Startseite Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders

  • Prasanth M. Eapen , Chamallamudi Mallikarjuna Rao und Madhavan Nampoothiri EMAIL logo
Veröffentlicht/Copyright: 27. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The neurokinin 1 receptor with the natural substrate substance P is one of the intensely studied receptors among the neurokinin receptors. The intracellular signaling mechanism uses G protein-coupled transduction regulating various physiological processes from nausea to Alzheimer’s disease. The neurokinin 1 receptor plays a significant role in neuroinflammation-mediated alterations in neural circuitry. Neurokinin 1 receptor antagonists are selective, potent and exhibited efficacy in animal models of nervous system disorders. Evolving data now strengthen the viewpoint of brain substance P/neurokinin 1 receptor axis-mediated action in neural circuit dysfunction. Thus, a deep-rooted analysis of disease mechanism in which the neurokinin 1 receptor is involved is necessary for augmenting disease models which encourage the pharmaceutical industry to intensify the research pipeline. This review is an attempt to outline the concept of neurokinin 1 receptor signaling interlinked to the brain innate immune system. We also uncover the mechanisms of the neurokinin 1 receptor involved in neurological disorder and various methods of modulating the neurokinin 1 receptor, which may result in therapeutic action.

Acknowledgment

We thank Manipal Academy of Higher Education (MAHE), Manipal, India, for providing facilities to support the study.

  1. Conflicts of interest statement: The authors have no conflicts of interest to declare.

References

Achariyar, T.M., Li, B., Peng, W., Verghese, P.B., Shi, Y., McConnell, E., Benraiss, A., Kasper, T., Song, W., Takano, T., et al. (2016). Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener. 11, 74.10.1186/s13024-016-0138-8Suche in Google Scholar PubMed

Appell, K.C., Fragale, B.J., Loscig, J.A.N.E., Singh, S.A.I.R.A., and Tomczuk, B.E. (1992). Antagonists that demonstrate species differences in neurokinin-1 receptors. Mol. Pharmacol. 41, 772–778.Suche in Google Scholar PubMed

Bak, L.K. and Walls, A.B. (2018). Crosstalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J. Physiol. 596, 351–353.10.1113/JP274945Suche in Google Scholar PubMed

Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011). Alzheimer’s disease. Lancet 377, 1019–1031.10.1016/S0140-6736(10)61349-9Suche in Google Scholar PubMed

Bannon, M.J. and Whitty, C.J. (1995). Neurokinin receptor gene expression in substantia nigra: localization, regulation, and potential physiological significance. Can. J. Physiol. Pharmacol. 73, 866–870.10.1139/y95-119Suche in Google Scholar PubMed

Barbosa-Cobos, R.E., Lugo-Zamudio, G., Flores-Estrada, J., Becerril-Mendoza, L.T., Rodríguez-Henríquez, P., Torres-González, R., Moreno-Eutimio, M.A., Ramirez-Bello, J., and Moreno, J. (2018). Serum substance P: an indicator of disease activity and subclinical inflammation in rheumatoid arthritis. Clin. Rheumatol. 37, 901–908.10.1007/s10067-017-3929-6Suche in Google Scholar PubMed

Beck-Friis, J., Kjellman, B.F., Aperia, B., Unden, F., Von Rosen, D., Ljunggren, J.G., and Wetterberg, L. (1985). Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr. Scand. 71, 319–330.10.1111/j.1600-0447.1985.tb02531.xSuche in Google Scholar PubMed

Belanger, M. and Magistretti, P.J. (2009). The role of astroglia in neuroprotection. Dialogues Clin. Neurosci. 11, 281.10.31887/DCNS.2009.11.3/mbelangerSuche in Google Scholar PubMed

Beneyto, M., Kristiansen, L.V., Oni-Orisan, A., McCullumsmith, R.E., and Meador-Woodruff, J.H. (2007). Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32, 1888–1902.10.1038/sj.npp.1301312Suche in Google Scholar PubMed

Blum, A., Setiawan, T., Hang, L., Stoyanoff, K., and Weinstock, J.V. (2008). Interleukin-12 (IL-12) and IL-23 induction of substance P synthesis in murine T cells and macrophages is subject to IL-10 and transforming growth factor  regulation. Infect. Immun. 76, 3651–3656.10.1128/IAI.00358-08Suche in Google Scholar PubMed PubMed Central

Boscia, F., Begum, G., Pignataro, G., Sirabella, R., Cuomo, O., Casamassa, A., Sun, D., and Annunziato, L. (2016). Glial Na+-dependent ion transporters in pathophysiological conditions. Glia 64, 1677–1697.10.1002/glia.23030Suche in Google Scholar PubMed PubMed Central

