Startseite GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus

  • Fabiola Hernández-Vázquez

    Fabiola Hernández-Vázquez obtained her B.S. in Biology from Universidad Nacional Autónoma de México (2005), a Master in Biological Sciences (2009), and her Ph.D. in Biomedical Sciences (2015) in the same University. She is a postdoctoral student in the Instituto de Fisiología Celular, Department of Cognitive Neuroscience, UNAM. Her research is focused on the study of GABAergic neurons in the dorsal raphe nucleus and striatum.

    , Julieta Garduño

    Julieta Garduño received her B.S. in Biology from Universidad Autónoma Metropolitana, Ciudad de México (1993), and a Ph.D. in Physiology from Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México (2000). She was a postdoctoral fellow at the Cajal Institute of Madrid, Spain, in the Department of Functional Neurobiology and Systems (2001–2004). After completing the postdoctoral fellowship, she joined at the Department of Physiology, Faculty of Medicine at the Universidad Nacional Autónoma de México, where she currently is an Associate Professor. Her research is focused on the study of GABAergic neurons in some brain structures like the hypothalamus and dorsal raphe nucleus.

    und Salvador Hernández-López

    Salvador Hernandez received his B.S. in Psychobiology from Universidad Nacional Autonoma de Mexico (UNAM, 1990) and a Ph.D. in Neurosciences from Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City (1994). Afterward, he worked at the Institute of Physiology, UNAM, where he studied the effects of dopamine on medium spiny neurons (basal ganglia) from 1994 to 1998. Then, he got a postdoctoral position at the Northwestern University in Chicago where he continued to work on the basal ganglia (1998–2003). Currently, Dr. Hernandez is a Professor of Physiology at the Faculty of Medicine, UNAM, and he pursues research aimed at understanding the effect of nicotine on the dorsal raphe nucleus.

    EMAIL logo
Veröffentlicht/Copyright: 3. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The dorsal raphe nucleus (DRN), located in the brainstem, is involved in several functions such as sleep, temperature regulation, stress responses, and anxiety behaviors. This nucleus contains the largest population of serotonin expressing neurons in the brain. Serotonergic DRN neurons receive tonic γ-aminobutyric acid (GABA)inhibitory inputs from several brain areas, as well as from interneurons within the same nucleus. Serotonergic and GABAergic neurons in the DRN can be distinguished by their size, location, pharmacological responses, and electrophysiological properties. GABAergic neurons regulate the excitability of DRN serotonergic neurons and the serotonin release in different brain areas. Also, it has been shown that GABAergic neurons can synchronize the activity of serotonergic neurons across functions such as sleep or alertness. Moreover, dysregulation of GABA signaling in the DRN has been linked to psychiatric disorders such as anxiety and depression. This review focuses on GABAergic transmission in the DRN. The interaction between GABAergic and serotonergic neurons is discussed considering some physiological implications. Also, the main electrophysiological and morphological characteristics of serotonergic and GABAergic neurons are described.

About the authors

Fabiola Hernández-Vázquez

Fabiola Hernández-Vázquez obtained her B.S. in Biology from Universidad Nacional Autónoma de México (2005), a Master in Biological Sciences (2009), and her Ph.D. in Biomedical Sciences (2015) in the same University. She is a postdoctoral student in the Instituto de Fisiología Celular, Department of Cognitive Neuroscience, UNAM. Her research is focused on the study of GABAergic neurons in the dorsal raphe nucleus and striatum.

Julieta Garduño

Julieta Garduño received her B.S. in Biology from Universidad Autónoma Metropolitana, Ciudad de México (1993), and a Ph.D. in Physiology from Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México (2000). She was a postdoctoral fellow at the Cajal Institute of Madrid, Spain, in the Department of Functional Neurobiology and Systems (2001–2004). After completing the postdoctoral fellowship, she joined at the Department of Physiology, Faculty of Medicine at the Universidad Nacional Autónoma de México, where she currently is an Associate Professor. Her research is focused on the study of GABAergic neurons in some brain structures like the hypothalamus and dorsal raphe nucleus.

Salvador Hernández-López

Salvador Hernandez received his B.S. in Psychobiology from Universidad Nacional Autonoma de Mexico (UNAM, 1990) and a Ph.D. in Neurosciences from Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City (1994). Afterward, he worked at the Institute of Physiology, UNAM, where he studied the effects of dopamine on medium spiny neurons (basal ganglia) from 1994 to 1998. Then, he got a postdoctoral position at the Northwestern University in Chicago where he continued to work on the basal ganglia (1998–2003). Currently, Dr. Hernandez is a Professor of Physiology at the Faculty of Medicine, UNAM, and he pursues research aimed at understanding the effect of nicotine on the dorsal raphe nucleus.

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) (grant 236719), Facultad de Medicina–UNAM (grant 088/2016), and UNAM-DGAPA-PAPIIT (Funder Id: 10.13039/501100006087, grant IA206317). A scholarship by DGAPA-UNAM to Fabiola Hernández-Vázquez is gratefully acknowledged. We thank Roselia Garduño Torres for her valuable help in the design and elaboration of Figures 3 and 4.

