Startseite Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy

  • Catherine Hong Huan Hor und Bor Luen Tang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Autophagy is an essential and conserved cellular homeostatic process. Defects in the core and accessory components of the autophagic machinery would most severely impact terminally differentiated cells, such as neurons. The neurodevelopmental/neurodegenerative disorder β-propeller protein-associated neurodegeneration (BPAN) resulted from heterozygous or hemizygous germline mutations/pathogenic variant of the X chromosome gene WDR45, encoding WD40 repeat protein interacting with phosphoinositides 4 (WIPI4). This most recently identified subtype of the spectrum of neurodegeneration with brain iron accumulation diseases is characterized by a biphasic mode of disease manifestation and progression. The first phase involves early-onset of epileptic seizures, global developmental delay, intellectual disability and autistic syndrome. Subsequently, Parkinsonism and dystonia, as well as dementia, emerge in a subacute manner in adolescence or early adulthood. BPAN disease phenotypes are thus complex and linked to a wide range of other neuropathological disorders. WIPI4/WDR45 has an essential role in autophagy, acting as a phosphatidylinositol 3-phosphate binding effector that participates in autophagosome biogenesis and size control. Here, we discuss recent updates on WIPI4’s mechanistic role in autophagy and link the neuropathological manifestations of BPAN’s biphasic infantile onset (epilepsy, autism) and adolescent onset (dystonic, Parkinsonism, dementia) phenotypes to neurological consequences of autophagy impairment that are now known or emerging in many other neurodevelopmental and neurodegenerative disorders. As monogenic WDR45 mutations in BPAN result in a large spectrum of disease phenotypes that stem from autophagic dysfunctions, it could potentially serve as a simple and unique genetic model to investigate disease pathology and therapeutics for a wider range of neuropathological conditions with autophagy defects.

Acknowledgments

BLT is supported by the NUS Graduate School for Integrative Sciences and Engineering. The authors are grateful to the constructive comments of the reviewers, which helped to improve the article.

  1. Conflict of interest

  2. The authors have no conflicts of interest to declare.

References

Abidi, A., Mignon-Ravix, C., Cacciagli, P., Girard, N., Milh, M., and Villard, L. (2016). Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur. J. Hum. Genet. 24, 615–618.10.1038/ejhg.2015.159Suche in Google Scholar PubMed PubMed Central

Akizu, N., Cantagrel, V., Zaki, M.S., Al-Gazali, L., Wang, X., Rosti, R.O., Dikoglu, E., Gelot, A.B., Rosti, B., Vaux, K.K., et al. (2015). Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat. Genet. 47, 528–534.10.1038/ng.3256Suche in Google Scholar PubMed PubMed Central

Alegre-Abarrategui, J., Christian, H., Lufino, M.M.P., Mutihac, R., Venda, L.L., Ansorge, O., and Wade-Martins, R. (2009). LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18, 4022–4034.10.1093/hmg/ddp346Suche in Google Scholar PubMed PubMed Central

Aminkeng, F. (2013). WDR45 mutations define a novel disease entity – static encephalopathy of childhood with neurodegeneration in adulthood. Clin. Genet. 84, 209.10.1111/cge.12183Suche in Google Scholar PubMed

Araújo, R., Garabal, A., Baptista, M., Carvalho, S., Pinho, C., de Sá, J., and Vasconcelos, M. (2017). Novel WDR45 mutation causing β-propeller protein associated neurodegeneration (BPAN) in two monozygotic twins. J. Neurol. 264, 1020–1022.10.1007/s00415-017-8475-2Suche in Google Scholar PubMed

Arico, S., Petiot, A., Bauvy, C., Dubbelhuis, P.F., Meijer, A.J., Codogno, P., and Ogier-Denis, E. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246.10.1074/jbc.C100319200Suche in Google Scholar PubMed

Arosio, P., Elia, L., and Poli, M. (2017). Ferritin, cellular iron storage and regulation. IUBMB Life 69, 414–422.10.1002/iub.1621Suche in Google Scholar PubMed

Bakula, D., Müller, A.J., Zuleger, T., Takacs, Z., Franz-Wachtel, M., Thost, A.K., Brigger, D., Tschan, M.P., Frickey, T., Robenek, H., et al. (2017). WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat. Commun. 8, 15637.10.1038/ncomms15637Suche in Google Scholar PubMed PubMed Central

Bakula, D., Mueller, A.J., and Proikas-Cezanne, T. (2018). WIPI β-propellers function as scaffolds for STK11/LKB1-AMPK and AMPK-related kinase signaling in autophagy. Autophagy 14, 1082–1083.10.1080/15548627.2017.1382784Suche in Google Scholar PubMed PubMed Central

Baskaran, S., Ragusa, M.J., Boura, E., and Hurley, J.H. (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell. 47, 339–348.10.1016/j.molcel.2012.05.027Suche in Google Scholar PubMed PubMed Central

Bejarano, E. and Rodríguez-Navarro, J.A. (2015). Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids 47, 2113–2126.10.1007/s00726-014-1822-zSuche in Google Scholar PubMed

Biasiotto, G., Di Lorenzo, D., Archetti, S., and Zanella, I. (2016). Iron and neurodegeneration: is ferritinophagy the link? Mol. Neurobiol. 53, 5542–5574.10.1007/s12035-015-9473-ySuche in Google Scholar PubMed

Bravo-San Pedro, J.M., Gómez-Sánchez, R., Niso-Santano, M., Pizarro-Estrella, E., González-Polo, R.A., and Fuentes, J.M. (2012). Possible involvement of the relationship of LRRK2 and autophagy in Parkinson’s disease. Biochem. Soc. Trans. 40, 1129–1133.10.1042/BST20120095Suche in Google Scholar PubMed

Burger, B.J., Rose, S., Bennuri, S.C., Gill, P.S., Tippett, M.L., Delhey, L., Melnyk, S., and Frye, R.E. (2017). Autistic siblings with novel mutations in two different genes: insight for genetic workups of autistic siblings and connection to mitochondrial dysfunction. Front. Pediatr. 5, 219.10.3389/fped.2017.00219Suche in Google Scholar PubMed PubMed Central

