Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
-
Henrik Szőke
, Jan Vagedes
Abstract
The microbiota and microbiome and disruption of the gut-brain axis were linked to various metabolic, immunological, physiological, neurodevelopmental, and neuropsychiatric diseases. After a brief review of the relevant literature, we present our hypothesis that intestinal serotonin, produced by intestinal enterochromaffin cells, picked up and stored by circulating platelets, participates and has an important role in the regulation of membrane permeability in the intestine, brain, and other organs. In addition, intestinal serotonin may act as a hormone-like continuous regulatory signal for the whole body, including the brain. This regulatory signal function is mediated by platelets and is primarily dependent on and reflects the intestine’s actual health condition. This hypothesis may partially explain why gut dysbiosis could be linked to various human pathological conditions as well as neurodevelopmental and neuropsychiatric disorders.
Conflict of interest statement: The authors report no conflicts of interest. The authors alone are responsible for all the content presented in this review.
References
Abdulamir, H.A., Abdul-Rasheed, O.F., and Abdulghani, E.A. (2018). Serotonin and serotonin transporter levels in autistic children. Saudi Med. J. 39, 487–494.10.15537/smj.2018.5.21751Suche in Google Scholar PubMed PubMed Central
Al Ahmad, A., Gassmann, M., and Ogunshola, O.O. (2012). Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc. Res. 84, 222–225.10.1016/j.mvr.2012.05.008Suche in Google Scholar PubMed
Ambrosini, Y.M., Borcherding, D., Kanthasamy, A., Kim, H.J., Willette, A.A., Jergens, A., Allenspach, K., and Mochel, J.P. (2019). The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front. Aging Neurosci. 11, 130.10.3389/fnagi.2019.00130Suche in Google Scholar PubMed PubMed Central
Amireault, P., Hatia, S., and Côté, F. (2011). Ineffective erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. Proc. Natl. Acad. Sci. USA 108, 13141–13146.10.1073/pnas.1103964108Suche in Google Scholar PubMed PubMed Central
Amireault, P., Bayard, E., Launay, J.M., Sibon, D., Le Van Kim, C., Colin, Y., Dy, M., Hermine, O., and Côté, F. (2013). Serotonin is a key factor for mouse red blood cell survival. PLoS One 8, e83010.10.1371/journal.pone.0083010Suche in Google Scholar PubMed PubMed Central
Arreola, R., Becerril-Villanueva, E., Cruz-Fuentes, C.,Velasco-Velázquez, M.A., Garcés-Alvarez, M.E., Hurtado-Alvarado, G., Quintero-Fabian, S., and Pavón, L. (2015). Immunomodulatory effects mediated by serotonin. J. Immunol. Res. 2015, 354957.10.1155/2015/354957Suche in Google Scholar PubMed PubMed Central
Azouzi, S., Santuz, H., Morandat, S., Pereira, C., Côté, F., Hermine, O., El Kirat, K., Colin, Y., Le Van Kim, C., Etchebest, C., et al. (2017). Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys. J. 112, 1863–1873.10.1016/j.bpj.2017.03.037Suche in Google Scholar PubMed PubMed Central
Balestrieri, M.L., Castaldo, D., Balestrieri, C., Quagliuolo, L., Giovane, A., and Servillo, L. (2003). Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress. J. Lipid Res. 44, 380–387.10.1194/jlr.M200292-JLR200Suche in Google Scholar PubMed
Banks, W.A. (2008). The blood-brain barrier: connecting the gut and the brain. Regul. Pept. 149, 11–14.10.1016/j.regpep.2007.08.027Suche in Google Scholar PubMed PubMed Central
Banks, W.A. (2012). Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153, 4111–4119.10.1210/en.2012-1435Suche in Google Scholar PubMed PubMed Central
Banks, W.A. (2019). The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455.10.1038/s41574-019-0213-7Suche in Google Scholar PubMed
Belkaid, Y., and Hand, T.W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121–141.10.1016/j.cell.2014.03.011Suche in Google Scholar PubMed PubMed Central
Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., Brierley, S.M., Ingraham, H.A., and Julius, D. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16.10.1016/j.cell.2017.05.034Suche in Google Scholar PubMed PubMed Central
Berger, M., Gray, J.A., and Roth, B.L. (2009). The expanded biology of serotonin. Ann. Rev. Med. 60, 355–366.10.1146/annurev.med.60.042307.110802Suche in Google Scholar PubMed PubMed Central
Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., et al. (2013). An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471.10.3109/03014460.2013.807878Suche in Google Scholar PubMed
Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.D., Serino, M., Tilg, H., Watson, A., and Wells, J.M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189.10.1186/s12876-014-0189-7Suche in Google Scholar PubMed PubMed Central
Bornstein, J.C. (2012). Serotonin in the gut: what does it do? Front. Neurosci. 6, 16.10.3389/fnins.2012.00016Suche in Google Scholar PubMed PubMed Central
Brust, P., Friedrich, A., Krizbai, I.A., Bergmann, R., Roux, F.,Ganapathy, V., and Johannsen, B. (2000). Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J. Neurochem. 74, 1241–1248.10.1046/j.1471-4159.2000.741241.xSuche in Google Scholar PubMed
Buhot, M.C., Martin, S., and Segu, L. (2000). Role of serotonin in memory impairment. Ann. Med. 32, 210–221.10.3109/07853890008998828Suche in Google Scholar PubMed
Camilleri, M., Madsen, K., Spiller, R., Greenwood-Van Meerveld, B., and Verne, G.N. (2012). Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24, 503–512.10.1111/j.1365-2982.2012.01921.xSuche in Google Scholar PubMed PubMed Central
Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209.Suche in Google Scholar
Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M., and Owen, L.J. (2015). Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191.10.3402/mehd.v26.26191Suche in Google Scholar PubMed PubMed Central
Cenit, M.C., Nuevo, I.C., Codoñer-Franch, P., Dinan, T.G., and Sanz, Y. (2017). Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. Eur. Child Adolesc. Psychiatry 26, 1081–1092.10.1007/s00787-017-0969-zSuche in Google Scholar PubMed
Chassard, C., and Lacroix, C. (2013). Carbohydrates and the human gut microbiota. Curr. Opin. Clin. Nutr. Metab. Care. 16, 453–460.10.1097/MCO.0b013e3283619e63Suche in Google Scholar PubMed
Claus, S.P., Guillou, H., and Ellero-Simatos, S. (2016). The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2, 16003.10.1038/npjbiofilms.2016.3Suche in Google Scholar PubMed PubMed Central
Cloutier, N., Paré, A., Farndale, R.W., Schumacher, H.R., Nigrovic, P.A., Lacroix, S., and Boilard, E. (2012). Platelets can enhance vascular permeability. Blood 120, 1334–1343.10.1182/blood-2012-02-413047Suche in Google Scholar PubMed
Conlon, M.A., and Bird, A.R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44.10.3390/nu7010017Suche in Google Scholar PubMed PubMed Central
Crowell, M.D., and Wessinger, S.B. (2007). 5-HT and the brain-gut axis: opportunities for pharmacologic intervention. Expert Opin. Investig. Drugs 16, 761–765.10.1517/13543784.16.6.761Suche in Google Scholar PubMed
Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712.10.1038/nrn3346Suche in Google Scholar PubMed
Császár, N., and Bókkon, I. (2017). Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci. Biobehav. Rev. 84, 337–351.10.1016/j.neubiorev.2017.08.013Suche in Google Scholar PubMed
Cussotto, S., Clarke, G., Dinan, T.G., Cryan, J.F. (2019). Psychotropics and the microbiome: a Chamber of secret. Psychopharmacology 236, 1411–1432.10.1007/s00213-019-5185-8Suche in Google Scholar PubMed PubMed Central