References

Abellán, M.T., Adell, A., Honrubia, M.A., Mengod, G., and Artigas, F. (2000). GABAB-RI receptors in serotonergic neurons: effects of baclofen on 5-HT output in rat brain. Neuroreport 7, 941–945.10.1097/00001756-200004070-00009Suche in Google Scholar

Adell, A., Casanovas, J.M., and Artigas, F. (1997). Comparative study in the rat of the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas. Neuropharmacology 36, 735–741.10.1016/S0028-3908(97)00048-8Suche in Google Scholar PubMed

Aghajanian, G.K. and Vandermaelen, C.P. (1982). Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J. Neurosci. 2, 1786–1792.10.1523/JNEUROSCI.02-12-01786.1982Suche in Google Scholar PubMed

Aghajanian, G.K., Foote, W.E., and Sheard, M.H. (1968). Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161, 706–708.10.1126/science.161.3842.706Suche in Google Scholar PubMed

Allers, K.A. and Sharp, T. (2003). Neurochemical and anatomical identification of fast- and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 122,193–204.10.1016/S0306-4522(03)00518-9Suche in Google Scholar PubMed

Andrade, T.G. and Graeff, F.G. (2001). Effect of electrolytic and neurotoxic lesions of the median raphe nucleus on anxiety and stress. Pharmacol. Biochem. Behav. 70,1–14.10.1016/S0091-3057(01)00512-3Suche in Google Scholar PubMed

Araneda, S., Gysling, K., and Calas, A. (1999). Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49, 209–214.10.1016/S0361-9230(99)00055-6Suche in Google Scholar PubMed

Araki, R., Hiraki, Y., Nishida, S., Kuramoto, N., Matsumoto, K., and Yabe, T. (2016). Epigenetic regulation of dorsal raphe GABAB1a associated with isolation-induced abnormal responses to social stimulation in mice. Neuropharmacology 101, 1–12.10.1016/j.neuropharm.2015.09.013Suche in Google Scholar PubMed

Asaoka, N., Nishitani, N., Kinoshita, H., Kawai, H., Shibui, N., Nagayasu, K., Shirakawa, H., Nakagawa, T., and Kaneko, S. (2017). Chronic antidepressant potentiates spontaneous activity of dorsal raphe serotonergic neurons by decreasing GABAB receptor-mediated inhibition of L-type calcium channels. Sci. Rep. 7, 13609.10.1038/s41598-017-13599-3Suche in Google Scholar PubMed PubMed Central

Bacci, A., Rudolph, U., Huguenard, J.R., and Prince, D.A. (2003). Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J. Neurosci. 23, 9664–9674.10.1523/JNEUROSCI.23-29-09664.2003Suche in Google Scholar PubMed

Baker, K.G., Halliday, G.M., and Tork, I. (1990). Cytoarchitecture of the human dorsal raphe nucleus. J. Comp. Neurol. 301, 147–161.10.1002/cne.903010202Suche in Google Scholar PubMed

Bang, S.J. and Commons, K.G. (2012). Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J. Comp. Neurol. 15, 4157–4167.10.1002/cne.23146Suche in Google Scholar

Barbaresi, P. (2010). Postnatal development of GABA-immunoreactive neurons and terminals in rat periaqueductal gray matter: a light and electron microscopic study. J. Comp. Neurol. 518, 2240–2260.10.1002/cne.22329Suche in Google Scholar PubMed

Beck, S.G., Pan, Y.Z., Akanwa, A.C., and Kirby, L.G. (2004). Median and dorsal raphe neurons are not electrophysiologically identical. J. Neurophysiol. 9, 994–1005.10.1152/jn.00744.2003Suche in Google Scholar

Belin, M.F., Nanopoulos, D., Didier, M., Aguera, M., Steinbusch, H., Verhofstad, A., Maitre, M., and Pujol, J.F. (1983). Immunohistochemical evidence for the presence of γ-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res. 26, 329–339.10.1016/0006-8993(83)90994-0Suche in Google Scholar

Benes, F.M. and Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27.10.1016/S0893-133X(01)00225-1Suche in Google Scholar PubMed

Berger, M., Gray, J.A., and Roth, B.L. (2009). The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366.10.1146/annurev.med.60.042307.110802Suche in Google Scholar PubMed PubMed Central

Birnir, B. and Korpi, E.R. (2007). The impact of sub-cellular location and intracellular neuronal proteins on properties of GABAA receptors. Curr. Pharm. Des. 13, 3169–3177.10.2174/138161207782341330Suche in Google Scholar PubMed

Broadbelt, K.G., Paterson, D.S., Rivera, K.D., Trachtenberg, F.L., and Kinney, H.C. (2010). Neuroanatomic relationships between the GABAergic and serotonergic systems in the developing human medulla. Auton. Neurosci. 19, 30–41.10.1016/j.autneu.2009.10.002Suche in Google Scholar PubMed PubMed Central

