. (2018). Comparative effect of immunotherapy and standard therapy in patients with high grade glioma: a meta-analysis of published clinical trials. Sci. Rep. 8, 1–10.10.1038/s41598-018-30296-xSuche in Google Scholar PubMed PubMed Central
Avril, T., Vauleon, E., Tanguy-Royer, S., Mosser, J., and Quillien, V. (2011). Mechanisms of immunomodulation in human glioblastoma. Immunotherapy 3, 42–44.10.2217/imt.11.39Suche in Google Scholar PubMed
Barba, D., Saris, S.C., Holder, C., Rosenberg, S.A., and Oldfield, E.H. (1989). Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J. Neurosurg. 70, 175–182.10.3171/jns.1989.70.2.0175Suche in Google Scholar PubMed
Blancher, A., Roubinet, F., Grancher, A.S., Tremoulet, M., Bonaté, A., Delisle, M.B., Calot, J.P., Pourreau, C., Franks, C., and Ducos, J. (1993). Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells. Eur. Cytokine Netw. 4, 331–341.Suche in Google Scholar
Boiardi, A., Silvani, A., Ruffini, P.A., Rivoltini, L., Parmiani, G., Broggi, G., and Salmaggi, A. (1994). Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol. Immunother. 39, 193–197.10.1007/BF01533386Suche in Google Scholar PubMed
Brody, J., Kohrt, H., Marabelle, A., and Levy, R. (2011). Active and passive immunotherapy for lymphoma: proving principles and improving results. J. Clin. Oncol. 29, 1864–1875.10.1200/JCO.2010.33.4623Suche in Google Scholar PubMed
Brown, C.E., Badie, B., Barish, M.E., Weng, L., Ostberg, J.R., Chang, W.C., Naranjo, A., Starr, R., Wagner, J., Wright, C., et al. (2015). Bioactivity and safety of IL13R 2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072.10.1158/1078-0432.CCR-15-0428Suche in Google Scholar PubMed PubMed Central
Brown, C.E., Alizadeh, D., Starr, R., Weng, L., Wagner, J.R., Naranjo, A., Ostberg, J.R., Blanchard, M.S., Kilpatrick, J., Simpson, J., et al. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569.10.1056/NEJMoa1610497Suche in Google Scholar PubMed PubMed Central
Cao, J.-X., Zhang, X.-Y., Liu, J.-L., Li, D., Li, J.-L., Liu, Y.-S., Wang, M., Xu, B.-L., Wang, H.-B., and Wang, Z.-X. (2014). Clinical efficacy of tumor antigen-pulsed DC treatment for high-grade glioma patients: evidence from a meta-analysis. PLoS One 9, e107173.10.1371/journal.pone.0107173Suche in Google Scholar PubMed PubMed Central
Choi, B.D., Suryadevara, C.M., Gedeon, P.C., Herndon Ii, J.E., Sanchez-Perez, L., Bigner, D.D., and Sampson, J.H. (2014). Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J. Clin. Neurosci. 21, 189–190.10.1016/j.jocn.2013.03.012Suche in Google Scholar
Chow, K.K.H., Naik, S., Kakarla, S., Brawley, V.S., Shaffer, D.R., Yi, Z., Rainusso, N., Wu, M.-F., Liu, H., Kew, Y., et al. (2013). T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol. Ther. 21, 629–637.10.1038/mt.2012.210Suche in Google Scholar
Chung, D.-S., Shin, H.-J., and Hong, Y.-K. (2014). A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J. Immunol. Res. 2014, 1–16.10.1155/2014/326545Suche in Google Scholar
Crough, T., Beagley, L., Smith, C., Jones, L., Walker, D.G., and Khanna, R. (2012). Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol. Cell. Biol. 90, 872–880.10.1038/icb.2012.19Suche in Google Scholar
Dillman, R.O., Duma, C.M., Schiltz, P.M., DePriest, C., Ellis, R.A., Okamoto, K., Beutel, L.D., De Leon, C., and Chico, S. (2004). Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother. 27, 398–404.10.1097/00002371-200409000-00009Suche in Google Scholar
Dillman, R.O., Duma, C.M., Ellis, R.A., Cornforth, A.N., Schiltz, P.M., Sharp, S.L., and DePriest, M.C. (2009). Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J. Immunother. 32, 914–919.10.1097/CJI.0b013e3181b2910fSuche in Google Scholar
