Startseite A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration

  • Alessio Guglielmi

    Alessio Guglielmi studied at Università degli Studi di Udine and obtained his bachelor’s degree in biotechnology based on a thesis project about implementations on ePCR in complex bacteriological populations. He then obtained his Master’s degree in medical biotechnology from the same university based on a thesis project about searching for new disease-associated isoforms of α-synuclein protein extracted from olfactory neurons of living patients and postmortem brains. He obtained his Ph.D. at the International Centre of Genetic Engineering and Biotechnology, working on a project aimed to find new insights on REEP1 antistress functions in AD.

    EMAIL logo
Veröffentlicht/Copyright: 8. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

At the end of 19th century, Adolf von Strümpell and Sigmund Freud independently described the symptoms of a new pathology now known as hereditary spastic paraplegia (HSP). HSP is part of the group of genetic neurodegenerative diseases usually associated with slow progressive pyramidal syndrome, spasticity, weakness of the lower limbs, and distal-end degeneration of motor neuron long axons. Patients are typically characterized by gait symptoms (with or without other neurological disorders), which can appear both in young and adult ages depending on the different HSP forms. The disease prevalence is at 1.3–9.6 in 100 000 individuals in different areas of the world, making HSP part of the group of rare neurodegenerative diseases. Thus far, there are no specific clinical and paraclinical tests, and DNA analysis is still the only strategy to obtain a certain diagnosis. For these reasons, it is mandatory to extend the knowledge on genetic causes, pathology mechanism, and disease progression to give clinicians more tools to obtain early diagnosis, better therapeutic strategies, and examination tests. This review gives an overview of HSP pathologies and general insights to a specific HSP subtype called spastic paraplegia 31 (SPG31), which rises after mutation of REEP1 gene. In fact, recent findings discovered an interesting endoplasmic reticulum antistress function of REEP1 and a role of this protein in preventing τ accumulation in animal models. For this reason, this work tries to elucidate the main aspects of REEP1, which are described in the literature, to better understand its role in SPG31 HSP and other pathologies.

About the author

Alessio Guglielmi

Alessio Guglielmi studied at Università degli Studi di Udine and obtained his bachelor’s degree in biotechnology based on a thesis project about implementations on ePCR in complex bacteriological populations. He then obtained his Master’s degree in medical biotechnology from the same university based on a thesis project about searching for new disease-associated isoforms of α-synuclein protein extracted from olfactory neurons of living patients and postmortem brains. He obtained his Ph.D. at the International Centre of Genetic Engineering and Biotechnology, working on a project aimed to find new insights on REEP1 antistress functions in AD.

References

Allison, R., Edgar, J.R., Pearson, G., Rizo, T., Newton, T., Günther, S., Berner, F., Hague, J., Connell, J.W., Winkler, J., et al. (2017). Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337–1355.10.1083/jcb.201609033Suche in Google Scholar PubMed PubMed Central

Appocher, C., Klima, R., and Feiguin, F. (2014). Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of τ aggregates. Hum. Mol. Genet. 23, 6762–6772.10.1093/hmg/ddu393Suche in Google Scholar PubMed

Beetz, C., Schüle, R., Deconinck, T., Tran-Viet, K.-N., Zhu, H., Kremer, B.P.H., Frints, S.G.M., van Zelst-Stams, W.A.G., Byrne, P., Otto, S., et al. (2008). REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain J. Neurol. 131, 1078–1086.10.1093/brain/awn026Suche in Google Scholar PubMed PubMed Central

Beetz, C., Pieber, T.R., Hertel, N., Schabhüttl, M., Fischer, C., Trajanoski, S., Graf, E., Keiner, S., Kurth, I., Wieland, T., et al. (2012). Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am. J. Hum. Genet. 91, 139–145.10.1016/j.ajhg.2012.05.007Suche in Google Scholar PubMed PubMed Central

Beetz, C., Koch, N., Khundadze, M., Zimmer, G., Nietzsche, S.,Hertel, N., Huebner, A.-K., Mumtaz, R., Schweizer, M., Dirren, E., et al. (2013). A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. J. Clin. Invest. 123, 4273–4282.10.1172/JCI65665Suche in Google Scholar PubMed PubMed Central