Calizo, L.H., Akanwa, A., Ma, X., Pan, Y.Z., Lemos, J.C., Craige, C., Heemstra, L.A., and Beck, S.G. (2011). Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61, 524–543.10.1016/j.neuropharm.2011.04.008Suche in Google Scholar PubMed PubMed Central

Cardinal, R.N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw. 19, 1277–1301.10.1016/j.neunet.2006.03.004Suche in Google Scholar PubMed

Cauli, B., Porter, J.T., Tsuzuki, K., Lambolez, B., Rossier, J., Quenet, B., and Audinat, E. (2000). Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc. Natl. Acad. Sci. USA 23, 6144–6149.10.1073/pnas.97.11.6144Suche in Google Scholar

Celada, P., Puig, M.V., Casanovas, J.M., Guillazo, G., and Artigas, F. (2001). Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABAA, and glutamate receptors. J. Neurosci. 15, 9917–9929.10.1523/JNEUROSCI.21-24-09917.2001Suche in Google Scholar

Celio, M.R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475.10.1016/0306-4522(90)90091-HSuche in Google Scholar PubMed

Challis, C., Boulden, J., Veerakumar, A., Espallergues, J., Vassoler, F.M., Pierce, R.C., Beck, S.G., and Berton, O. (2013). Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J. Neurosci. 33, 13978–13988.10.1523/JNEUROSCI.2383-13.2013Suche in Google Scholar PubMed

Challis, C., Beck, S.G., and Berton, O. (2014). Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav. Neurosci. 17, 8–43.10.3389/fnbeh.2014.00043Suche in Google Scholar

Charara, A. and Parent, A. (1998). Chemoarchitecture of the primate dorsal raphe nucleus. J. Chem. Neuroanat. 15, 111–127.10.1016/S0891-0618(98)00036-2Suche in Google Scholar PubMed

Chebib, M. and Johnston, G.A.R. (2000). GABA activated ion channel: medicinal chemistry and molecular biology. J. Med. Chem. 43, 1427–1447.10.1021/jm9904349Suche in Google Scholar PubMed

Contreras, D. (2004). Electrophysiological classes of neocortical neurons. Neurol. Networks 17, 633–646.10.1016/j.neunet.2004.04.003Suche in Google Scholar PubMed

Cools, R., Roberts, A.C., and Robbins, T.W. (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40.10.1016/j.tics.2007.10.011Suche in Google Scholar PubMed

Craige, C.P., Lewandowski, S., Kirby, L.G., and Unterwald, E.M. (2015). Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 93, 41–51.10.1016/j.neuropharm.2015.01.021Suche in Google Scholar PubMed PubMed Central

Crawford, L.K., Craige, C.P., and Beck, S.G. (2010). Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J. Neurophysiol. 103, 2652–2663.10.1152/jn.01132.2009Suche in Google Scholar PubMed PubMed Central

Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration in the cell bodies of brain stem neurons. Acta Physiol. Scand. (Suppl). 232, 1–55.Suche in Google Scholar

Day, H.E., Greenwood, B.N., Hammack, S.E., Watkins, L.R., Fleshner, M., Maier, S.F., and Campeau, S. (2004). Differential expression of 5-HT-1A, α1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, γ-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J. Comp. Neurol. 28, 364–378.10.1002/cne.20138Suche in Google Scholar PubMed PubMed Central

Eccles, J.C., Schmidt, R.F., and Willis, W.D. (1963). Pharmacological studies on presynaptic inhibition. J. Physiol. 168, 500–530.10.1113/jphysiol.1963.sp007205Suche in Google Scholar PubMed PubMed Central

Ettenberg, A., Ofer, O.A., Mueller, C.L., Waldroup, S., Cohen, A., and Ben-Shahar, O. (2011). Inactivation of the dorsal raphe nucleus reduces the anxiogenic response of rats running an alley for intravenous cocaine. Pharmacol. Biochem. Behav. 97, 632–639.10.1016/j.pbb.2010.11.008Suche in Google Scholar PubMed PubMed Central

Farrant, M. and Nusser, Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229.10.1038/nrn1625Suche in Google Scholar PubMed

Fernández, S.P., Cauli, B., Cabezas, C., Muzerelle, A., Poncer, J.C., and Gaspar, P. (2016). Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct. Funct. 221, 4007–4025.10.1007/s00429-015-1142-4Suche in Google Scholar PubMed

Fonseca, M.S., Murakami, M., and Mainen, Z.F. (2015). Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr. Biol. 25, 306–315.10.1016/j.cub.2014.12.002Suche in Google Scholar PubMed

Frías-Domínguez, C., Garduño, J., Hernández, S., Drucker-Colin, R., and Mihailescu, S. (2013). Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats. Brain Res. Bull. 98, 10–22.10.1016/j.brainresbull.2013.07.006Suche in Google Scholar PubMed