Demopoulos, C.A., Pinckard, R.N., and Hanahan, D.J. (1979). Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J. Biol. Chem. 254, 9355–9358.10.1016/S0021-9258(19)83523-8Suche in Google Scholar
Dinan, T.G., and Cryan, J.F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 595, 489–503.10.1113/JP273106Suche in Google Scholar PubMed PubMed Central
Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526.10.1016/j.cmet.2011.02.018Suche in Google Scholar PubMed PubMed Central
Doran, K.S., Banerjee, A., Disson, O., and Lecuit, M. (2013). Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect. Med. 3, a010090.10.1101/cshperspect.a010090Suche in Google Scholar PubMed PubMed Central
Eloe-Fadrosh, E.A. and Rasko, D.A. (2013). The human microbiome: from symbiosis to pathogenesis. Annu. Rev. Med. 64, 145–163.10.1146/annurev-med-010312-133513Suche in Google Scholar PubMed PubMed Central
Evans, J.M., Morris, L.S., and Marchesi, J.R. (2013). The gut microbiome: the role of a virtual organ in the endocrinology of the host. J. Endocrinol. 218, R37–47.10.1530/JOE-13-0131Suche in Google Scholar PubMed
Fang, W., Zhang, R., Sha, L., Lv, P., Shang, E., Han, D., Wei, J., Geng, X., Yang, Q., and Li, Y. (2014). Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain. J. Neurochem. 128, 662–671.10.1111/jnc.12507Suche in Google Scholar PubMed
Fidalgo, S., Ivanov, D.K., and Wood, S.H. (2013). Serotonin: from top to bottom. Biogerontology 14, 21–45.10.1007/s10522-012-9406-3Suche in Google Scholar PubMed
Fiorentino, M., Sapone, A., Senger, S., Camhi, S.S., Kadzielski, S.M., Buie, T.M., Kelly, D.L., Cascella, N., and Fasano, A. (2016). Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism 7, 49.10.1186/s13229-016-0110-zSuche in Google Scholar PubMed PubMed Central
Flint, H.J. (2012). The impact of nutrition on the human microbiome. Nutr. Rev. 70 (Suppl 1), S10–13.10.1111/j.1753-4887.2012.00499.xSuche in Google Scholar PubMed
Foster, J.A. and McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36. 305–312.10.1016/j.tins.2013.01.005Suche in Google Scholar PubMed
Fowlie, G., Cohen, N., and Ming, X. (2018). The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int. J. Mol. Sci. 19, E2251.10.3390/ijms19082251Suche in Google Scholar PubMed PubMed Central
Franco, A.T., Corken, A., and Ware, J. (2015). Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126, 582–588.10.1182/blood-2014-08-531582Suche in Google Scholar PubMed PubMed Central
Fraser, P.A. (2011). The role of free radical generation in increasing cerebrovascular permeability. Free Radic. Biol. Med. 51, 967–977.10.1016/j.freeradbiomed.2011.06.003Suche in Google Scholar PubMed
Frazier, T.H., DiBaise, J.K., and McClain, C.J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN. J. Parenter Enteral. Nutr. 35 (5 Suppl.), 14S–20S.10.1177/0148607111413772Suche in Google Scholar PubMed
Friedman, M. and Levin, C.E. (2012). Nutritional and medicinal aspects of D-amino acids. Amino Acids 42, 1553–1582.10.1007/s00726-011-0915-1Suche in Google Scholar PubMed
Fu, B.M. (2012). Experimental methods and transport models for drug delivery across the blood-brain barrier. Curr. Pharm. Biotechnol. 13, 1346–1359.10.2174/138920112800624409Suche in Google Scholar PubMed PubMed Central
Fu, B.M. (2018). Transport across the blood-brain barrier. Adv. Exp. Med. Biol. 1097, 235–259.10.1007/978-3-319-96445-4_13Suche in Google Scholar PubMed
Fukui, H. (2016). Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm. Intest. Dis. 1, 135–145.10.1159/000447252Suche in Google Scholar PubMed PubMed Central
Ganong, W.F. (2000). Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin. Exp. Pharmacol. Physiol. 27, 422–427.10.1046/j.1440-1681.2000.03259.xSuche in Google Scholar PubMed
Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., and Li, N. (2017). Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15, 13.10.1186/s12967-016-1105-4Suche in Google Scholar PubMed PubMed Central