Behan, W.M. and Maia, M. (1974). Strümpell’s familial spastic paraplegia: genetics and neuropathology. J. Neurol. Neurosurg. Psychiatry 37, 8–20.10.1136/jnnp.37.1.8Suche in Google Scholar PubMed PubMed Central

Behrens, M., Bartelt, J., Reichling, C., Winnig, M., Kuhn, C., and Meyerhof, W. (2006). Members of RTP and REEP gene families influence functional bitter taste receptor expression. J. Biol. Chem. 281, 20650–20659.10.1074/jbc.M513637200Suche in Google Scholar PubMed

Béreau, M., Anheim, M., Chanson, J.-B., Tio, G., Echaniz-Laguna, A., Depienne, C., Collongues, N., and de Sèze, J. (2015). Dalfampridine in hereditary spastic paraplegia: a prospective, open study. J. Neurol. 262, 1285–1288.10.1007/s00415-015-7707-6Suche in Google Scholar PubMed

Bertolucci, F., Di Martino, S., Orsucci, D., Ienco, E.C., Siciliano, G., Rossi, B., Mancuso, M., and Chisari, C. (2015). Robotic gait training improves motor skills and quality of life in hereditary spastic paraplegia. Neurorehabilitation 36, 93–99.10.3233/NRE-141196Suche in Google Scholar PubMed

Björk, S., Hurt, C.M., Ho, V.K., and Angelotti, T. (2013). REEPs are membrane shaping adapter proteins that modulate specific G protein-coupled receptor trafficking by affecting ER cargo capacity. PLoS One 8, e76366.10.1371/journal.pone.0076366Suche in Google Scholar PubMed PubMed Central

Charvin, D., Cifuentes-Diaz, C., Fonknechten, N., Joshi, V., Hazan, J., Melki, J., and Betuing, S. (2003). Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum. Mol. Genet. 12, 71–78.10.1093/hmg/ddg004Suche in Google Scholar PubMed

Eastman, S.W., Yassaee, M., and Bieniasz, P.D. (2009). A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J. Cell Biol. 184, 881–894.10.1083/jcb.200808041Suche in Google Scholar PubMed PubMed Central

Edwards, T.L., Clowes, V.E., Tsang, H.T.H., Connell, J.W., Sanderson, C.M., Luzio, J.P., and Reid, E. (2009). Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5. Biochem. J. 423, 31–39.10.1042/BJ20082398Suche in Google Scholar PubMed PubMed Central

Errico, A., Ballabio, A., and Rugarli, E.I. (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum. Mol. Genet. 11, 153–163.10.1093/hmg/11.2.153Suche in Google Scholar PubMed

Falk, J., Rohde, M., Bekhite, M.M., Neugebauer, S., Hemmerich, P., Kiehntopf, M., Deufel, T., Hübner, C.A., and Beetz, C. (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum. Mutat. 35, 497–504.10.1002/humu.22521Suche in Google Scholar PubMed

Fink, J.K. (2003). Advances in the hereditary spastic paraplegias. Exp. Neurol. 184, S106–S110.10.1016/j.expneurol.2003.08.005Suche in Google Scholar PubMed

Fink, J.K. (2013). Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. (Berl.) 126, 307–328.10.1007/s00401-013-1115-8Suche in Google Scholar PubMed PubMed Central

Finsterer, J., Löscher, W., Quasthoff, S., Wanschitz, J., Auer-Grumbach, M., and Stevanin, G. (2012). Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J. Neurol. Sci. 318, 1–18.10.1016/j.jns.2012.03.025Suche in Google Scholar PubMed

Fontaine, B., Davoine, C.S., Dürr, A., Paternotte, C., Feki, I., Weissenbach, J., Hazan, J., and Brice, A. (2000). A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am. J. Hum. Genet. 66, 702–707.10.1086/302776Suche in Google Scholar PubMed PubMed Central