Fu, W., Le Maître, E., Fabre, V., Bernard, J.F., David Xu, Z.Q., and Hökfelt, T. (2010). Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J. Comp. Neurol. 1, 3464–3494.10.1002/cne.22407Suche in Google Scholar PubMed

Gallager, D.W. (1978). Benzodiazepines: potentiation of a GABA inhibitory response in the dorsal raphe nucleus. Eur. J. Pharmacol. 15, 133–143.10.1016/0014-2999(78)90069-9Suche in Google Scholar

Gallager, D.W. and Aghajanian, G.K. (1976). Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur. J. Pharmacol. 39, 357–364.10.1016/0014-2999(76)90145-XSuche in Google Scholar

Galindo-Charles, L, Hernandez-Lopez, S, Galarraga, E., Tapia, D., Bargas, J., Garduño, J., Frías-Dominguez, C., Drucker-Colin, R., and Mihailescu, S. (2008). Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse 62, 601–615.10.1002/syn.20526Suche in Google Scholar PubMed

Gamrani, H., Calas, A., Belin, M.F., Aguera, M., and Pujol, J.F. (1979). High resolution radioautographic identification of [3H] GABA labeled neurons in the rat nucleus raphe dorsalis. Neurosci. Lett. 15, 43–48.10.1016/0304-3940(79)91527-1Suche in Google Scholar PubMed

Gao, B., Fritschy, J.M., Benke, D., and Mohler, H. (1993). Neuron-specific expression of GABAA-receptor subtypes: differential association of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54, 881–892.10.1016/0306-4522(93)90582-ZSuche in Google Scholar

Garduño, J., Galindo-Charles, L., Jiménez-Rodríguez, J., Galarraga, E., Tapia, D., Mihailescu, S., and Hernandez-Lopez, S. (2012). Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus. J. Neurosci. 32, 15148–15157.10.1523/JNEUROSCI.0941-12.2012Suche in Google Scholar PubMed PubMed Central

Geddes, S.D., Assadzada, S., Lemelin, D., Sokolovski, A., Bergeron, R., Haj-Dahmane, S., and Béïque, J.C. (2016). Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids. Proc. Natl. Acad. Sci. USA 113, 5429–5434.10.1073/pnas.1522754113Suche in Google Scholar PubMed PubMed Central

Gervasoni, D., Peyron, C., Rampon, C., Barbagli, B., Chouvet, G., Urbain, N., Fort, P., and Luppi, P.H. (2000). Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J. Neurosci. 20, 4217–4225.10.1523/JNEUROSCI.20-11-04217.2000Suche in Google Scholar PubMed

Gocho, Y., Sakai, A., and Yanagawa, Y. (2012). Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J. Physiol. Sci. 63, 147–154.10.1007/s12576-012-0250-7Suche in Google Scholar PubMed PubMed Central

Haider, B. and McCormick, D.A. (2009). Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62,171–189.10.1016/j.neuron.2009.04.008Suche in Google Scholar PubMed PubMed Central

Harandi, M., Aguera, M., Gamrani, H., Didier, M., Maitre, M., Calas, A., and Belin, M.F. (1987). Gamma-aminobutyric acid and 5-hydroxytryptamine interrelationship in the rat nucleus raphe dorsalis: combination of radioautographic and immunocytochemical techniques at light and electron microscopy levels. Neuroscience 21, 237–251.10.1016/0306-4522(87)90336-8Suche in Google Scholar PubMed

Hernández-Vázquez, F., Chavarría, K., Garduño, J., Hernández-López, S., and Mihailescu, S.P. (2014). Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor. J. Neurophysiol. 112, 3154–3163.10.1152/jn.00223.2014Suche in Google Scholar PubMed

Homberg, J.R. (2012). Serotonin and decision-making processes. Neurosci. Biobehav. Rev. 36, 218–236.10.1016/j.neubiorev.2011.06.001Suche in Google Scholar PubMed

Hou, C., Xueb, L., Feng, J., Zhang, L., Wanga, Y., Chen, L., Wang, T., Zhang, Q.J.J., and Liu, J. (2012). Unilateral lesion of the nigrostriatal pathway decreases the response of GABA interneurons in the dorsal raphe nucleus to 5-HT1A receptor stimulation in the rat. Neurochem Int. 61, 1344–1356.10.1016/j.neuint.2012.09.012Suche in Google Scholar PubMed

Ibáñez-Sandoval, O., Tecuapetla, F., Unal, B., Shah, F., Koós, T., and Tepper, J.M. (2011). A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J. Neurosci. 31, 16757–16769.10.1523/JNEUROSCI.2628-11.2011Suche in Google Scholar PubMed

Imai, H., Steindler, D.A., and Kitai, S.T. (1986). The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J. Comp. Neurol. 15, 363–380.10.1002/cne.902430307Suche in Google Scholar

Isaacson, J.S. and Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron 72, 231–243.10.1016/j.neuron.2011.09.027Suche in Google Scholar PubMed

Jin, Y., Luo, B., Su, Y.Y., Wang, X.X., Chen, L., Wang, M., Wang, W.W., and Chen, L. (2015). Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus. PLoS One 10, 1–21.10.1371/journal.pone.0126956Suche in Google Scholar