Brites, D. and Fernandes, A. (2015). Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell. Neurosci. 9, 476.10.3389/fncel.2015.00476Suche in Google Scholar PubMed

Burcher, E., Alouan, L.A., Johnson, P.R.A., and Black, J.L. (1991). Neuropeptide γ, the most potent contractile tachykinin in human isolated bronchus, acts via a “non-classical” NK2 receptor. Neuropeptides 20, 79–82.10.1016/0143-4179(91)90055-NSuche in Google Scholar

Burmeister, A.R., Johnson, M.B., Chauhan, V.S., Moerdyk-Schauwecker, M.J., Young, A.D., Cooley, I.D., Martinez, A.N., Ramesh, G., Philipp, M.T., and Marriott, I. (2017). Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. J. Neuroinflamm. 14, 245.10.1186/s12974-017-1012-5Suche in Google Scholar PubMed PubMed Central

Caberlotto, L., Hurd, Y.L., Murdock, P., Wahlin, J.P., Melotto, S., Corsi, M., and Carletti, R. (2003). Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain. Eur. J. Neurosci. 17, 1736–1746.10.1046/j.1460-9568.2003.02600.xSuche in Google Scholar PubMed

Carletti, R., Tacconi, S., Mugnaini, M., and Gerrard, P. (2017). Receptor distribution studies. Curr. Opin. Pharmacol. 35, 94–100.10.1016/j.coph.2017.07.008Suche in Google Scholar PubMed

Chen, L. and Mae Huang, L.Y. (1992). Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523.10.1038/356521a0Suche in Google Scholar PubMed

Corrigan, F., Vink, R., and Turner, R.J. (2016). Inflammation in acute CNS injury a focus on the role of substance P. Br. J. Pharmacol. 173, 703–715.10.1111/bph.13155Suche in Google Scholar PubMed PubMed Central

Costa, G.M.F., De Oliveira, A.P., Martinelli, P.M., Da Silva Camargos, E.R., Arantes, R.M.E., and De Almeida-Leite, C.M. (2016). Demyelination remyelination and expression of interleukin-1β, substance P, nerve growth factor, and glial-derived neurotrophic factor during trigeminal neuropathic pain in rats. Neurosci. Lett. 612, 210–218.10.1016/j.neulet.2015.12.017Suche in Google Scholar PubMed

Dantzer, R., O’Connor, J.C., Lawson, M.A., and Kelley, K.W. (2011). Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36, 426–436.10.1016/j.psyneuen.2010.09.012Suche in Google Scholar PubMed PubMed Central

Degnan, A.P., Tora, G.O., Huang, H., Conlon, D.A., Davis, C.D., Hanumegowda, U.M., Hou, X., Hsiao, Y., Hu, J., Krause, R., et al. (2016). Discovery of indazoles as potent, orally active dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors for the treatment of depression. ACS Chem. Neurosci. 7, 1635–1640.10.1021/acschemneuro.6b00337Suche in Google Scholar PubMed

Degnan, D., Ornello, R., Tiseo, C., Carolei, A., Sacco, S., and Pistoia, F. (2018). The role of inflammation in neurological disorders. Curr. Pharm. Des. 24, 1485–1501.10.2174/1381612824666180327170632Suche in Google Scholar PubMed

Douglas, S.D. and Leeman, S.E. (2011). Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann. NY Acad. Sci. 1217, 83–95.10.1111/j.1749-6632.2010.05826.xSuche in Google Scholar PubMed PubMed Central

Fan, Z., Aman, Y., Ahmed, I., Chetelat, G., Landeau, B., Chaudhuri, K.R., Brooks, D.J., and Edison, P. (2015). Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers. Dement. 11, 608–621.10.1016/j.jalz.2014.06.016Suche in Google Scholar PubMed

Fernandes, J., Mudgal, J., Rao, C.M., Arora, D., Basu Mallik, S., Pai, K.S.R., and Nampoothiri, M. (2018). N-Acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats. Toxicol. Mech. Methods 28, 328–334.10.1080/15376516.2017.1411412Suche in Google Scholar PubMed

Gadea, A. and López-Colomé, A.M. (2001). Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J. Neurosci. Res. 63, 461–468.10.1002/jnr.1040Suche in Google Scholar PubMed

Garcia-Recio, S. and Gascón, P. (2015). Biological and pharmacological aspects of the NK1-receptor. Biomed. Res. Int. 2015, 495704.10.1155/2015/495704Suche in Google Scholar PubMed PubMed Central