Goizet, C., Depienne, C., Benard, G., Boukhris, A., Mundwiller, E., Solé, G., Coupry, I., Pilliod, J., Martin-Négrier, M.-L., Fedirko, E., et al. (2011). REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum. Mutat. 32, 1118–1127.10.1002/humu.21542Suche in Google Scholar PubMed

Harding, A.E. (1993). Hereditary spastic paraplegias. Semin. Neurol. 13, 333–336.10.1055/s-2008-1041143Suche in Google Scholar PubMed

Hashimoto, Y., Shirane, M., Matsuzaki, F., Saita, S., Ohnishi, T., and Nakayama, K.I. (2014). Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J. Biol. Chem. 289, 12946–12961.10.1074/jbc.M113.528687Suche in Google Scholar PubMed PubMed Central

Hewamadduma, C., McDermott, C., Kirby, J., Grierson, A., Panayi, M., Dalton, A., Rajabally, Y., and Shaw, P. (2009). New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10, 105–110.10.1007/s10048-008-0163-zSuche in Google Scholar PubMed

Hooper, C., Puttamadappa, S.S., Loring, Z., Shekhtman, A., and Bakowska, J.C. (2010). Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol. 8, 72.10.1186/1741-7007-8-72Suche in Google Scholar PubMed PubMed Central

Hurt, C.M., Björk, S., Ho, V.K., Gilsbach, R., Hein, L., and Angelotti, T. (2014). REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues. Brain Res. 1545, 12–22.10.1016/j.brainres.2013.12.008Suche in Google Scholar PubMed PubMed Central

Jia, X., Madireddy, L., Caillier, S., Santaniello, A., Esposito, F., Comi, G., Stuve, O., Zhou, Y., Taylor, B., Kilpatrick, T., et al. (2018). Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann. Neurol. 84, 51–63.10.1002/ana.25263Suche in Google Scholar PubMed PubMed Central

Kenwrick, S., Watkins, A., and De Angelis, E. (2000). Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum. Mol. Genet. 9, 879–886.10.1093/hmg/9.6.879Suche in Google Scholar PubMed

Lavie, J., Serrat, R., Bellance, N., Courtand, G., Dupuy, J.-W., Tesson, C., Coupry, I., Brice, A., Lacombe, D., Durr, A., et al. (2017). Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum. Mol. Genet. 26, 674–685.10.1093/hmg/ddw425Suche in Google Scholar PubMed

Lim, Y., Cho, I.-T., Schoel, L.J., Cho, G., and Golden, J.A. (2015). Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 78, 679–696.10.1002/ana.24488Suche in Google Scholar PubMed PubMed Central

Liu, S.G., Che, F.Y., Heng, X.Y., Li, F.F., Huang, S.Z., Lu, D.G., Hou, S.J., Liu, S.E., Wang, Q., Wang, H.P., et al. (2009). Clinical and genetic study of a novel mutation in the REEP1 gene. Synapse 63, 201–205.10.1002/syn.20602Suche in Google Scholar PubMed

McCorquodale, D.S., Ozomaro, U., Huang, J., Montenegro, G., Kushman, A., Citrigno, L., Price, J., Speziani, F., Pericak-Vance, M.A., and Züchner, S. (2011). Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin. Genet. 79, 523–530.10.1111/j.1399-0004.2010.01501.xSuche in Google Scholar PubMed PubMed Central

McDermott, C., White, K., Bushby, K., and Shaw, P. (2000). Hereditary spastic paraparesis: a review of new developments. J. Neurol. Neurosurg. Psychiatry 69, 150–160.10.1136/jnnp.69.2.150Suche in Google Scholar PubMed PubMed Central

McMonagle, P., Webb, S., and Hutchinson, M. (2002). The prevalence of “pure” autosomal dominant hereditary spastic paraparesis in the island of Ireland. J. Neurol. Neurosurg. Psychiatry 72, 43–46.10.1136/jnnp.72.1.43Suche in Google Scholar PubMed PubMed Central