Jindal, R.D. and Thase, M.E. (2004). Treatment of insomnia associated with clinical depression. Sleep Med. Rev. 8, 19–30.10.1016/S1087-0792(03)00025-XSuche in Google Scholar PubMed

Johnson, M.D. (1994). Electrophysiological and histochemical properties of postnatal rat serotonergic neurons in dissociated cell culture. Neuroscience 63, 775–787.10.1016/0306-4522(94)90522-3Suche in Google Scholar PubMed

Jolas, T. and Aghajanian, G.K. (1997). Opioids suppress spontaneous and NMDA-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro. Brain Res. 755, 229–245.10.1016/S0006-8993(97)00103-0Suche in Google Scholar PubMed

Kawaguchi, Y. and Kubota, Y. (1993). Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindin D28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387–396.10.1152/jn.1993.70.1.387Suche in Google Scholar

Kirby, L.G. and Lucki, I. (1998). The effect of repeated exposure to forced swimming on extracellular levels of 5-hydroxytryptamine in the rat. Stress. 2, 251–263.10.3109/10253899809167289Suche in Google Scholar PubMed

Kirby, L.G., Rice, K.C., and Valentino, R.J. (2000). Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22, 148–162.10.1016/S0893-133X(99)00093-7Suche in Google Scholar PubMed

Kirby, L.G., Pernar, L., Valentino, R.J., and Beck, S.G. (2003). Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116, 669–683.10.1016/S0306-4522(02)00584-5Suche in Google Scholar PubMed

Kirby, L.G., Freeman-Daniels, E., Lemos, J.C., Nunan, J.D., Lamy, C., Akanwa, A., and Beck, S.G. (2008). Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons. J. Neurosci. 28, 12927–12937.10.1523/JNEUROSCI.2887-08.2008Suche in Google Scholar PubMed PubMed Central

Kirby, L.G., Zeeb, F.D., and Winstanley, C.A. (2011). Contributions of serotonin in addiction vulnerability. Neuropharmacology 61, 421–432.10.1016/j.neuropharm.2011.03.022Suche in Google Scholar PubMed PubMed Central

Kirouac, G.J., Li, S., and Mabrouk, G. (2004). GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. J. Comp. Neurol. 469, 170–184.10.1002/cne.11005Suche in Google Scholar PubMed

Klausberger, T. and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57.10.1126/science.1149381Suche in Google Scholar PubMed PubMed Central

Krystal, J.H., Sanacora, G., Blumberg, H., Anand, A., Charney, D.S., Marek, G., Epperson, C.N., Goddard, A., and Mason, G.F. (2002). Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol. Psychiatry 7, S71–S80.10.1038/sj.mp.4001021Suche in Google Scholar PubMed

Lammel, S., Lim, B.K., Ran, C., Huang, K.W., Betley, M.J., Tye, K.M., Deisseroth, K., and Malenka, R.C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217.10.1038/nature11527Suche in Google Scholar PubMed

Laurie, D.J., Wisden, W., and Seeburg, P.H. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172.10.1523/JNEUROSCI.12-11-04151.1992Suche in Google Scholar

Lavezzi, H.N., Parsley, K.P., and Zahm, D.S. (2012). Mesopontine rostromedial tegmental nucleus neurons projecting to the dorsal raphe and pedunculopontine tegmental nucleus: psychostimulant-elicited Fos expression and collateralization. Brain Struct. Funct. 217, 719–734.10.1007/s00429-011-0368-zSuche in Google Scholar PubMed

Le, A.D., Funk, D., Harding, S., Juzytsch, W., Li, Z., and Fletcher, P.J. (2008). Intra-median raphe nucleus (MRN) infusions of muscimol, a GABAA receptor agonist, reinstate alcohol seeking in rats: role of impulsivity and reward. Psychopharmacology (Berl.) 195, 605–615.10.1007/s00213-007-0943-4Suche in Google Scholar

Lemos, J.C., Yu-Zhen, P., Xiaohong, M., Christophe, L., Akanwa, A.C., and Beck, S.G. (2006). Selective 5-HT1B receptor inhibition of glutamatergic and GABAergic synaptic activity in the rat dorsal and median raphe. Eur. J. Neurosci. 24, 3415–3430.10.1111/j.1460-9568.2006.05222.xSuche in Google Scholar

Li, C. and Kirby, L.G. (2016). Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats. Eur. Neuropsychopharmacol. 26, 45–54.10.1016/j.euroneuro.2015.11.009Suche in Google Scholar

Li, Y.Q., Li, H., Kaneko, T., and Mizuno, N. (2001). Morphological features and electrophysiological properties of serotonergic and non-serotonergic projections neurons in the dorsal raphe nucleus. An intracellular recording and labeling study in rat brain slices. Brain Res. 900, 110–118.10.1016/S0006-8993(01)02272-7Suche in Google Scholar