Gershon, M.D. and Tack, J. (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414.10.1053/j.gastro.2006.11.002Suche in Google Scholar PubMed
Giau, V.V., Wu, S.Y., Jamerlan, A., An, S.S.A., Kim, S.Y., and Hulme, J. (2018). Gut microbiota and their neuroinflammatory implications in alzheimer’s disease. Nutrients 10, E1765.10.3390/nu10111765Suche in Google Scholar PubMed PubMed Central
Gomez-Eguilaz, M., Ramon-Trapero, J.L., Perez-Martinez, L., and Blanco, J.R. (2019). The microbiota-gut-brain axis and its great projections. Rev. Neurol. 68, 111–117.10.33588/rn.6803.2018223Suche in Google Scholar
Guo, Y., Yang, X., Qi, Y., Wen, S., Liu, Y., Tang, S., Huang, R., and Tang, L. (2017). Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system. Sci. Rep. 7, 43035.10.1038/srep43035Suche in Google Scholar PubMed PubMed Central
Halmos, T. and Suba, I. (2016). Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. Orv. Hetil. 157, 13–22.10.1556/650.2015.30296Suche in Google Scholar PubMed
Hasan, N. and Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 7, e7502.10.7717/peerj.7502Suche in Google Scholar PubMed PubMed Central
Hasegawa, H. and Ichiyama, A. (2005). Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochem. Biophys. Res. Commun. 338, 277–284.10.1016/j.bbrc.2005.09.045Suche in Google Scholar PubMed
Hasegawa, H., Oguro, K., Naito, Y., and Ichiyama, A. (1999). Iron dependence of tryptophan hydroxylase activity in RBL2H3 cells and its manipulation by chelators. Eur. J. Biochem. 261, 734–739.10.1046/j.1432-1327.1999.00316.xSuche in Google Scholar PubMed
Holmes, E., Li, J.V., Marchesi, J.R., and Nicholson, J.K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564.10.1016/j.cmet.2012.10.007Suche in Google Scholar PubMed
Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463.10.1016/j.cell.2013.11.024Suche in Google Scholar PubMed PubMed Central
Kaelberer, M.M., Buchanan, K.L., Klein, M.E., Barth, B.B.,Montoya, M.M., Shen, X., and Bohórquez, D.V. (2018). A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236.10.1126/science.aat5236Suche in Google Scholar PubMed PubMed Central
Karl, J.P., Hatch, A.M., Arcidiacono, S.M., Pearce, S.C., Pantoja-Feliciano, I.G., Doherty, L.A., and Soares, J.W. (2018). Effects of Psychological, Environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013.10.3389/fmicb.2018.02013Suche in Google Scholar PubMed PubMed Central
Kealy, J., Greene, C., and Campbell, M. (2018). Blood-brain barrier regulation in psychiatric disorders. Neurosci. Lett. 133664.10.1016/j.neulet.2018.06.033Suche in Google Scholar PubMed
Keely, S.J. (2017). Decoding host-microbiota communication in the gut – now we’re flying! J. Physiol. 595, 417–418.10.1113/JP272980Suche in Google Scholar PubMed PubMed Central
Kelesidis, T., Papakonstantinou, V., Detopoulou, P., Fragopoulou, E., Chini, M., Lazanas, M.C., and Antonopoulou, S. (2015). The role of platelet-activating factor in chronic inflammation, immune activation, and comorbidities associated with HIV infection. AIDS Rev. 17, 191–201.Suche in Google Scholar
Kelly, J.R., Minuto, C., Cryan, J.F., Clarke, G., and Dinan, T.G. (2017). Cross talk: The microbiota and neurodevelopmental disorders. Front. Neurosci. 11, 490.10.3389/fnins.2017.00490Suche in Google Scholar PubMed PubMed Central
Kho, Z.Y. and Lal, S.K. (2018). The human gut microbiome – a potential controller of wellness and disease. Front. Microbiol. 9, 1835.10.3389/fmicb.2018.01835Suche in Google Scholar PubMed PubMed Central
Kranich, J., Maslowski, K.M., and Mackay, C.R. (2011). Commensal flora and the regulation of inflammatory and autoimmune responses. Semin. Immunol. 23, 139–145.10.1016/j.smim.2011.01.011Suche in Google Scholar PubMed