Miura, S., Shibata, H., Kida, H., Noda, K., Tomiyasu, K., Yamamoto, K., Iwaki, A., Ayabe, M., Aizawa, H., Taniwaki, T., et al. (2008). Hereditary motor and sensory neuropathy with proximal dominancy in the lower extremities, urinary disturbance, and paroxysmal dry cough. J. Neurol. Sci. 273, 88–92.10.1016/j.jns.2008.06.027Suche in Google Scholar PubMed

Mondrup, K. and Pedersen, E. (1984). The clinical effect of the GABA-agonist, progabide, on spasticity. Acta Neurol. Scand. 69, 200–206.10.1111/j.1600-0404.1984.tb07802.xSuche in Google Scholar PubMed

Park, S.H., Zhu, P.-P., Parker, R.L., and Blackstone, C. (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120, 1097–1110.10.1172/JCI40979Suche in Google Scholar PubMed PubMed Central

Pease, W.S. (1998). Therapeutic electrical stimulation for spasticity: quantitative gait analysis. Am. J. Phys. Med. Rehabil. 77, 351–355.10.1097/00002060-199807000-00021Suche in Google Scholar PubMed

Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I.K., Graham, F.L., Gaskell, P.C., Dearlove, A., Pericak-Vance, M.A., et al. (2002). A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194.10.1086/344210Suche in Google Scholar PubMed PubMed Central

Renvoisé, B., Malone, B., Falgairolle, M., Munasinghe, J., Stadler, J., Sibilla, C., Park, S.H., and Blackstone, C. (2016). Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum. Mol. Genet. 25, 5111–5125.10.1093/hmg/ddw315Suche in Google Scholar

Richard, S., Lavie, J., Banneau, G., Voirand, N., Lavandier, K., and Debouverie, M. (2017). Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene: case report and literature review. Medicine (Baltimore) 96, e5911.10.1097/MD.0000000000005911Suche in Google Scholar PubMed PubMed Central

Saito, H., Kubota, M., Roberts, R.W., Chi, Q., and Matsunami, H. (2004). RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691.10.1016/j.cell.2004.11.021Suche in Google Scholar PubMed

Schlang, K.J., Arning, L., Epplen, J.T., and Stemmler, S. (2008). Autosomal dominant hereditary spastic paraplegia: novel mutations in the REEP1 gene (SPG31). BMC Med. Genet. 9, 71.10.1186/1471-2350-9-71Suche in Google Scholar

Schottmann, G., Seelow, D., Seifert, F., Morales-Gonzalez, S., Gill, E., von Au, K., von Moers, A., Stenzel, W., and Schuelke, M. (2015). Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. Neurol. Genet. 1, e32.10.1212/NXG.0000000000000032Suche in Google Scholar

Schwarz, G.A. and Liu, C.N. (1956). Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch. Neurol. Psychiatry 75, 144–162.10.1001/archneurpsyc.1956.02330200038005Suche in Google Scholar

Sedel, F., Fontaine, B., Saudubray, J.M., and Lyon-Caen, O. (2007). Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J. Inherit. Metab. Dis. 30, 855–864.10.1007/s10545-007-0745-1Suche in Google Scholar

Sills, G.J. (2006). The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol. 6, 108–113.10.1016/j.coph.2005.11.003Suche in Google Scholar

Silva, M.C., Coutinho, P., Pinheiro, C.D., Neves, J.M., and Serrano, P. (1997). Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J. Clin. Epidemiol. 50, 1377–1384.10.1016/S0895-4356(97)00202-3Suche in Google Scholar

de Souza, P.V.S., de Rezende Pinto, W.B.V., de Rezende Batistella, G.N., Bortholin, T., and Oliveira, A.S.B. (2016). Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum (Lond.).10.1007/s12311-016-0803-zSuche in Google Scholar PubMed

Stevens, S.J.C., Blom, E.W., Siegelaer, I.T.J., and Smeets, E.E.J.G.L. (2015). A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1. Eur. J. Hum. Genet. 23, 543–546.10.1038/ejhg.2014.124Suche in Google Scholar PubMed PubMed Central