Li, C., Staub, D.R., and Kirby, L.G. (2013). Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats. Psychopharmacology (Berl.) 230, 537–545.10.1007/s00213-013-3182-xSuche in Google Scholar PubMed

Liu, R., Jolas, T., and Aghajanian, G. (2000). Serotonin 5-HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res. 873, 34–45.10.1016/S0006-8993(00)02468-9Suche in Google Scholar

Lottem, E., Banerjee, D., Vertechi, P., Sarra, D., Lohuis, M.O., and Mainen, Z.F. (2018). Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nat. Commun. 9, 1000.10.1038/s41467-018-03438-ySuche in Google Scholar PubMed PubMed Central

Lowry, C.A., Rodda, J.E., Lightman, S.L., and Ingram, C.D. (2000). Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: evidence for activation of a topographically organized mesolimbocortical serotonergic system. J. Neurosci. 20, 7728–7736.10.1523/JNEUROSCI.20-20-07728.2000Suche in Google Scholar PubMed

Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biol. Psychiatry 44, 151–162.10.1016/S0006-3223(98)00139-5Suche in Google Scholar PubMed

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. 5, 793–807.10.1038/nrn1519Suche in Google Scholar

Matsumoto, M. and Hikosaka, O. (2009). Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84.10.1038/nn.2233Suche in Google Scholar PubMed

Meneses, A. and Perez-Garcia, G. (2007). 5-HT1A receptors and memory. Neurosci. Biobehav. Rev. 31, 705–727.10.1016/j.neubiorev.2007.02.001Suche in Google Scholar PubMed

Mihailescu, S., Palomero-Rivero, M., Meade-Huerta, P., Maza-Flores, A., and Drucker-Colín, R. (1998). Effects of nicotine and mecamylamine on rat dorsal raphe neurons. Eur. J. Pharmacol. 360, 31–36.10.1016/S0014-2999(98)00658-XSuche in Google Scholar PubMed

Mihailescu, S., Guzmán-Marín, R., Domínguez Mdel, C., and Drucker-Colín, R. (2002). Mechanisms of nicotine actions on dorsal raphe serotoninergic neurons. Eur. J. Pharmacol. 452, 77–82.10.1016/S0014-2999(02)02244-6Suche in Google Scholar PubMed

Mlinar, B., Montalbano, A., Piszczek, L., Gross, C., and Corradetti, R. (2016). Firing properties of genetically identified dorsal raphe serotonergic neurons in brain slices. Front Cell Neurosci. 10, 1–17.10.3389/fncel.2016.00195Suche in Google Scholar PubMed PubMed Central

Monti, J.M. (2010). The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med. Rev. 14, 319–327.10.1016/j.smrv.2009.10.003Suche in Google Scholar PubMed

Morton, R.A., Yanagawa, Y., and Valenzuela, C.F. (2015). Electrophysiological assessment of serotonin and GABA neuron function in the dorsal raphe during the third trimester equivalent developmental period in mice. eNeuro 2, 1–14.10.1523/ENEURO.0079-15.2015Suche in Google Scholar PubMed PubMed Central

Mosko, S.S., and Jacobs, B.L. (1976). Recording of dorsal raphe unit activity in vitro. Neurosci. Lett. 2, 195–200.10.1016/0304-3940(76)90014-8Suche in Google Scholar PubMed

Muzerelle, A., Scotto-Lomassese, S., Bernard, J.F., Soiza-Reilly, M., and Gaspar, P. (2016). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct. 221, 535–561.10.1007/s00429-014-0924-4Suche in Google Scholar PubMed

Nagai, T., McGeer, P.L., and McGeer, E.G. (1983). Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain. J. Comp. Neurol. 218, 220–238.10.1002/cne.902180209Suche in Google Scholar PubMed

Nakamura, K. (2013). The role of the dorsal raphé nucleus in reward-seeking behavior. Front. Integr. Neurosci. 7, 60.10.3389/fnint.2013.00060Suche in Google Scholar PubMed

Nanopoulos, D., Belin, M.F., Maitre, M., Vincendon, G., and Pujol, J.F. (1982). Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res. 232, 375–389.10.1016/0006-8993(82)90281-5Suche in Google Scholar

Nitz, D. and Siegel, J. (1997). GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am. J. Physiol. 273, R451–455.10.1152/ajpregu.1997.273.1.R451Suche in Google Scholar PubMed

Obata, K., Oide, M., and Tanaka, H. (1978). Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res. 144, 179–184.10.1016/0006-8993(78)90447-XSuche in Google Scholar PubMed

Ogawa, S.K., Cohen, J.Y., Hwang, D., Uchida, N., and Watabe-Uchida, M. (2014). Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 8, 1105–1118.10.1016/j.celrep.2014.06.042Suche in Google Scholar PubMed PubMed Central

Pan, Z.Z. and Williams, J.T. (1989). GABA- and glutamate-mediated synaptic potentials in rat dorsal raphe neurons in vitro. J. Neurophysiol. 61, 719–726.10.1152/jn.1989.61.4.719Suche in Google Scholar PubMed