Dixit, S. (2014). Immunotherapy for high-grade glioma. Future Oncol. 10, 911–915.10.2217/fon.14.20Suche in Google Scholar
Ghazi, A., Ashoori, A., Hanley, P.J., Brawley, V.S., Shaffer, D.R., Kew, Y., Powell, S.Z., Grossman, R., Grada, Z., Scheurer, M.E., et al. (2012). Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J. Immunother. 35, 159–168.10.1097/CJI.0b013e318247642fSuche in Google Scholar
Hanaei, S., Afshari, K., Hirbod-Mobarakeh, A., Mohajer, B., Amir Dastmalchi, D., and Rezaei, N. (2018). Therapeutic efficacy of specific immunotherapy for glioma: a systematic review and meta-analysis. Rev. Neurosci. 29, 443–461.10.1515/revneuro-2017-0057Suche in Google Scholar
Hayes, R.L., Koslow, M., Hiesiger, E.M., Hymes, K.B., Hochster, H.S., Moore, E.J., Pierz, D.M., Chen, D.K., Budzilovich, G.N., and Ransohoff, J. (1995). Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76, 840–852.10.1002/1097-0142(19950901)76:5<840::AID-CNCR2820760519>3.0.CO;2-RSuche in Google Scholar
Hayes, R.L., Arbit, E., Odaimi, M., Pannullo, S., Scheff, R., Kravchinskiy, D., and Zaroulis, C. (2001). Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit. Rev. Oncol. Hematol. 39, 31–42.10.1016/S1040-8428(01)00122-6Suche in Google Scholar
Hegde, M., Corder, A., Chow, K.K.H., Mukherjee, M., Ashoori, A., Kew, Y., Zhang, Y.J., Baskin, D.S., Merchant, F.A., Brawley, V.S., et al. (2013). Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21, 2087–2101.10.1038/mt.2013.185Suche in Google Scholar PubMed PubMed Central
Hervey-Jumper, S.L. and Berger, M.S. (2014). Reoperation for recurrent high-grade glioma. Neurosurgery. 75, 491–499.10.1227/NEU.0000000000000486Suche in Google Scholar PubMed
Holladay, F.P., Heitz-Turner, T., Bayer, W.L., and Wood, G.W. (1992). Antitumor activity against established intracerebral gliomas exhibited by cytotoxic T lymphocytes, but not by lymphokine-activated killer cells. J. Neurosurg. 77, 757–762.10.3171/jns.1992.77.5.0757Suche in Google Scholar PubMed
Holladay, F.P., Heitz-Turner, T., Bayer, W.L., and Wood, G.W. (1996). Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J. Neurooncol. 27, 179–189.10.1007/BF00177482Suche in Google Scholar PubMed
Hongquan, N., Zhen, D., Fangyong, D., Tao, Z., Ting, L., and Delin, X. (2004). Experimental and clinical research of dendritic cell and syngeneic immunotherapy of brain glioma. Chin German J. Clin. Oncol. 3, 147–150.10.1007/s10330-003-0189-5Suche in Google Scholar
Ingram, M., Shelden, C.H., Jacques, S., Skillen, R.G., Bradley, W.G., Techy, G.B., Freshwater, D.B., Abts, R.M., and Rand, R.W. (1987). Preliminary clinical trial of immunotherapy for malignant glioma. J. Biol. Response Mod. 6, 489–498.Suche in Google Scholar
Ishikawa, E., Tsuboi, K., Saijo, K., Harada, H., Takano, S., Nose, T., and Ohno, T. (2004). Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 24, 1861–1871.Suche in Google Scholar
Ishikawa, E., Takano, S., Ohno, T., and Tsuboi, K. (2012). Adoptive cell transfer therapy for malignant gliomas. Adv. Exp. Med. Biol. 746, 109–120.10.1007/978-1-4614-3146-6_9Suche in Google Scholar PubMed
Jacobs, S.K., Wilson, D.J., Kornblith, P.L., and Grimm, E.A. (1986). Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 46, 2101–2104.10.3171/jns.1986.64.5.0743Suche in Google Scholar
Jeffes 3rd, E.W., Beamer, Y.B., Jacques, S., Silberman, R.S., Vayuvegula, B., Gupta, S., Coss, J.S., Yamamoto, R.S., and Granger, G.A. (1993). Therapy of recurrent high grade gliomas with surgery, and autologous mitogen activated IL-2 stimulated killer (MAK) lymphocytes: I. Enhancement of MAK lytic activity and cytokine production by PHA and clinical use of PHA. J. Neurooncol. 15, 141–155.10.1007/BF01053935Suche in Google Scholar PubMed