Tsaousidou, M.K., Ouahchi, K., Warner, T.T., Yang, Y., Simpson, M.A., Laing, N.G., Wilkinson, P.A., Madrid, R.E., Patel, H., Hentati, F., et al. (2008). Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am. J. Hum. Genet. 82, 510–515.10.1016/j.ajhg.2007.10.001Suche in Google Scholar PubMed PubMed Central

Tzschach, A., Graul-Neumann, L.M., Konrat, K., Richter, R., Ebert, G., Ullmann, R., and Neitzel, H. (2009). Interstitial deletion 2p11.2-p12: report of a patient with mental retardation and review of the literature. Am. J. Med. Genet. A. 149A, 242–245.10.1002/ajmg.a.32637Suche in Google Scholar PubMed

Ulengin, I., Park, J.J., and Lee, T.H. (2015). ER network formation and membrane fusion by atlastin1/SPG3A disease variants. Mol. Biol. Cell 26, 1616–1628.10.1091/mbc.E14-10-1447Suche in Google Scholar PubMed PubMed Central

Vanderver, A., Tonduti, D., Auerbach, S., Schmidt, J.L., Parikh, S., Gowans, G.C., Jackson, K.E., Brock, P.L., Patterson, M., Nehrebecky, M., et al. (2012). Neurotransmitter abnormalities and response to supplementation in SPG11. Mol. Genet. Metab. 107, 229–233.10.1016/j.ymgme.2012.05.020Suche in Google Scholar PubMed PubMed Central

Wijemanne, S. and Jankovic, J. (2015). Dopa-responsive dystonia—clinical and genetic heterogeneity. Nat. Rev. Neurol. 11, 414–424.10.1038/nrneurol.2015.86Suche in Google Scholar PubMed

Yalçın, B., Zhao, L., Stofanko, M., O’Sullivan, N.C., Kang, Z.H., Roost, A., Thomas, M.R., Zaessinger, S., Blard, O., Patto, A.L., et al. (2017). Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. eLife 6, pii: e23882.10.7554/eLife.23882Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Roxburgh, R., Huang, L., Parsons, J., and Davies, T.C. (2014). The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients. Gait Posture 39, 1074–1079.10.1016/j.gaitpost.2014.01.010Suche in Google Scholar PubMed

Zhao, X., Alvarado, D., Rainier, S., Lemons, R., Hedera, P., Weber, C.H., Tukel, T., Apak, M., Heiman-Patterson, T., Ming, L., et al. (2001). Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat. Genet. 29, 326–331.10.1038/ng758Suche in Google Scholar PubMed

Zhao, C., Lou, Y., Wang, Y., Wang, D., Tang, L., Gao, X., Zhang, K., Xu, W., Liu, T., and Xiao, J. (2019). A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med. 8, 200–208.10.1002/cam4.1932Suche in Google Scholar PubMed PubMed Central

Zheng, P., Chen, Q., Tian, X., Qian, N., Chai, P., Liu, B., Hu, J., Blackstone, C., Zhu, D., Teng, J., et al. (2018). DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Res. 28, 833–854.10.1038/s41422-018-0065-zSuche in Google Scholar PubMed PubMed Central

Züchner, S., Kail, M.E., Nance, M.A., Gaskell, P.C., Svenson, I.K., Marchuk, D.A., Pericak-Vance, M.A., and Ashley-Koch, A.E. (2006a). A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7, 127–129.10.1007/s10048-006-0029-1Suche in Google Scholar PubMed

Züchner, S., Kail, M.E., Nance, M.A., Gaskell, P.C., Svenson, I.K., Marchuk, D.A., Pericak-Vance, M.A., and Ashley-Koch, A.E. (2006b). A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7, 127–129.10.1007/s10048-006-0029-1Suche in Google Scholar

Züchner, S., Wang, G., Tran-Viet, K.-N., Nance, M.A., Gaskell, P.C., Vance, J.M., Ashley-Koch, A.E., and Pericak-Vance, M.A. (2006c). Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am. J. Hum. Genet. 79, 365–369.10.1086/505361Suche in Google Scholar PubMed PubMed Central

Received: 2019-08-28
Accepted: 2019-11-08
Published Online: 2020-01-08
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2019-0083/html
Button zum nach oben scrollen