Ge, T., Yang, W., Fan, J., and Li, B. (2017). Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 8, 59929–59939.10.18632/oncotarget.18349Suche in Google Scholar PubMed PubMed Central

Geracioti, T.D., Carpenter, L.L., Owens, M.J., Baker, D.G., Ekhator, N.N., Horn, P.S., Strawn, J.R., Sanacora, G., Kinkead, B., Price, L.H., et al. (2006). Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 163, 637–643.10.1176/ajp.2006.163.4.637Suche in Google Scholar PubMed

Ghirardini, E., Wadle, S.L., Augustin, V., Becker, J., Brill, S., Hammerich, J., Seifert, G., and Stephan, J. (2018). Expression of functional inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 by astrocytes of inferior colliculus and hippocampus. Mol. Brain 11, 4.10.1186/s13041-018-0346-ySuche in Google Scholar PubMed PubMed Central

Govindaiah, G., Wang, Y., and Cox, C.L. (2010). Substance P selectively modulates GABAA receptor-mediated synaptic transmission in striatal cholinergic interneurons. Neuropharmacology 58, 413–422.10.1016/j.neuropharm.2009.09.011Suche in Google Scholar PubMed

Guard, S. and Watson, S.P. (1991). Tachykinin receptor types: classification and membrane signalling mechanisms. Neurochem. Int. 18, 149–165.10.1016/0197-0186(91)90180-LSuche in Google Scholar PubMed

Guard, S., Watling, K.J., and Watson, S.P. (1988). Neurokinin3-receptors are linked to inositol phospholipid hydrolysis in the guinea pig ileum longitudinal muscle-myenteric plexus preparation. Br. J. Pharmacol. 94, 148–154.10.1111/j.1476-5381.1988.tb11509.xSuche in Google Scholar PubMed

Halassa, M.M., Fellin, T., and Haydon, P.G. (2007a). The tripartite synapse: roles for gliotransmission in health and disease. Trends. Mol. Med. 13, 54–63.10.1016/j.molmed.2006.12.005Suche in Google Scholar

Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., and Haydon, P.G. (2007b). Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477.10.1523/JNEUROSCI.1419-07.2007Suche in Google Scholar

Hamada, T., Yamanouchi, S., Watanabe, A., Shibata, S., and Watanabe, S. (1999). Involvement of glutamate release in substance P-induced phase delays of suprachiasmatic neuron activity rhythm in vitro. Brain Res. 836, 190–193.10.1016/S0006-8993(99)01565-6Suche in Google Scholar PubMed

He, X.F., Liu, D.X., Zhang, Q., Liang, F.Y., Dai, G.Y., Zeng, J.S., Pei, Z., Xu, G.Q., and Lan, Y. (2017). Voluntary exercise promotes glymphatic clearance of amyloid β and reduces the activation of astrocytes and microglia in aged mice. Front. Mol. Neurosci. 10, 144.10.3389/fnmol.2017.00144Suche in Google Scholar PubMed

Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.10.1016/S1474-4422(15)70016-5Suche in Google Scholar PubMed

Hirschfeld, R.M.A. (2000). History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 61, 4–6.Suche in Google Scholar PubMed

Hu, Y., Yu, S.Y., Zuo, L.J., Cao, C.J., Wang, F., Chen, Z.J., Du, Y., Lian, T.H., Wang, Y.J., Chan, P., et al. (2015). Parkinson disease with REM sleep behavior disorder Features, α-synuclein, and inflammation. Neurology 84, 888–894.10.1212/WNL.0000000000001308Suche in Google Scholar PubMed

Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., and Moustafa, A.A. (2017). Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus. Rev. Neurosci. 28, 705–714.10.1515/revneuro-2016-0086Suche in Google Scholar PubMed

Jessen, N.A., Munk, A.S.F., Lundgaard, I., and Nedergaard, M. (2015). The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599.10.1007/s11064-015-1581-6Suche in Google Scholar PubMed PubMed Central

Johansson, P., Almqvist, E.G., Wallin, A., Johansson, J.O., Andreasson, U., Blennow, K., Zetterberg, H., and Svensson, J. (2015). Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci. Lett. 609, 58–62.10.1016/j.neulet.2015.10.006Suche in Google Scholar PubMed

Johnson, M.B., Young, A.D., and Marriott, I. (2017). The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders. Front. Cell. Neurosci. 10, 296.10.3389/fncel.2016.00296Suche in Google Scholar PubMed PubMed Central