Lange, K., Buerger, M., Stallmach, A., and Bruns, T. (2016). Effects of antibiotics on gut microbiota. Dig. Dis. 34, 260–268.10.1159/000443360Suche in Google Scholar PubMed
Lawrence, K. and Hyde, J. (2017). Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 12, e0179017.10.1371/journal.pone.0179017Suche in Google Scholar PubMed PubMed Central
Lehmann, M.L., Weigel, T.K., Cooper, H.A., Elkahloun, A.G., Kigar, S.L., and Herkenham, M. (2018). Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility. Sci Rep. 8, 11240.10.1038/s41598-018-28737-8Suche in Google Scholar PubMed PubMed Central
Leslie, M. (2010). Cell biology. Beyond clotting: the powers of platelets. Science 328, 562–564.10.1126/science.328.5978.562Suche in Google Scholar PubMed
Li, N., Wallén, N.H., Ladjevardi, M., and Hjemdahl, P. (1997). Effects of serotonin on platelet activation in whole blood. Blood Coagul. Fibrinolysis 8, 517–523.10.1097/00001721-199711000-00006Suche in Google Scholar PubMed
Liang, D., Leung, R.K., Guan, W., and Au, W.W. (2018). Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 10, 3.10.1186/s13099-018-0230-4Suche in Google Scholar PubMed PubMed Central
Liu, P., Peng, G., Zhang, N., Wang, B., and Luo, B. (2019). Crosstalk Between the Gut Microbiota and the Brain: An Update on Neuroimaging Findings. Front. Neurol. 10, 883.10.3389/fneur.2019.00883Suche in Google Scholar PubMed PubMed Central
Lochhead, J.J., McCaffrey, G., Quigley, C.E., Finch, J., DeMarco, K.M., Nametz, N., and Davis, T.P. (2010). Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J. Cereb. Blood Flow Metab. 30, 1625–1636.10.1038/jcbfm.2010.29Suche in Google Scholar PubMed PubMed Central
Lopez-Vilchez, I., Diaz-Ricart, M., White, J.G., Escolar, G., and Galan, A.M. (2009). Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake. Cardiovasc. Res. 84, 309–316.10.1093/cvr/cvp205Suche in Google Scholar PubMed
Lynch, S.V. and Pedersen, O. (2016). The Human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379.10.1056/NEJMra1600266Suche in Google Scholar PubMed
Macedo, D., Filho, A.J.M.C., Soares de Sousa, C.N., Quevedo, J.,Barichello, T., Júnior, H.V.N., and Freitas de Lucena, D. (2017). Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord. 208, 22–32.10.1016/j.jad.2016.09.012Suche in Google Scholar PubMed
Magnusson, J.L. and Cummings, K.J. (2018). Central serotonin and the control of arterial blood pressure and heart rate in infant rats: influence of sleep state and sex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R313–R321.10.1152/ajpregu.00321.2017Suche in Google Scholar PubMed PubMed Central
Manchia, M., Carpiniello, B., Valtorta, F., and Comai, S. (2017). Serotonin dysfunction, aggressive behavior, and mental illness: exploring the link using a dimensional approach. ACS Chem. Neurosci. 8, 961–972.10.1021/acschemneuro.6b00427Suche in Google Scholar PubMed
Martin, A.M., Yabut, J.M., Choo, J.M., Page, A.J., Sun, E.W., Jessup, C.F., Wesselingh, S.L., Khan, W.I., Rogers, G.B., Steinberg, G.R., et al. (2019). The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc. Natl. Acad. Sci. USA 116, 19802–19804.10.1073/pnas.1909311116Suche in Google Scholar PubMed PubMed Central
Mayer, E.A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466.10.1038/nrn3071Suche in Google Scholar PubMed PubMed Central
Mohajeri, M.H., Brummer, R.J.M., Rastall, R.A., Weersma, R.K., Harmsen, H.J.M., Faas, M., and Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57 (Suppl 1), 1–14.10.1007/s00394-018-1703-4Suche in Google Scholar PubMed PubMed Central
Mück-Seler, D. and Pivac, N. (2011). Serotonin. Periodicum Biologorum 113, 29–41.Suche in Google Scholar
Muller, C.L., Anacker, A.M.J., and Veenstra-VanderWeele, J. (2016). The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 321, 24–41.10.1016/j.neuroscience.2015.11.010Suche in Google Scholar PubMed PubMed Central