Butler, M.G., Dasouki, M.J., Zhou, X.P., Talebizadeh, Z., Brown, M., Takahashi, T.N., Miles, J.H., Wang, C.H., Stratton, R., Pilarski, R., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318–321.10.1136/jmg.2004.024646Suche in Google Scholar PubMed PubMed Central

Byrne, S., Jansen, L., U-King-Im, J.M., Siddiqui, A., Lidov, H.G.W., Bodi, I., Smith, L., Mein, R., Cullup, T., Dionisi-Vici, C., et al. (2016). EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain 139, 765–781.10.1093/brain/awv393Suche in Google Scholar PubMed PubMed Central

Caccamo, A., Magrì, A., Medina, D.X., Wisely, E.V., López-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.10.1111/acel.12057Suche in Google Scholar PubMed PubMed Central

Carvill, G.L., Liu, A., Mandelstam, S., Schneider, A., Lacroix, A., Zemel, M., McMahon, J.M., Bello-Espinosa, L., Mackay, M., Wallace, G., et al. (2018). Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene WDR45. Epilepsia 59, e5–e13.10.1111/epi.13957Suche in Google Scholar PubMed PubMed Central

Chen, L., Wang, H., Vicini, S., and Olsen, R.W. (2000). The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl. Acad. Sci. USA 97, 11557–11562.10.1073/pnas.190133497Suche in Google Scholar PubMed PubMed Central

Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., and Doudna, J.A. (2017). Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410.10.1038/nature24268Suche in Google Scholar PubMed PubMed Central

Chia, R., Chiò, A., and Traynor, B.J. (2018). Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94–102.10.1016/S1474-4422(17)30401-5Suche in Google Scholar PubMed

Ciura, S., Sellier, C., Campanari, M.L., Charlet-Berguerand, N., and Kabashi, E. (2016). The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy 12, 1406–1408.10.1080/15548627.2016.1189070Suche in Google Scholar PubMed

Correia, S.C., Resende, R., Moreira, P.I., and Pereira, C.M. (2015). Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell. Biol. 34, 261–273.10.1089/dna.2014.2757Suche in Google Scholar PubMed

Crino, P.B. (2015). mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb. Perspect. Med. 5, pii: a022442. doi: 10.1101/cshperspect.a022442.10.1101/cshperspect.a022442Suche in Google Scholar

Crino, P.B., Miyata, H., and Vinters, H.V. (2002). Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol. 12, 212–233.10.1111/j.1750-3639.2002.tb00437.xSuche in Google Scholar PubMed

Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295.10.1126/science.1101738Suche in Google Scholar PubMed

Cullup, T., Kho, A.L., Dionisi-Vici, C., Brandmeier, B., Smith, F., Urry, Z., Simpson, M.A., Yau, S., Bertini, E., McClelland, V., et al. (2013). Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat. Genet. 45, 83–87.10.1038/ng.2497Suche in Google Scholar PubMed

Curatolo, P., Moavero, R., and de Vries, P.J. (2015). Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 14, 733–745.10.1016/S1474-4422(15)00069-1Suche in Google Scholar PubMed

Curatolo, P., Moavero, R., van Scheppingen, J., and Aronica, E. (2018). mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev. Neurother. 18, 185–201.10.1080/14737175.2018.1428562Suche in Google Scholar PubMed

Decressac, M., Mattsson, B., Weikop, P., Lundblad, M., Jakobsson, J., and Björklund, A. (2013). TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. USA 110, E1817–E1826.10.1073/pnas.1305623110Suche in Google Scholar PubMed PubMed Central

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.10.1016/j.neuron.2011.09.011Suche in Google Scholar PubMed PubMed Central

Deng, Z., Sheehan, P., Chen, S., and Yue, Z. (2017). Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease? Mol. Neurodegener. 12, 90.10.1186/s13024-017-0232-6Suche in Google Scholar PubMed PubMed Central

Dere, E., Dahm, L., Lu, D., Hammerschmidt, K., Ju, A., Tantra, M., Kästner, A., Chowdhury, K., and Ehrenreich, H. (2014). Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front Behav. Neurosci. 8, 181.10.3389/fnbeh.2014.00181Suche in Google Scholar PubMed PubMed Central

Devenney, E., Vucic, S., Hodges, J.R., and Kiernan, M.C. (2015). Motor neuron disease-frontotemporal dementia: a clinical continuum. Expert Rev. Neurother. 15, 509–522.10.1586/14737175.2015.1034108Suche in Google Scholar PubMed

Di Nardo, A., Wertz, M.H., Kwiatkowski, E., Tsai, P.T., Leech, J.D., Greene-Colozzi, E., Goto, J., Dilsiz, P., Talos, D.M., Clish, C.B., et al. (2014). Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum. Mol. Genet. 23, 3865–3874.10.1093/hmg/ddu101Suche in Google Scholar PubMed PubMed Central

Dooley, H.C., Razi, M., Polson, H.E.J., Girardin, S.E., Wilson, M.I., and Tooze, S.A. (2014). WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell. 55, 238–252.10.1016/j.molcel.2014.05.021Suche in Google Scholar PubMed PubMed Central

Doorn, J.M., and Kruer, M.C. (2013). Newly characterized forms of neurodegeneration with brain iron accumulation. Curr. Neurol. Neurosci. Rep. 13, 413.10.1007/s11910-013-0413-9Suche in Google Scholar PubMed PubMed Central

Dove, S.K., Dong, K., Kobayashi, T., Williams, F.K., and Michell, R.H. (2009). Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419, 1–13.10.1042/BJ20081950Suche in Google Scholar PubMed

Ebrahimi-Fakhari, D., Saffari, A., Wahlster, L., Lu, J., Byrne, S., Hoffmann, G.F., Jungbluth, H., and Sahin, M. (2016). Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 139, 317–337.10.1093/brain/awv371Suche in Google Scholar PubMed PubMed Central

Edvardson, S., Cinnamon, Y., Jalas, C., Shaag, A., Maayan, C., Axelrod, F.B., and Elpeleg, O. (2012). Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann. Neurol. 71, 569–572.10.1002/ana.23524Suche in Google Scholar PubMed

Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461.10.1126/science.1196371Suche in Google Scholar PubMed PubMed Central