Kitahara, T., Watanabe, O., Yamaura, A., Makino, H., Watanabe, T., Suzuki, G., and Okumura, K. (1987). Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J. Neurooncol. 4, 329–336.10.1007/BF00195603Suche in Google Scholar PubMed
Kong, D.S., Nam, D.H., Kang, S.H., Lee, J.W., Chang, J.H., Kim, J.H., Lim, Y.J., Koh, Y.C., Chung, Y.G., Kim, J.M., et al. (2017). Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget. 8, 7003–7013.10.18632/oncotarget.12273Suche in Google Scholar PubMed PubMed Central
Kruse, C.A., Cepeda, L., Owens, B., Johnson, S.D., Stears, J., and Lillehei, K.O. (1997). Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol. Immunother. 45, 77–87.10.1007/s002620050405Suche in Google Scholar
Lamb, L.S., Bowersock, J., Dasgupta, A., Gillespie, G.Y., Su, Y., Johnson, A., and Spencer, H.T. (2013). Engineered drug resistant γδ T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy. PLoS One 8, e51805.10.1371/journal.pone.0051805Suche in Google Scholar
Lillehei, K.O., Mitchell, D.H., Johnson, S.D., McCleary, E.L., and Kruse, C.A. (1991). Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery 28, 16–23.10.1227/00006123-199101000-00003Suche in Google Scholar
Marchi, N., Teng, Q., Nguyen, M.T., Franic, L., Desai, N.K., Masaryk, T., Rasmussen, P., Trasciatti, S., and Janigro, D. (2010). Multimodal investigations of trans-endothelial cell trafficking under condition of disrupted blood-brain barrier integrity. BMC Neurosci. 11, 34.10.1186/1471-2202-11-34Suche in Google Scholar
Merchant, R.E., Grant, A.J., Merchant, L.H., and Young, H.F. (1988). Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 62, 665–671.10.1002/1097-0142(19880815)62:4<665::AID-CNCR2820620403>3.0.CO;2-OSuche in Google Scholar
Nagasawa, D.T., Fong, C., Yew, A., Spasic, M., Garcia, H.M., Kruse, C.A., and Yang, I. (2012). Passive immunotherapeutic strategies for the treatment of malignant gliomas. Neurosurg. Clin. N. Am. 23, 481–495.10.1016/j.nec.2012.04.008Suche in Google Scholar
Ogbomo, H., Cinatl, J., Mody, C.H., and Forsyth, P.A. (2011). Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol. Med. 17, 433–441.10.1016/j.molmed.2011.03.004Suche in Google Scholar
Okamoto, Y., Shimizu, K., Tamura, K., Miyao, Y., Yamada, M., Matsui, Y., Tsuda, N., Takimoto, H., Hayakawa, T., and Mogami, H. (1988). An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir. (Vienna) 94, 47–52.10.1007/BF01406615Suche in Google Scholar
O’Rourke, D.M., Nasrallah, M.P., Desai, A., Melenhorst, J.J., Mansfield, K., Morrissette, J.J.D., Martinez-Lage, M., Brem, S., Maloney, E., Shen, A., et al. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984.10.1126/scitranslmed.aaa0984Suche in Google Scholar
Plautz, G.E., Barnett, G.H., Miller, D.W., Cohen, B.H., Prayson, R.A., Krauss, J.C., Luciano, M., Kangisser, D.B., and Shu, S. (1998). Systemic T cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89, 42–51.10.3171/jns.1998.89.1.0042Suche in Google Scholar
Plautz, G.E., Miller, D.W., Barnett, G.H., Stevens, G.H., Maffett, S., Kim, J., Cohen, P.A., and Shu, S. (2000). T cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6, 2209–2218.Suche in Google Scholar
Quattrocchi, K.B., Miller, C.H., Cush, S., Bernard, S.A., Dull, S.T., Smith, M., Gudeman, S., and Varia, M.A. (1999). Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J. Neurooncol. 45, 141–157.10.1023/A:1006293606710Suche in Google Scholar