Penington, N.J., Kelly, J.S., and Fox, A.P. (1993). Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J. Physiol. 469, 387–405.10.1113/jphysiol.1993.sp019819Suche in Google Scholar PubMed PubMed Central

Polgar, E., Sardella, T.C., Watanabe, M., and Todd, A.J. (2011). Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J. Comp. Neurol. 519, 1007–1023.10.1002/cne.22570Suche in Google Scholar PubMed

Pollak Dorocic, I., Fürth, D., Xuan, Y., Johansson, Y., Pozzi, L., Silberberg, G., Carlén, M., and Meletis, K. (2014). A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83, 663–678.10.1016/j.neuron.2014.07.002Suche in Google Scholar PubMed

Pouille, F. and Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163.10.1126/science.1060342Suche in Google Scholar PubMed

Price, M.L., Kirby, L.G., Valentino, R.J., and Lucki, I. (2002). Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming. Psychopharmacology (Berl.) 162, 406–414.10.1007/s00213-002-1114-2Suche in Google Scholar PubMed

Puig, M.V., Artigas, F., and Celada, P. (2005). Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: Involvement of serotonin and GABA. Cereb. Cortex 15, 1–14.10.1093/cercor/bhh104Suche in Google Scholar PubMed

Roberts, C., Thomas, D.R., Bate, S.T., and Kew, J.N.C., (2004). GABAergic modulation of 5-HT7 receptor-mediated effects on 5-HT efflux in the guinea-pig dorsal raphe nucleus. Neuropharmacology 46, 935–941.10.1016/j.neuropharm.2004.01.010Suche in Google Scholar PubMed

Roche, M., Commons, K.G., Peoples, A., and Valentino, R.J. (2003). Circuitry underlying regulation of the serotonergic system by swim stress. J. Neurosci. 23, 970–977.10.1523/JNEUROSCI.23-03-00970.2003Suche in Google Scholar PubMed

Sakai, K. and Crochet, S. (2001). Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104, 1141–1155.10.1016/S0306-4522(01)00103-8Suche in Google Scholar PubMed

Saxena, P.R. (1995). Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacol. Ther. 66, 339–368.10.1016/0163-7258(94)00005-NSuche in Google Scholar PubMed

Scott, M.M. and Deneris, E.S. (2005). Making and breaking serotonin neurons and autism. Int. J. Dev. Neurosci. 23, 277–285.10.1016/j.ijdevneu.2004.05.012Suche in Google Scholar PubMed

Sena, L.M., Bueno, C., Pobbe, R.L., Andrade, T.G., Zangrossi, H. Jr., and Viana, M.B. (2003). The dorsal raphe nucleus exerts opposed control on generalized anxiety and panic-related defensive responses in rats. Behav. Brain Res. 142, 125–133.10.1016/S0166-4328(02)00399-6Suche in Google Scholar PubMed

Serrats, J., Artigas, F., Mengod, G., and Cortés, R. (2003). GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. J. Neurochem. 84, 743–752.10.1046/j.1471-4159.2003.01557.xSuche in Google Scholar PubMed

Serrats, J., Mengod, G., and Cortés, R. (2005). Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J. Chem. Neuroanat. 29, 83–91.10.1016/j.jchemneu.2004.03.010Suche in Google Scholar PubMed

Seth, P., Cheeta, S., Tucci, S., and File, S.E. (2002). Nicotinic serotonergic interactions in brain and behaviour. Pharmacol. Biochem. Behav. 71, 795–805.10.1016/S0091-3057(01)00715-8Suche in Google Scholar PubMed

Sharp, T. and Cowen, P.J. (2011). 5-HT and depression: is the glass half-full? Curr. Opin. Pharmacol. 11, 45–51.10.1016/j.coph.2011.02.003Suche in Google Scholar PubMed

Shikanai, H., Yoshida, T., Konno, K., Yamasaki, M., Izumi, T., Ohmura, Y., Watanabe, M., and Yoshioka, M. (2012). Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus. J. Neurosci. 32, 14415–14426.10.1523/JNEUROSCI.5929-11.2012Suche in Google Scholar PubMed PubMed Central

Sieghart, W. and Sperk, G. (2002). Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2, 795–816.10.2174/1568026023393507Suche in Google Scholar PubMed

Smith, M. and Perrier, J.F. (2006). Intrinsic properties shape the firing pattern of ventral horn interneurons from the spinal cord of the adult turtle. J. Neurophysiol. 96, 2670–2677.10.1152/jn.00609.2006Suche in Google Scholar PubMed

Smith, G.S., Savery, D., Marden, C., López Costa, J.J., Averill, S., Priestley, J.V., and Rattray, M. (1994). Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat. J. Comp. Neurol. 350, 23–40.10.1002/cne.903500103Suche in Google Scholar PubMed