Elrick, M.J., Yu, T., Chung, C., and Lieberman, A.P. (2012). Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. Hum. Mol. Genet. 21, 4876–4887.10.1093/hmg/dds324Suche in Google Scholar PubMed PubMed Central

Esteves, A.R., and Cardoso, S.M. (2017). LRRK2 at the crossroad between autophagy and microtubule trafficking: insights into Parkinson’s disease. Neuroscientist 23, 16–26.10.1177/1073858415616558Suche in Google Scholar PubMed

Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res. 24, 24–41.10.1038/cr.2013.168Suche in Google Scholar PubMed PubMed Central

Ferrier, A., De Repentigny, Y., Lynch-Godrei, A., Gibeault, S., Eid, W., Kuo, D., Zha, X., and Kothary, R. (2015). Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice. Autophagy 11, 1025–1036.10.1080/15548627.2015.1052207Suche in Google Scholar PubMed PubMed Central

Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125.10.1038/nature05925Suche in Google Scholar PubMed

Fonderico, M., Laudisi, M., Andreasi, N.G., Bigoni, S., Lamperti, C., Panteghini, C., Garavaglia, B., Carecchio, M., Emanuele, E.A., Forni, G.L., et al. (2017). Patient affected by beta-propeller protein-associated neurodegeneration: a therapeutic attempt with iron chelation therapy. Front Neurol. 8, 385.10.3389/fneur.2017.00385Suche in Google Scholar PubMed PubMed Central

Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T. (2008). The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell. 19, 2092–2100.10.1091/mbc.e07-12-1257Suche in Google Scholar PubMed PubMed Central

Giaime, E., Tong, Y., Wagner, L.K., Yuan, Y., Huang, G., and Shen, J. (2017). Age-dependent dopaminergic neurodegeneration and impairment of the autophagy-lysosomal pathway in LRRK-deficient Mice. Neuron 96, 796–807.e6.10.1016/j.neuron.2017.09.036Suche in Google Scholar PubMed PubMed Central

Giles, L.M., Chen, J., Li, L., and Chin, L.S. (2008). Dystonia-associated mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum. Mol. Genet. 17, 2712–2722.10.1093/hmg/ddn173Suche in Google Scholar PubMed PubMed Central

Giorgi, F.S., Biagioni, F., Lenzi, P., Frati, A., and Fornai, F. (2015). The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J. Neural. Transm. 122, 849–862.10.1007/s00702-014-1312-1Suche in Google Scholar PubMed

Gregory, A., and Hayflick, S.J. (2011). Genetics of neurodegeneration with brain iron accumulation. Curr. Neurol. Neurosci. Rep. 11, 254–261.10.1007/s11910-011-0181-3Suche in Google Scholar PubMed PubMed Central

Gregory, A., Hayflick, S., Adam, M., Ardinger, H., Pagon, R., and Wallace, S., eds. (2014). GeneReviews®: Neurodegeneration with Brain Iron Accumulation Disorders Overview (Seattle, USA: University of Washington).Suche in Google Scholar

Gregory, A., Kurian, M., Haack, T., Hayflick, S., Hogarth, P., Adam, M., Ardinger, H., Pagon, R., and Wallace, S., eds. (2017). GeneReviews®: Beta-Propeller Protein-Associated Neurodegeneration (Seattle, USA: University of Washington).Suche in Google Scholar

Guiney, S.J., Adlard, P.A., Bush, A.I., Finkelstein, D.I., and Ayton, S. (2017). Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem. Int. 104, 34–48.10.1016/j.neuint.2017.01.004Suche in Google Scholar PubMed

Haack, T.B., Hogarth, P., Kruer, M.C., Gregory, A., Wieland, T., Schwarzmayr, T., Graf, E., Sanford, L., Meyer, E., Kara, E., et al. (2012). Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144–1149.10.1016/j.ajhg.2012.10.019Suche in Google Scholar PubMed PubMed Central

Haack, T.B., Hogarth, P., Gregory, A., Prokisch, H., and Hayflick, S.J. (2013). BPAN: the only X-linked dominant NBIA disorder. Int Rev Neurobiol. 110, 85–90.10.1016/B978-0-12-410502-7.00005-3Suche in Google Scholar PubMed

Haack, T.B., Ignatius, E., Calvo-Garrido, J., Iuso, A., Isohanni, P., Maffezzini, C., Lönnqvist, T., Suomalainen, A., Gorza, M., Kremer, L.S., et al. (2016). Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am. J. Hum. Genet. 99, 735–743.10.1016/j.ajhg.2016.06.026Suche in Google Scholar PubMed PubMed Central

Haidar, M., and Timmerman, V. (2017). Autophagy as an emerging common pathomechanism in inherited peripheral neuropathies. Front Mol. Neurosci. 10, 143.10.3389/fnmol.2017.00143Suche in Google Scholar PubMed PubMed Central

Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393.10.1038/nature11910Suche in Google Scholar PubMed

Hanein, S., Martin, E., Boukhris, A., Byrne, P., Goizet, C., Hamri, A., Benomar, A., Lossos, A., Denora, P., Fernandez, J., et al. (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am. J. Hum. Genet. 82, 992–1002.10.1016/j.ajhg.2008.03.004Suche in Google Scholar PubMed PubMed Central

Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.10.1038/nature04724Suche in Google Scholar PubMed

Hare, D.J., and Double, K.L. (2016). Iron and dopamine: a toxic couple. Brain 139, 1026–1035.10.1093/brain/aww022Suche in Google Scholar PubMed

Hartley, B.J., and Brennand, K.J. (2017). Neural organoids for disease phenotyping, drug screening and developmental biology studies. Neurochem. Int. 106, 85–93.10.1016/j.neuint.2016.10.004Suche in Google Scholar PubMed PubMed Central

Hattingen, E., Handke, N., Cremer, K., Hoffjan, S., and Kukuk, G.M. (2017). Clinical and imaging presentation of a patient with beta-propeller protein-associated neurodegeneration, a rare and sporadic form of neurodegeneration with brain iron accumulation (NBIA). Clin. Neuroradiol. 27, 481–483.10.1007/s00062-017-0605-9Suche in Google Scholar PubMed

Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell. Biol. 11, 1433–1437.10.1038/ncb1991Suche in Google Scholar PubMed

Hayflick, S.J., Kruer, M.C., Gregory, A., Haack, T.B., Kurian, M.A., Houlden, H.H., Anderson, J., Boddaert, N., Sanford, L., Harik, S.I., et al. (2013). β-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 136, 1708–1717.10.1093/brain/awt095Suche in Google Scholar PubMed PubMed Central

Hayflick, S.J., Kurian, M.A., and Hogarth, P. (2018). Neurodegeneration with brain iron accumulation. Handb. Clin. Neurol. 147, 293–305.10.1016/B978-0-444-63233-3.00019-1Suche in Google Scholar PubMed PubMed Central

Hermann, A., Kitzler, H.H., Pollack, T., Biskup, S., Krüger, S., Funke, C., Terrile, C., and Haack, T.B. (2017). A case of beta-propeller protein-associated neurodegeneration due to a heterozygous deletion of WDR45. Tremor. Other Hyperkinet. Mov. (NY). 7, 465.10.5334/tohm.360Suche in Google Scholar

Hoffjan, S., Ibisler, A., Tschentscher, A., Dekomien, G., Bidinost, C., and Rosa, A.L. (2016). WDR45 mutations in Rett (-like) syndrome and developmental delay: case report and an appraisal of the literature. Mol. Cell. Probes 30, 44–49.10.1016/j.mcp.2016.01.003Suche in Google Scholar PubMed

Hori, I., Otomo, T., Nakashima, M., Miya, F., Negishi, Y., Shiraishi, H., Nonoda, Y., Magara, S., Tohyama, J., Okamoto, N., et al. (2017). Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Sci. Rep. 7, 3552.10.1038/s41598-017-02840-8Suche in Google Scholar PubMed PubMed Central

Huber, K.M., Klann, E., Costa-Mattioli, M., and Zukin, R.S. (2015). Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 35, 13836–13842.10.1523/JNEUROSCI.2656-15.2015Suche in Google Scholar PubMed PubMed Central

Hutsler, J.J., and Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94.10.1016/j.brainres.2009.09.120Suche in Google Scholar PubMed

Ichinose, Y., Miwa, M., Onohara, A., Obi, K., Shindo, K., Saitsu, H., Matsumoto, N., and Takiyama, Y. (2014). Characteristic MRI findings in beta-propeller protein-associated neurodegeneration (BPAN). Neurology. Clin. Pract 4, 175–177.10.1212/01.CPJ.0000437694.17888.9bSuche in Google Scholar

Ingrassia, R., Memo, M., and Garavaglia, B. (2017). Ferrous iron up-regulation in fibroblasts of patients with beta propeller protein-associated neurodegeneration (BPAN). Front Genet. 8, 18.10.3389/fgene.2017.00018Suche in Google Scholar PubMed

Jansen, L.A., Uhlmann, E.J., Crino, P.B., Gutmann, D.H., and Wong, M. (2005). Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871–1880.10.1111/j.1528-1167.2005.00289.xSuche in Google Scholar PubMed

Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Göke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257.10.1016/j.stem.2016.07.005Suche in Google Scholar PubMed

Joachim, J., and Tooze, S.A. (2018). Control of GABARAP-mediated autophagy by the Golgi complex, centrosome and centriolar satellites. Biol. Cell. 110, 1–5.10.1111/boc.201700046Suche in Google Scholar PubMed

Kalia, L.V., and Lang, A.E. (2015). Parkinson’s disease. Lancet 386, 896–912.10.1016/S0140-6736(14)61393-3Suche in Google Scholar PubMed

Kaliszewski, M., Knott, A.B., and Bossy-Wetzel, E. (2015). Primary cilia and autophagic dysfunction in Huntington’s disease. Cell Death Differ. 22, 1413–1424.10.1038/cdd.2015.80Suche in Google Scholar PubMed PubMed Central

Kamm, C. (2006). Early onset torsion dystonia (Oppenheim’s dystonia). Orphanet. J. Rare Dis. 1, 48.10.1186/1750-1172-1-48Suche in Google Scholar PubMed PubMed Central

Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., and Youle, R.J. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell. Biol. 205, 143–153.10.1083/jcb.201402104Suche in Google Scholar PubMed PubMed Central

Karabiyik, C., Lee, M.J., and Rubinsztein, D.C. (2017). Autophagy impairment in Parkinson’s disease. Essays Biochem. 61, 711–720.10.1042/EBC20170023Suche in Google Scholar PubMed

Kerr, J.S., Adriaanse, B.A., Greig, N.H., Mattson, M.P., Cader, M.Z., Bohr, V.A., and Fang, E.F. (2017). Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 40, 151–166.10.1016/j.tins.2017.01.002Suche in Google Scholar PubMed PubMed Central

Khalifa, M., and Naffaa, L. (2015). Exome sequencing reveals a novel WDR45 frameshift mutation and inherited POLR3A heterozygous variants in a female with a complex phenotype and mixed brain MRI findings. Eur. J. Med. Genet. 58, 381–386.10.1016/j.ejmg.2015.05.009Suche in Google Scholar PubMed

Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell. Biol. 13, 132–141.10.1038/ncb2152Suche in Google Scholar PubMed PubMed Central

Kim, H.J., Cho, M.H., Shim, W.H., Kim, J.K., Jeon, E.Y., Kim, D.H., and Yoon, S.Y. (2017a). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22, 1576–1584.10.1038/mp.2016.103Suche in Google Scholar PubMed PubMed Central

Kim, Y.D., Jeong, E.I., Nah, J., Yoo, S.M., Lee, W.J., Kim, Y., Moon, S., Hong, S.H., and Jung, Y.K. (2017b). Pimozide reduces toxic forms of tau in TauC3 mice via 5’ adenosine monophosphate-activated protein kinase-mediated autophagy. J. Neurochem. 142, 734–746.10.1111/jnc.14109Suche in Google Scholar PubMed

Kimura, Y., Sato, N., Sugai, K., Maruyama, S., Ota, M., Kamiya, K., Ito, K., Nakata, Y., Sasaki, M., and Sugimoto, H. (2013). MRI, MR spectroscopy, and diffusion tensor imaging findings in patient with static encephalopathy of childhood with neurodegeneration in adulthood (SENDA). Brain Dev. 35, 458–461.10.1016/j.braindev.2012.07.008Suche in Google Scholar PubMed

Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392, 605–608.10.1038/33416Suche in Google Scholar PubMed

Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J.I., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884.10.1038/nature04723Suche in Google Scholar PubMed

Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166.10.1038/nature13392Suche in Google Scholar PubMed

Ktistakis, N.T. and Tooze, S.A. (2016). Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26, 624–635.10.1016/j.tcb.2016.03.006Suche in Google Scholar PubMed

Kulikovskaja, L., Sarajlija, A., Savic-Pavicevic, D., Dobricic, V., Klein, C., and Westenberger, A. (2018). WDR45 mutations may cause a MECP2 mutation-negative Rett syndrome phenotype. Neurol. Genet. 4, e227.10.1212/NXG.0000000000000227Suche in Google Scholar PubMed PubMed Central

Kwon, C.H., Luikart, B.W., Powell, C.M., Zhou, J., Matheny, S.A., Zhang, W., Li, Y., Baker, S.J., and Parada, L.F. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388.10.1016/j.neuron.2006.03.023Suche in Google Scholar PubMed PubMed Central

Lalonde, R., and Strazielle, C. (2007). Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 1140, 51–74.10.1016/j.brainres.2006.01.031Suche in Google Scholar PubMed

Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379.10.1038/nature12517Suche in Google Scholar PubMed PubMed Central

Leonard, H., Cobb, S., and Downs, J. (2017). Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51.10.1038/nrneurol.2016.186Suche in Google Scholar PubMed

Levi, S., and Finazzi, D. (2014). Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 5, 99.10.3389/fphar.2014.00099Suche in Google Scholar PubMed PubMed Central

Li, K., and Reichmann, H. (2016). Role of iron in neurodegenerative diseases. J. Neural. Transm. 123, 389–399.10.1007/s00702-016-1508-7Suche in Google Scholar PubMed

Liu, J., Wang, X., Lu, Y., Duan, C., Gao, G., Lu, L., and Yang, H. (2017). Pink1 interacts with α-synuclein and abrogates α-synuclein-induced neurotoxicity by activating autophagy. Cell Death Dis. 8, e3056.10.1038/cddis.2017.427Suche in Google Scholar PubMed PubMed Central

Long, M., Abdeen, N., Geraghty, M.T., Hogarth, P., Hayflick, S., and Venkateswaran, S. (2015). Novel WDR45 mutation and pathognomonic BPAN imaging in a young female with mild cognitive delay. Pediatrics 136, e714–e717.10.1542/peds.2015-0750Suche in Google Scholar PubMed

Loy, C.T., Schofield, P.R., Turner, A.M., and Kwok, J.B.J. (2014). Genetics of dementia. Lancet 383, 828–840.10.1016/S0140-6736(13)60630-3Suche in Google Scholar PubMed

Lynch-Day, M.A., Mao, K., Wang, K., Zhao, M., and Klionsky, D.J. (2012). The role of autophagy in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009357.10.1101/cshperspect.a009357Suche in Google Scholar PubMed PubMed Central

Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., and Kimmelman, A.C. (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109.10.1038/nature13148Suche in Google Scholar PubMed PubMed Central

Manzoni, C., and Lewis, P.A. (2017). LRRK2 and autophagy. Adv. Neurobiol. 14, 89–105.10.1007/978-3-319-49969-7_5Suche in Google Scholar PubMed

Marton, R.M., and Paşca, S.P. (2016). Neural differentiation in the third dimension: Generating a human midbrain. Cell Stem Cell 19, 145–146.10.1016/j.stem.2016.07.017Suche in Google Scholar PubMed

McMahon, J., Huang, X., Yang, J., Komatsu, M., Yue, Z., Qian, J., Zhu, X., and Huang, Y. (2012). Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32, 15704–15714.10.1523/JNEUROSCI.2392-12.2012Suche in Google Scholar PubMed PubMed Central

Menzies, F.M., Fleming, A., Caricasole, A., Bento, C.F., Andrews, S.P., Ashkenazi, A., Füllgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., et al. (2017). Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015–1034.10.1016/j.neuron.2017.01.022Suche in Google Scholar PubMed

Michiorri, S., Gelmetti, V., Giarda, E., Lombardi, F., Romano, F., Marongiu, R., Nerini-Molteni, S., Sale, P., Vago, R., Arena, G., et al. (2010). The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ. 17, 962–974.10.1038/cdd.2009.200Suche in Google Scholar PubMed

Morikawa, M., Takano, K., Motobayashi, M., Shiba, N., Kosho, T., Nakazawa, Y., and Inaba, Y. (2017). Clinical features of a female with WDR45 mutation complicated by infantile spasms: a case report and literature review. Brain Dev. 39, 804–807.10.1016/j.braindev.2017.05.003Suche in Google Scholar PubMed

Morisada, N., Tsuneishi, S., Taguchi, K., Yagi, R., Nishiyama, M., Toyoshima, D., Nakagawa, T., Takeshima, Y., Takada, S., and Iijima, K. (2016). A woman with β-propeller protein-associated neurodegeneration identified by the WDR45 mutation presenting as Rett-like syndrome in childhood. No To Hattatsu 48, 209–212.Suche in Google Scholar PubMed

Mouton-Liger, F., Jacoupy, M., Corvol, J.C., and Corti, O. (2017). PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson’s disease. Front. Mol. Neurosci. 10, 120.10.3389/fnmol.2017.00120Suche in Google Scholar PubMed PubMed Central

Nakashima, M., Takano, K., Tsuyusaki, Y., Yoshitomi, S., Shimono, M., Aoki, Y., Kato, M., Aida, N., Mizuguchi, T., Miyatake, S., et al. (2016). WDR45 mutations in three male patients with West syndrome. J. Hum. Genet. 61, 653–661.10.1038/jhg.2016.27Suche in Google Scholar PubMed

Nash, Y., Schmukler, E., Trudler, D., Pinkas-Kramarski, R., and Frenkel, D. (2017). DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J. Neurochem. 143, 584–594.10.1111/jnc.14222Suche in Google Scholar PubMed