Kart-Teke, E., Dere, E., Brandão, M.L., Huston, J.P., and Silva, M.A.D.S. (2007). Reinstatement of episodic-like memory in rats by neurokinin-1 receptor antagonism. Neurobiol. Learn. Mem. 87, 324–331.10.1016/j.nlm.2006.09.007Suche in Google Scholar PubMed

Kempuraj, D., Selvakumar, G.P., Zaheer, S., Thangavel, R., Ahmed, M.E., Raikwar, S., Govindarajan, R., Iyer, S., Zaheer, A. (2018). Crosstalk between glia, neurons and mast cells in neuroinflammation associated with Parkinson’s disease. J. Neuroimmun. Pharmacol. 13, 100–112.10.1007/s11481-017-9766-1Suche in Google Scholar PubMed PubMed Central

Lai, J.P., Lai, S., Tuluc, F., Tansky, M.F., Kilpatrick, L.E., Leeman, S.E., and Douglas, S.D. (2008). Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc. Natl. Acad. Sci. USA 105, 12605–12610.10.1073/pnas.0806632105Suche in Google Scholar PubMed PubMed Central

Leffler, A., Ahlstedt, I., Engberg, S., Svensson, A., Billger, M., Öberg, L., Bjursell, M.K., Lindström, E., and Von Mentzer, B. (2009). Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3. Biochem. Pharmacol. 77, 1522–1530.10.1016/j.bcp.2009.01.020Suche in Google Scholar PubMed

Li, W.W., Guo, T.Z., Shi, X., Sun, Y., Wei, T., Clark, D.J., and Kingery, W.S. (2015). Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture. Neuroscience 310, 73–90.10.1016/j.neuroscience.2015.09.036Suche in Google Scholar PubMed PubMed Central

Lisowska, B., Lisowski, A., and Siewruk, K. (2015). Substance P and chronic pain in patients with chronic inflammation of connective tissue. PLoS One 10, doi.org/10.1371/journal.pone.0139206.10.1371/journal.pone.0139206Suche in Google Scholar PubMed PubMed Central

Liu, H., Cao, Y., Basbaum, A.I., Mazarati, A.M., Sankar, R., and Wasterlain, C.G. (1999). Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc. Natl. Acad. Sci. USA 96, 12096–12101.10.1073/pnas.96.21.12096Suche in Google Scholar PubMed PubMed Central

Louveau, A., Harris, T.H., and Kipnis, J. (2015). Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577.10.1016/j.it.2015.08.006Suche in Google Scholar PubMed PubMed Central

Lu, W., Feng, J., Wen, B., Wang, K., and Wang, J.H. (2017). Activity-induced spontaneous spikes in GABAergic neurons suppress seizure discharges: an implication of computational modeling. Oncotarget 8, 32384–32397.10.18632/oncotarget.15660Suche in Google Scholar PubMed

Lundgaard, I., Lu, M.L., Yang, E., Peng, W., Mestre, H., Hitomi, E., Deane, R., and Nedergaard, M. (2017). Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab. 37, 2112–2124.10.1177/0271678X16661202Suche in Google Scholar PubMed

Malcangio, M., Fernandes, K., and Tomlinson, D.R. (1998). NMDA receptor activation modulates evoked release of substance P from rat spinal cord. Br. J. Pharmacol. 125, 1625–1626.10.1038/sj.bjp.0702260Suche in Google Scholar PubMed

Marolda, R., Ciotti, M.T., Matrone, C., Possenti, R., Calissano, P., Cavallaro, S., and Severini, C. (2012). Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology 62, 1954–1963.10.1016/j.neuropharm.2011.12.025Suche in Google Scholar PubMed

Menon, N., Prabhavalkar, K.S., and Bhatt, L.K. (2017). Neuropeptides: a promising target for treating seizures. Neuropeptides 65, 63–70.10.1016/j.npep.2017.05.001Suche in Google Scholar PubMed

Meshki, J., Douglas, S.D., Lai, J.P., Schwartz, L., Kilpatrick, L.E., and Tuluc, F. (2009). Neurokinin 1 receptor mediates membrane blebbing in HEK293 cells through a Rho/Rho-associated coiled-coil kinase-dependent mechanism. J. Biol. Chem. 284, 9280–9289.10.1074/jbc.M808825200Suche in Google Scholar PubMed

Moles, M.G., Mosqueda-Taylor, A., Esteban, F., Gil-Montoya, J.A., Díaz-Franco, M.A., Delgado, M., and Muñoz, M. (2008). Cell proliferation associated with actions of the substance P/NK-1 receptor complex in keratocystic odontogenic tumours. Oral. Oncol. 44, 1127–1133.10.1016/j.oraloncology.2008.02.010Suche in Google Scholar PubMed