Nakamura, K. and Hasegawa, H. (2009). Production and peripheral roles of 5-HTP, a precursor of serotonin. Int. J. Tryptophan Res. 2, 37–43.10.4137/IJTR.S1022Suche in Google Scholar PubMed PubMed Central
Navale, A.M. and Paranjape, A.N. (2016). Glucose transporters: physiological and pathological roles. Biophys. Rev. 8, 5–9.10.1007/s12551-015-0186-2Suche in Google Scholar PubMed PubMed Central
Nemkov, T., Reisz, J.A., Xia, Y., Zimring, J.C., and D’Alessandro, A. (2018). Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolicfunctions beyond oxygentransport. Expert Rev. Proteomics 15, 855–864.10.1080/14789450.2018.1531710Suche in Google Scholar PubMed
Oldendorf, W.H., Cornford, M.E., and Brown, W.J. (1977). The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1, 409.10.1002/ana.410010502Suche in Google Scholar PubMed
O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., and Cryan, J.F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48.10.1016/j.bbr.2014.07.027Suche in Google Scholar PubMed
Patzelt, J. and Langer, H.F. (2012). Platelets in angiogenesis. Curr. Vasc. Pharmacol. 10, 570–577.10.2174/157016112801784648Suche in Google Scholar PubMed
Pietraforte, D., Vona, R., Marchesi, A., de Jacobis, I.T., Villani, A., Del Principe, D., and Straface, E. (2014). Redox control of platelet functionsn in physiology and pathophysiology. Antioxid. Redox Signal. 21, 177–193.10.1089/ars.2013.5532Suche in Google Scholar
Portas, C.M., Bjorvatn, B., and Ursin, R. (2000). Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog. Neurobiol. 60, 13–35.10.1016/S0301-0082(98)00097-5Suche in Google Scholar
Pun, P.B., Lu, J., and Moochhala, S. (2009). Involvement of ROS in BBB dysfunction. Free Radic. Res. 43, 348–364.10.1080/10715760902751902Suche in Google Scholar PubMed
Rahman, S., Khan, I.A., and Thomas, P. (2011). Tryptophan hydroxylase: a target for neuroendocrine disruption. J. Toxicol. Environ. Health B. Crit. Rev. 14, 473–494.10.1080/10937404.2011.578563Suche in Google Scholar PubMed
Randriamboavonjy, V. and Fleming, I. (2018). Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin. Sci. (Lond.) 132, 1875–1888.10.1042/CS20180580Suche in Google Scholar PubMed
Rhee, S.H., Pothoulakis, C., and Mayer, E.A. (2009). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314.10.1038/nrgastro.2009.35Suche in Google Scholar PubMed PubMed Central
Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21, 738–748.10.1038/mp.2016.50Suche in Google Scholar PubMed PubMed Central
Rojo, D., Méndez-García, C., Raczkowska, B.A., Bargiela, R., Moya, A., Ferrer, M., and Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol. Rev. 41, 453–478.10.1093/femsre/fuw046Suche in Google Scholar PubMed PubMed Central
Rose, D.R., Yang, H., Serena, G., Sturgeon, C., Ma, B., Careaga, M., Hughes, H.K., Angkustsiri, K., Rose, M., Hertz-Picciotto, I., et al. (2018). Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain. Behav. Immun. 70, 354–368.10.1016/j.bbi.2018.03.025Suche in Google Scholar PubMed PubMed Central
Roth, B.L. (2011). Irving Page Lecture: 5-HT(2A) serotonin receptor biology: interacting proteins, kinases and paradoxical regulation. Neuropharmacology 61, 348–354.10.1016/j.neuropharm.2011.01.012Suche in Google Scholar PubMed PubMed Central
Sakakibara, Y., Katoh, M., Kawayanagi, T., and Nadai, M. (2016). Species and tissue differences in serotonin glucuronidation. Xenobiotica 46, 605–611.10.3109/00498254.2015.1101509Suche in Google Scholar PubMed
Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, F.R., Tóth, A.E., Kiss, L., Kincses, A., Oláh, Z., Seprényi, G., et al. (2016). Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Front. Mol. Neurosci. 8, 88.10.3389/fnmol.2015.00088Suche in Google Scholar PubMed PubMed Central