Nassif, M., Woehlbier, U., and Manque, P.A. (2017). The enigmatic role of C9ORF72 in autophagy. Front. Neurosci. 11, 442.10.3389/fnins.2017.00442Suche in Google Scholar PubMed PubMed Central

Nishioka, K., Oyama, G., Yoshino, H., Li, Y., Matsushima, T., Takeuchi, C., Mochizuki, Y., Mori-Yoshimura, M., Murata, M., Yamasita, C., et al. (2015). High frequency of beta-propeller protein-associated neurodegeneration (BPAN) among patients with intellectual disability and young-onset Parkinsonism. Neurobiol. Aging 36, 2004.e9–2004.e15.10.1016/j.neurobiolaging.2015.01.020Suche in Google Scholar PubMed

Obara, K., Sekito, T., Niimi, K., and Ohsumi, Y. (2008). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980.10.1074/jbc.M803180200Suche in Google Scholar PubMed PubMed Central

Ohba, C., Nabatame, S., Iijima, Y., Nishiyama, K., Tsurusaki, Y., Nakashima, M., Miyake, N., Tanaka, F., Ozono, K., Saitsu, H., et al. (2014). De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain. J. Hum. Genet. 59, 292–295.10.1038/jhg.2014.18Suche in Google Scholar PubMed

Orenstein, S.J., Kuo, S.H., Tasset, I., Arias, E., Koga, H., Fernandez-Carasa, I., Cortes, E., Honig, L.S., Dauer, W., Consiglio, A., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16, 394–406.10.1038/nn.3350Suche in Google Scholar PubMed PubMed Central

Oz-Levi, D., Ben-Zeev, B., Ruzzo, E.K., Hitomi, Y., Gelman, A., Pelak, K., Anikster, Y., Reznik-Wolf, H., Bar-Joseph, I., Olender, T., et al. (2012). Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am. J. Hum. Genet. 91, 1065–1072.10.1016/j.ajhg.2012.09.015Suche in Google Scholar PubMed PubMed Central

Paudel, R., Li, A., Wiethoff, S., Bandopadhyay, R., Bhatia, K., de Silva, R., Houlden, H., and Holton, J.L. (2015). Neuropathology of beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathol. Commun. 3, 39.10.1186/s40478-015-0221-3Suche in Google Scholar PubMed PubMed Central

Piano Mortari, E., Folgiero, V., Marcellini, V., Romania, P., Bellacchio, E., D’Alicandro, V., Bocci, C., Carrozzo, R., Martinelli, D., Petrini, S., et al. (2018). The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity. Autophagy 14, 22–37.10.1080/15548627.2017.1389356Suche in Google Scholar PubMed PubMed Central

Polson, H.E.J., de Lartigue, J., Rigden, D.J., Reedijk, M., Urbé, S., Clague, M.J., and Tooze, S.A. (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506–522.10.4161/auto.6.4.11863Suche in Google Scholar PubMed

Proikas-Cezanne, T., Takacs, Z., Dönnes, P., and Kohlbacher, O. (2015). WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell. Sci. 128, 207–217.10.1242/jcs.146258Suche in Google Scholar PubMed

Puri, C., Vicinanza, M., Ashkenazi, A., Gratian, M.J., Zhang, Q., Bento, C.F., Renna, M., Menzies, F.M., and Rubinsztein, D.C. (2018). The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell. 45, 114–131.e8.10.1016/j.devcel.2018.03.008Suche in Google Scholar PubMed PubMed Central

Raab-Graham, K.F., Haddick, P.C.G., Jan, Y.N., and Jan, L.Y. (2006). Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148.10.1126/science.1131693Suche in Google Scholar PubMed

Rabanal-Ruiz, Y., Otten, E.G., and Korolchuk, V.I. (2017). mTORC1 as the main gateway to autophagy. Essays Biochem. 61, 565–584.10.1042/EBC20170027Suche in Google Scholar PubMed PubMed Central

Ramachandran, N., Girard, J.M., Turnbull, J., and Minassian, B.A. (2009). The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 50(suppl 5), 29–36.10.1111/j.1528-1167.2009.02117.xSuche in Google Scholar PubMed

Ramesh, N. and Pandey, U.B. (2017). Autophagy dysregulation in ALS: when protein aggregates get out of hand. Front. Mol. Neurosci. 10, 263.10.3389/fnmol.2017.00263Suche in Google Scholar PubMed PubMed Central

Rathore, G.S., Schaaf, C.P., and Stocco, A.J. (2014). Novel mutation of the WDR45 gene causing beta-propeller protein-associated neurodegeneration. Mov. Disord. 29, 574–575.10.1002/mds.25868Suche in Google Scholar PubMed

Recalcati, S., Gammella, E., Buratti, P., and Cairo, G. (2017). Molecular regulation of cellular iron balance. IUBMB Life 69, 389–398.10.1002/iub.1628Suche in Google Scholar PubMed

Redon, S., Benech, C., Schutz, S., Despres, A., Gueguen, P., Le Berre, P., Le Marechal, C., Peudenier, S., Meriot, P., Parent, P., et al. (2017). Intragenic deletion of the WDR45 gene in a male with encephalopathy, severe psychomotor disability, and epilepsy. Am. J. Med. Genet A. 173, 1444–1446.10.1002/ajmg.a.38180Suche in Google Scholar PubMed

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.10.1016/j.neuron.2011.09.010Suche in Google Scholar PubMed

Ross, C.A., and Tabrizi, S.J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98.10.1016/S1474-4422(10)70245-3Suche in Google Scholar PubMed

Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell. Biol. 15, 741–750.10.1038/ncb2757Suche in Google Scholar PubMed

Saitsu, H., Nishimura, T., Muramatsu, K., Kodera, H., Kumada, S., Sugai, K., Kasai-Yoshida, E., Sawaura, N., Nishida, H., Hoshino, A., et al. (2013). De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445–449.e1.10.1038/ng.2562Suche in Google Scholar PubMed