Rodriguez, A., Brown, C., and Badie, B. (2017). Chimeric antigen receptor T-cell therapy for glioblastoma. Transl. Res. 187, 93–102.10.1016/j.trsl.2017.07.003Suche in Google Scholar PubMed
Ruzevick, J., Jackson, C., Phallen, J., and Lim, M. (2012). Clinical trials with immunotherapy for high-grade glioma. Neurosurg. Clin. N. Am. 23, 459–470.10.1016/j.nec.2012.04.003Suche in Google Scholar PubMed
Ryu, J.I., Han, M.H., Cheong, J.H., Kim, J.M., and Kim, C.H. (2017). Current update of adoptive immunotherapy using cytokine-induced killer cells to eliminate malignant gliomas. Immunotherapy 9, 411–421.10.2217/imt-2017-0003Suche in Google Scholar PubMed
Sankhla, S.K., Nadkarni, J.S., and Bhagwati, S.N. (1995). Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J. Neurooncol. 27, 133–140.10.1007/BF00177476Suche in Google Scholar PubMed
Schuessler, A., Smith, C., Beagley, L., Boyle, G.M., Rehan, S., Matthews, K., Jones, L., Crough, T., Dasari, V., Klein, K., et al. (2014). Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 74, 3466–3476.10.1158/0008-5472.CAN-14-0296Suche in Google Scholar PubMed
Sloan, A.E., Dansey, R., Zamorano, L., Barger, G., Hamm, C., Diaz, F., Baynes, R., and Wood, G. (2000). Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg. Focus 9, e9.10.3171/foc.2000.9.6.10Suche in Google Scholar PubMed
Smith, M.M., Thompson, J.E., Castillo, M., Cush, S., Mukherji, S.K., Miller, C.H., and Quattrocchi, K.B. (1996). MR of recurrent high-grade astrocytomas after intralesional immunotherapy. AJNR Am. J. Neuroradiol. 17, 1065–1071.Suche in Google Scholar
Tsuboi, K., Saijo, K., Ishikawa, E., Tsurushima, H., Takano, S., Morishita, Y., and Ohno, T. (2003). Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin. Cancer Res. 9, 3294–3302.Suche in Google Scholar
Tsurushima, H., Liu, S.Q., Tuboi, K., Matsumura, A., Yoshii, Y., Nose, T., Saijo, K., and Ohno, T. (1999). Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jpn. J. Cancer Res. 90, 536–545.10.1111/j.1349-7006.1999.tb00781.xSuche in Google Scholar PubMed PubMed Central
Vaquero, J., Martínez, R., Ramiro, J., Salazar, F.G., Barbolla, L., and Regidor, C. (1991). Immunotherapy of glioblastoma with intratumoural administration of autologous lymphocytes and human lymphoblastoid interferon. A further clinical study. Acta Neurochir. (Vienna) 109, 42–45.10.1007/BF01405696Suche in Google Scholar PubMed
Vatu, B.I., Artene, S.-A., Staicu, A.-G., Turcu-Stiolica, A., Folcuti, C., Dragoi, A., Cioc, C., Baloi, S.-C., Tataranu, L.G., Silosi, C., et al. (2018). Assessment of efficacy of dendritic cell therapy and viral therapy in high grade glioma clinical trials. A meta-analytic review. J. Immunoassay Immunochem. 40, 70–80.10.1080/15321819.2018.1551804Suche in Google Scholar PubMed
Wang, X., Zhao, H.-Y., Zhang, F.-C., Sun, Y., Xiong, Z.-Y., and Jiang, X.-B. (2014). Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest. 32, 451–457.10.3109/07357907.2014.958234Suche in Google Scholar
Weller, M., Butowski, N., Tran, D.D., Recht, L.D., Lim, M., Hirte, H., Ashby, L., Mechtler, L., Goldlust, S.A., Iwamoto, F., et al. (2017). Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385.10.1016/S1470-2045(17)30517-XSuche in Google Scholar
Wood, G.W., Holladay, F.P., Turner, T., Wang, Y.Y., and Chiga, M. (2000). A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J. Neurooncol. 48, 113–120.10.1023/A:1006456421177Suche in Google Scholar
Yoshida, S., Tanaka, R., Takai, N., and Ono, K. (1988). Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res. 48, 5011–5016.Suche in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19