Sarchielli, P. and Gallai, V. (2001). Platelets in migraine. J. Headache Pain 2, S61–S66.10.1007/s101940170012Suche in Google Scholar
Sarikaya, S. and Gulcin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Curr. Bioact. Compd. 9, 143–152.10.2174/22115528112019990006Suche in Google Scholar
Schroeder, B.O., and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089.10.1038/nm.4185Suche in Google Scholar PubMed
Scriven, M., Dinan, T.G., Cryan, J.F., and Wall, M. (2018). Neuropsychiatric disorders: influence of gut microbe to brain signalling. Diseases 6, 78.10.3390/diseases6030078Suche in Google Scholar PubMed PubMed Central
Seekatz, A.M. and Young, V.B. (2014). Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4189.10.1172/JCI72336Suche in Google Scholar PubMed PubMed Central
Semple, J.W., and Freedman, J. (2010). Platelets and innate immunity. Cell. Mol. Life Sci. 67, 499–511.10.1007/s00018-009-0205-1Suche in Google Scholar PubMed
Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533.10.1371/journal.pbio.1002533Suche in Google Scholar PubMed PubMed Central
Shalev, H., Serlin, Y., and Friedman, A. (2009). Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc. Psychiatry Neurol. 2009, 278531.10.1155/2009/278531Suche in Google Scholar PubMed PubMed Central
Sharma, H.S. and Dey, P.K. (1981). Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Ind. J. Physiol. Pharmacol. 25, 111–122.Suche in Google Scholar
Sharma, H.S. and Dey, P.K. (1984). Role of 5-HT on increased permeability of blood-brain barrier under heat stress. Indian J. Physiol. Pharmacol. 28, 259–267.Suche in Google Scholar
Sharma, H.S. and Dey, P.K. (1986). Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J. Neurol. Sci. 72, 61–76.10.1016/0022-510X(86)90036-5Suche in Google Scholar
Sharma, H.S., Olsson, Y., and Dey, P.K. (1990). Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res. 517, 215–223.10.1016/0006-8993(90)91029-GSuche in Google Scholar
Sharma, H.S., Cervós-Navarro, J., and Dey, P.K. (1991). Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci. Res. 10, 211–221.10.1016/0168-0102(91)90058-7Suche in Google Scholar
Sharma, H.S., Olsson, Y., and Dey, P.K. (1995a). Serotonin as a mediator of increased microvascular permeability of the brain and spinal cord. New Concepts of a Blood-Brain Barrier. D.J. Begley, J. Greenwood and M. Segal, eds. (New York: Plenum Press), pp. 75–80.10.1007/978-1-4899-1054-7_8Suche in Google Scholar
Sharma, H.S., Westman, J., Navarro, J.C., Dey, P.K., and Nyberg, F. (1995b). Probable involvement of serotonin in the increased permeability of the blood-brain barrier by forced swimming. An experimental study using Evans blue and 131I-sodium tracers in the rat. Behav. Brain Res. 72, 189–196.10.1016/0166-4328(96)00170-2Suche in Google Scholar
Sibon, D., Coman, T., Rossignol, J., Lamarque, M., Kosmider, O., Bayard, E., Fouquet, G., Rignault, R., Topçu, S., Bonneau, P., et al. (2019). Enhanced renewal of erythroid progenitors in myelodysplastic anemia by peripheral serotonin. Cell Rep. 26, 3246–3256.10.1016/j.celrep.2019.02.071Suche in Google Scholar PubMed
Siniscalco, D., Brigida, A.L., and Antonucci, N. (2018). Autism and neuro-immune-gut link. Mol. Sci. 5, 166–172.10.3934/molsci.2018.2.166Suche in Google Scholar
Skonieczna-Żydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., and Łoniewski, I. (2018). Microbiome-the missing link in the gut-brain axis: focus on its role in gastrointestinal and mental health. J. Clin. Med. 7, E521.10.3390/jcm7120521Suche in Google Scholar PubMed PubMed Central
Spielman, L.J., Gibson, D.L., and Klegeris, A. (2018). Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem. Int. 120, 149–163.10.1016/j.neuint.2018.08.005Suche in Google Scholar PubMed