Sarkar, S., Carroll, B., Buganim, Y., Maetzel, D., Ng, A.H.M., Cassady, J.P., Cohen, M.A., Chakraborty, S., Wang, H., Spooner, E., et al. (2013). Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 5, 1302–1315.10.1016/j.celrep.2013.10.042Suche in Google Scholar PubMed

Sbardella, D., Tundo, G.R., Campagnolo, L., Valacchi, G., Orlandi, A., Curatolo, P., Borsellino, G., D’Esposito, M., Ciaccio, C., Cesare, S.D., et al. (2017). Retention of mitochondria in mature human red blood cells as the result of autophagy impairment in Rett syndrome. Sci. Rep. 7, 12297.10.1038/s41598-017-12069-0Suche in Google Scholar PubMed

Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., and Van der Flier, W.M. (2016). Alzheimer’s disease. Lancet 388, 505–517.10.1016/S0140-6736(15)01124-1Suche in Google Scholar PubMed

Schneider, S.A., and Bhatia, K.P. (2012). Syndromes of neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19, 57–66.10.1016/j.spen.2012.03.005Suche in Google Scholar PubMed

Sellier, C., Campanari, M.L., Julie Corbier, C., Gaucherot, A., Kolb-Cheynel, I., Oulad-Abdelghani, M., Ruffenach, F., Page, A., Ciura, S., Kabashi, E., et al. (2016). Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 35, 1276–1297.10.15252/embj.201593350Suche in Google Scholar PubMed PubMed Central

Shah, R.R., and Bird, A.P. (2017). MeCP2 mutations: progress towards understanding and treating Rett syndrome. Genome Med. 9, 17.10.1186/s13073-017-0411-7Suche in Google Scholar PubMed PubMed Central

Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., Ryu, K.Y., Nukina, N., Hattori, N., and Imai, Y. (2014). Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10, e1004861.10.1371/journal.pgen.1004861Suche in Google Scholar PubMed

Sisodiya, S.M., Fauser, S., Cross, J.H., and Thom, M. (2009). Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 8, 830–843.10.1016/S1474-4422(09)70201-7Suche in Google Scholar PubMed

Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 24, 181–185.10.1016/S0968-0004(99)01384-5Suche in Google Scholar PubMed

Spiegel, R., Shalev, S., Bercovich, D., Rabinovich, D., Khayat, M., Shaag, A., and Elpeleg, O. (2016). Severe infantile male encephalopathy is a result of early post-zygotic WDR45 somatic mutation. Clin. Genet. 90, 560–562.10.1111/cge.12849Suche in Google Scholar PubMed

Spillantini, M.G. and Goedert, M. (2013). Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622.10.1016/S1474-4422(13)70090-5Suche in Google Scholar PubMed

Srivastava, S., Desai, S., Cohen, J., Smith-Hicks, C., Barañano, K., Fatemi, A., and Naidu, S. (2018). Monogenic disorders that mimic the phenotype of Rett syndrome. Neurogenetics 19, 41–47.10.1007/s10048-017-0535-3Suche in Google Scholar PubMed PubMed Central

Stevanin, G., Santorelli, F.M., Azzedine, H., Coutinho, P., Chomilier, J., Denora, P.S., Martin, E., Ouvrard-Hernandez, A.M., Tessa, A., Bouslam, N., et al. (2007). Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat. Genet. 39, 366–372.10.1038/ng1980Suche in Google Scholar PubMed

Takano, K., Shiba, N., Wakui, K., Yamaguchi, T., Aida, N., Inaba, Y., Fukushima, Y., and Kosho, T. (2016). Elevation of neuron specific enolase and brain iron deposition on susceptibility-weighted imaging as diagnostic clues for beta-propeller protein-associated neurodegeneration in early childhood: additional case report and review of the literature. Am. J. Med. Genet A. 170A, 322–328.10.1002/ajmg.a.37432Suche in Google Scholar PubMed

Takano, K., Goto, K., Motobayashi, M., Wakui, K., Kawamura, R., Yamaguchi, T., Fukushima, Y., and Kosho, T. (2017). Early manifestations of epileptic encephalopathy, brain atrophy, and elevation of serum neuron specific enolase in a boy with β-propeller protein-associated neurodegeneration. Eur. J. Med. Genet. 60, 521–526.10.1016/j.ejmg.2017.07.008Suche in Google Scholar PubMed

Tang, B.L. (2016). C9orf72’s interaction with Rab GTPases-Modulation of membrane traffic and autophagy. Front. Cell. Neurosci. 10, 228.10.3389/fncel.2016.00228Suche in Google Scholar PubMed PubMed Central

Tang, G., Gudsnuk, K., Kuo, S.H., Cotrina, M.L., Rosoklija, G., Sosunov, A., Sonders, M.S., Kanter, E., Castagna, C., Yamamoto, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143.10.1016/j.neuron.2014.07.040Suche in Google Scholar PubMed

Tello, C., Darling, A., Lupo, V., Pérez-Dueñas, B., and Espinós, C. (2018). On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin. Genet. 93, 731–740.10.1111/cge.13057Suche in Google Scholar PubMed

Thomas, A.C., Williams, H., Setó-Salvia, N., Bacchelli, C., Jenkins, D., O’Sullivan, M., Mengrelis, K., Ishida, M., Ocaka, L., Chanudet, E., et al. (2014). Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am. J. Hum. Genet. 95, 611–621.10.1016/j.ajhg.2014.10.007Suche in Google Scholar

Tomaskovic-Crook, E. and Crook, J.M. (2017). Clinically amendable, defined, and rapid induction of human brain organoids from induced pluripotent stem cells. Methods Mol Biol. Doi: 10.1007/7651_2017_95.10.1007/7651_2017_95Suche in Google Scholar PubMed

Tomoda, T., Bhatt, R.S., Kuroyanagi, H., Shirasawa, T., and Hatten, M.E. (1999). A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 24, 833–846.10.1016/S0896-6273(00)81031-4Suche in Google Scholar

Truban, D., Hou, X., Caulfield, T.R., Fiesel, F.C., and Springer, W. (2017). PINK1, Parkin, and mitochondrial quality control: What can we learn about Parkinson’s disease pathobiology? J. Parkinson’s Dis. 7, 13–29.10.3233/JPD-160989Suche in Google Scholar PubMed PubMed Central