Soiza-Reilly, M., Anderson, W.B., Vaughan, C.W., and Commons, K.G. (2013). Presynaptic gating of excitation in the dorsal raphe nucleus by GABA. Proc. Natl. Acad. Sci. USA 110, 15800–15805.10.1073/pnas.1304505110Suche in Google Scholar PubMed PubMed Central

Song, S.C., Beatty, J.A., and Wilson, C.J. (2016). The ionic mechanism of membrane potential oscillations and membrane resonance in striatal LTS interneurons. J. Neurophysiol. 116, 1752–1764.10.1152/jn.00511.2016Suche in Google Scholar PubMed

Stamp, J.A. and Semba, K. (1995). Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Res. 677, 39–49.10.1016/0006-8993(95)00119-BSuche in Google Scholar PubMed

Steinbusch, H.W., Nieuwenhuys, R., Verhofstad, A.A., and Van der Kooy, D. (1981). The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J. Physiol. 77, 157–174.Suche in Google Scholar

Swanson, L.W. (2011). Brain Architecture: Understanding the Basic Plan (Oxford, UK: Oxford University Press).10.1093/med/9780195378580.001.0001Suche in Google Scholar

Takahashi, A., Kwa, C., Debold, J.F., and Miczek, K.A. (2010). GABA(A) receptors in the dorsal raphe nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology (Berl.) 211, 467–477.10.1007/s00213-010-1920-xSuche in Google Scholar PubMed

Teissier, A., Chemiakine, A., Inbar, B., Bagchi, S., Ray, R.S., Palmiter, R.D., Dymecki, S.M., Moore, H., and Ansorge, M.S. (2015). Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep. 13,1965–1976.10.1016/j.celrep.2015.10.061Suche in Google Scholar PubMed

Tepper, J.M. and Bolam, J.P. (2004). Functional diversity and specificity of neostriatal interneurons. Curr. Opin. Neurobiol. 14, 685–692.10.1016/j.conb.2004.10.003Suche in Google Scholar PubMed

Tepper, J.M., Tecuapetla, F., Koós, T., and Ibáñez-Sandoval, O. (2010). Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat. 4, 150.10.3389/fnana.2010.00150Suche in Google Scholar PubMed

Trevelyan, A.J., Sussillo, D., Watson, B.O., and Yuste, R. (2006). Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J. Neurosci. 26, 12447–12455.10.1523/JNEUROSCI.2787-06.2006Suche in Google Scholar PubMed

Vandermaelen, C.P. and Aghajanian, G.K., (1983). Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289, 109–119.10.1016/0006-8993(83)90011-2Suche in Google Scholar PubMed

van Erp A.M. and Miczek, K.A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J. Neurosci. 20, 9320–9325.10.1523/JNEUROSCI.20-24-09320.2000Suche in Google Scholar PubMed

Varga, V., Székely, A.D., Csillag, A., Sharp, T., and Hajós, M. (2001). Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 106, 783–792.10.1016/S0306-4522(01)00294-9Suche in Google Scholar PubMed

Vertes, R.P. (1991). A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 313, 643–668.10.1002/cne.903130409Suche in Google Scholar PubMed

Vertes, R. and Linley, S. (2008). Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. Serotonin and Sleep: Molecular, Functional and Clinical Aspects. J. Monti, S. Pandi-Perumal, B. Jacobs, D. Nutt, eds. (Switzerland: Birkhäuser Verlag).Suche in Google Scholar

Vertes, R.P., Fortin, W.J., and Crane, A.M. (1999). Projections of the median raphe nucleus in the rat. J. Comp. Neurol. 40, 555–582.10.1002/(SICI)1096-9861(19990517)407:4<555::AID-CNE7>3.0.CO;2-ESuche in Google Scholar

Wang, M. and Bradley, R.M. (2010). Properties of GABAergic neurons in the rostral solitary tract nucleus in mice. J. Neurophysiol. 103, 3205–3218.10.1152/jn.00971.2009Suche in Google Scholar PubMed

Wang, S., Zhang, Q.J., Liu, J., Wu, Z.H., Wang, T., Gui, Z.H., Chen, L., and Wang, Y., (2009). Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT1A receptor stimulation in the rat. Neuroscience 159, 850–861.10.1016/j.neuroscience.2008.12.051Suche in Google Scholar

Weissbourd, B., Ren, J., DeLoach, K.E., Guenthner, C.J., Miyamichi, K., and Luo, L. (2014). Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 38, 645–662.10.1016/j.neuron.2014.06.024Suche in Google Scholar

White, J.H., Wise, A., Main, M.J., Green, A., Fraser, N.J., Disney, G.H., Barnes, A.A., Emson, P., Foord, S.M., and Marshall, F.H. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682.10.1038/25354Suche in Google Scholar PubMed

Zhou, L., Liu, M.Z., Li, Q., Deng, J., Mu, D., and Sun, Y.G. (2017). Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Rep. 22, 1991–1993.10.1016/j.celrep.2017.08.032Suche in Google Scholar

Received: 2018-02-12
Accepted: 2018-05-18
Published Online: 2018-09-03
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2018-0014/html
Button zum nach oben scrollen