Stamatovic, S.M., Keep, R.F., and Andjelkovic, A.V. (2008). Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr. Neuropharmacol. 6, 179–192.10.2174/157015908785777210Suche in Google Scholar PubMed PubMed Central
Sweatt, J.D., Schwartzberg, M.S., Frazer, M., Cragoe, E.J. Jr., Blair, I.A., Reed, P.W., and Limbird, L.E. (1987). Evidence for a role for Na+-H+ exchange in activation of human platelets by PAF. Circ. Res. 61, II6–11.10.1161/res.61.5_supplement.ii-6Suche in Google Scholar
Tecott, L.H. (2007). Serotonin and the orchestration of energy balance. Cell. Metab. 6, 352–361.10.1016/j.cmet.2007.09.012Suche in Google Scholar PubMed
Terry, N. and Margolis, K.G. (2017). Serotonergic mechanisms regulating the GI tract: Experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol. 239, 319–342.10.1007/164_2016_103Suche in Google Scholar PubMed PubMed Central
Tidemand, K.D., Peters, G.H., Harris, P., Stensgaard, E., andChristensen, H.E.M. (2017). Isoform-specific substrate inhibition mechanism of human tryptophan hydroxylase. Biochemistry 56, 6155–6164.10.1021/acs.biochem.7b00763Suche in Google Scholar PubMed
Valdes, A.M., Walter, J., Segal, E., and Spector, T.D. (2018). Role of the gut microbiota in nutrition and health. Br. Med. J. 361, k2179.10.1136/bmj.k2179Suche in Google Scholar PubMed PubMed Central
Van Den Berge, N., Ferreira, N., Gram, H., Mikkelsen, T.W., Alstrup, A.K.O., Casadei, N., Tsung-Pin, P., Riess, O., Nyengaard, J.R., Tamgüney, G., et al. (2019). Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 138, 535–550.10.1007/s00401-019-02040-wSuche in Google Scholar PubMed PubMed Central
Varon, D. and Shai, E. (2015). Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost. 13 (Suppl 1), S40–S46.10.1111/jth.12976Suche in Google Scholar PubMed
Wakefield, A.J. (2002). The gut-brain axis in childhood developmental disorders. J. Pediatr. Gastroenterol. Nutr. 34 (Suppl 1), S14–S17.10.3109/9780203007648-22Suche in Google Scholar
Warner, B.B. (2018). The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res. 85, 216–224.10.1038/s41390-018-0191-9Suche in Google Scholar PubMed
Wazna, E. (2006). Platelet-mediated regulation of immunity. Postepy Hig. Med. Dosw. (Online) 60, 265–277.Suche in Google Scholar
Willoughby, S., Holmes, A., and Loscalzo, J. (2002). Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs. 1, 273–288.10.1016/S1474-51510200038-5Suche in Google Scholar
Winkler, T., Sharma, H.S., Stålberg, E., Olsson, Y., and Dey, P.K. (1995). Impairment of blood-brain barrier function by serotonin induces desynchronization of spontaneous cerebral cortical activity: experimental observations in the anaesthetized rat. Neuroscience 68, 1097–1104.10.1016/0306-4522(95)00194-NSuche in Google Scholar
Xu, G., Li, Y., Ma, C., Wang, C., Sun, Z., Shen, Y., Liu, L., Li, S., Zhang, X., and Cong, B. (2019). Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front. Mol. Neurosci. 12, 32.10.3389/fnmol.2019.00032Suche in Google Scholar PubMed PubMed Central
Yarandi, S.S., Peterson, D.A., Treisman, G.J., Moran, T.H., andPasricha, P.J. (2016). Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J. Neurogastroenterol. Motil. 22, 201–212.10.5056/jnm15146Suche in Google Scholar PubMed PubMed Central
Yoon, M.Y., and Yoon, S.S. (2018). Disruption of the gut ecosystem by antibiotics. Yonsei Med. J. 59, 4–12.10.3349/ymj.2018.59.1.4Suche in Google Scholar PubMed PubMed Central
Young, L.W., Darios, E.S., and Watts, S.W. (2015). An immunohistochemical analysis of SERT in the blood-brain barrier of the male rat brain. Histochem. Cell Biol. 144, 321–329.10.1007/s00418-015-1343-1Suche in Google Scholar PubMed PubMed Central
Zhu, B., Wang, X., and Li, L. (2010). Human gut microbiome: the second genome of human body. Protein Cell 1, 718–725.10.1007/s13238-010-0093-zSuche in Google Scholar PubMed PubMed Central
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19