Tschentscher, A., Dekomien, G., Ross, S., Cremer, K., Kukuk, G.M., Epplen, J.T., and Hoffjan, S. (2015). Analysis of the C19orf12 and WDR45 genes in patients with neurodegeneration with brain iron accumulation. J. Neurol. Sci. 349, 105–109.10.1016/j.jns.2014.12.036Suche in Google Scholar PubMed

Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., and Mizushima, N. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120.10.1126/science.1154822Suche in Google Scholar PubMed

Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M.K., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160.10.1126/science.1096284Suche in Google Scholar PubMed

Velikkakath, A.K.G., Nishimura, T., Oita, E., Ishihara, N., and Mizushima, N. (2012). Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell. 23, 896–909.10.1091/mbc.e11-09-0785Suche in Google Scholar PubMed PubMed Central

Wang, R.C., Wei, Y., An, Z., Zou, Z., Xiao, G., Bhagat, G., White, M., Reichelt, J., and Levine, B. (2012). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956–959.10.1126/science.1225967Suche in Google Scholar PubMed PubMed Central

Wang, H., Bedford, F.K., Brandon, N.J., Moss, S.J., and Olsen, R.W. (1999). GABAA-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397, 69–72.10.1038/16264Suche in Google Scholar PubMed

Wang, B., Iyengar, R., Li-Harms, X., Joo, J.H., Wright, C., Lavado, A., Horner, L., Yang, M., Guan, J.L., Frase, S., et al. (2017). The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy 14, 796–811.10.1080/15548627.2017.1386820Suche in Google Scholar PubMed PubMed Central

Wauer, T., Simicek, M., Schubert, A., and Komander, D. (2015). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374.10.1038/nature14879Suche in Google Scholar PubMed PubMed Central

Webster, C.P., Smith, E.F., Bauer, C.S., Moller, A., Hautbergue, G.M., Ferraiuolo, L., Myszczynska, M.A., Higginbottom, A., Walsh, M.J., Whitworth, A.J., et al. (2016). The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676.10.15252/embj.201694401Suche in Google Scholar PubMed PubMed Central

Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802.10.1038/emboj.2010.74Suche in Google Scholar PubMed PubMed Central

Weishaupt, J.H., Hyman, T., and Dikic, I. (2016). Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22, 769–783.10.1016/j.molmed.2016.07.005Suche in Google Scholar PubMed

Xiao, Y., Chen, X., Huang, S., Li, G., Mo, M., Zhang, L., Chen, C., Guo, W., Zhou, M., Wu, Z., et al. (2018). Iron promotes α-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion. J. Neurochem. 145, 34–50.10.1111/jnc.14312Suche in Google Scholar PubMed

Xilouri, M., Brekk, O.R., and Stefanis, L. (2016). Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov. Disord. 31, 178–192.10.1002/mds.26477Suche in Google Scholar PubMed

Xixis, K.I., and Mikati, M.A. (2016). Epileptic spasms: a previously unreported manifestation of WDR45 gene mutation. Epileptic Disord. 18, 336.10.1684/epd.2016.0840Suche in Google Scholar PubMed

Xu, C.Y., Kang, W.Y., Chen, Y.M., Jiang, T.F., Zhang, J., Zhang, L.N., Ding, J.Q., Liu, J., and Chen, S.D. (2017). DJ-1 inhibits α-Synuclein aggregation by regulating chaperone-mediated autophagy. Front. Aging Neurosci. 9, 308.10.3389/fnagi.2017.00308Suche in Google Scholar PubMed PubMed Central

Yang, M., Liang, C., Swaminathan, K., Herrlinger, S., Lai, F., Shiekhattar, R., and Chen, J.F. (2016). A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci. Adv. 2, e1601167.10.1126/sciadv.1601167Suche in Google Scholar PubMed PubMed Central

Yazdankhah, M., Farioli-Vecchioli, S., Tonchev, A.B., Stoykova, A., and Cecconi, F. (2014). The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis. 5, e1403.10.1038/cddis.2014.358Suche in Google Scholar PubMed PubMed Central

Yu, L., Chen, Y., and Tooze, S.A. (2017). Autophagy pathway: cellular and molecular mechanisms. Autophagy 14, 207–215.10.1080/15548627.2017.1378838Suche in Google Scholar PubMed PubMed Central

Zarate, Y.A., Jones, J.R., Jones, M.A., Millan, F., Juusola, J., Vertino-Bell, A., Schaefer, G.B., and Kruer, M.C. (2016). Lessons from a pair of siblings with BPAN. Eur. J. Hum. Genet. 24, 1080–1083.10.1038/ejhg.2015.242Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Mikhael, M., Xu, D., Li, Y., Soe-Lin, S., Ning, B., Li, W., Nie, G., Zhao, Y., and Ponka, P. (2010). Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid. Redox Signal. 13, 999–1009.10.1089/ars.2010.3129Suche in Google Scholar PubMed

Zhao, H., Zhao, Y.G., Wang, X., Xu, L., Miao, L., Feng, D., Chen, Q., Kovács, A.L., Fan, D., and Zhang, H. (2013). Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. J. Cell. Biol. 200, 731–741.10.1083/jcb.201211014Suche in Google Scholar PubMed PubMed Central

Zhao, Y.G., Sun, L., Miao, G., Ji, C., Zhao, H., Sun, H., Miao, L., Yoshii, S.R., Mizushima, N., Wang, X., et al. (2015). The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy 11, 881–890.10.1080/15548627.2015.1047127Suche in Google Scholar PubMed PubMed Central

Zheng, J.X., Li, Y., Ding, Y.H., Liu, J.J., Zhang, M.J., Dong, M.Q., Wang, H.W., and Yu, L. (2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy 13, 1870–1883.10.1080/15548627.2017.1359381Suche in Google Scholar PubMed PubMed Central

Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44, 601–607.10.1016/j.neuron.2004.11.005Suche in Google Scholar PubMed

Zoghbi, H.Y., and Bear, M.F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, pii: a009886.10.1101/cshperspect.a009886Suche in Google Scholar PubMed PubMed Central

Received: 2018-05-04
Accepted: 2018-07-07
Published Online: 2018-09-11
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2018-0045/html
Button zum nach oben scrollen