Monastero, R., Caruso, C., and Vasto, S. (2014). Alzheimer’s disease and infections, where we stand and where we go. Immun. Ageing. 11, 26.10.1186/s12979-014-0026-4Suche in Google Scholar PubMed

Morcuende, S., Gadd, C.A., Peters, M., Moss, A., Harris, E.A., Sheasby, A., Fisher, A.S., De Felipe, C., Mantyh, P.W., Rupniak, N.M., et al. (2003). Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout mice. Eur. J. Neurosci. 18, 1828–1836.10.1046/j.1460-9568.2003.02911.xSuche in Google Scholar PubMed

Nakajima, Y., Tsuchida, K., Negishi, M., Ito, S., and Nakanishi, S. (1992). Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cyclic AMP cascades in transfected Chinese hamster ovary cells. J. Biol. Chem. 267, 2437–2442.10.1016/S0021-9258(18)45898-XSuche in Google Scholar PubMed

Namazi, H., Kulish, V.V., Hussaini, J., Hussaini, J., Delaviz, A., Delaviz, F., Habibi, S., and Ramezanpoor, S. (2014). A signal processing based analysis and prediction of seizure onset in patients with epilepsy. Oncotarget 7, 1–9.10.18632/oncotarget.6341Suche in Google Scholar

Negi, N. and Das, B.K. (2018). CNS not an immunoprevileged site anymore but a virtual secondary lymphoid organ. Int. Rev. Immunol. 37, 57–68.10.1080/08830185.2017.1357719Suche in Google Scholar

O’Connor, T.M., O’Connell, J., O’Brien, D.I., Goode, T., Bredin, C.P., and Shanahan, F. (2004). The role of substance P in inflammatory disease. J. Cell Physiol. 201, 167–180.10.1002/jcp.20061Suche in Google Scholar PubMed

O’Hayre, M., Degese, M.S., and Gutkind, J.S. (2014). Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 27, 126–135.10.1016/j.ceb.2014.01.005Suche in Google Scholar

Okamura, Y., Mishima, S., Kashiwakura, J.I., Sasaki-Sakamoto, T., Toyoshima, S., Kuroda, K., Saito, S., Tokuhashi, Y., and Okayama, Y. (2017). The dual regulation of substance P-mediated inflammation via human synovial mast cells in rheumatoid arthritis. Allergol. Int. 66, S9–S20.10.1016/j.alit.2017.03.002Suche in Google Scholar

Pace, M.C., Passavanti, M.B., De Nardis, L., Bosco, F., Sansone, P., Pota, V., Barbarisi, M., Palagiano, A., Iannotti, F.A., Panza, E., et al. (2018). Nociceptor plasticity: a closer look. J. Cell Physiol. 233, 2824–2838.10.1002/jcp.25993Suche in Google Scholar PubMed

Palma, C. and Maggi, C.A. (2000). The role of tachykinins via NK1 receptors in progression of human gliomas. Life Sci. 67, 985–1001.10.1016/S0024-3205(00)00692-5Suche in Google Scholar PubMed

Peng, W., Achariyar, T.M., Li, B., Liao, Y., Mestre, H., Hitomi, E., Regan, S., Kasper, T., Peng, S., Ding, F., et al. (2016). Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93, 215–225.10.1016/j.nbd.2016.05.015Suche in Google Scholar

Polidori, C., Staffinati, G., Perfumi, M.C., De Caro, G., and Massi, M. (1995). Neuropeptide γ: a mammalian tachykinin endowed with potent antidipsogenic action in rats. Physiol. Behav. 58, 595–602.10.1016/0031-9384(95)00071-PSuche in Google Scholar PubMed

Quera Salva, M., Hartley, S., Barbot, F., Alvarez, J.C., Lofaso, F., and Guilleminault, C. (2011). Circadian rhythms, melatonin and depression. Curr. Pharm. Des. 17, 1459–1470.10.2174/138161211796197188Suche in Google Scholar PubMed

Ratti, E., Carpenter, D.J., Zamuner, S., Fernandes, S., Squassante, L., Danker-Hopfe, H., Archer, G., Robertson, J., Alexander, R., Trist, D.G., et al. (2013). Efficacy of vestipitant, a neurokinin-1 receptor antagonist, in primary insomnia. Sleep 36, 1823–1830.10.5665/sleep.3208Suche in Google Scholar PubMed PubMed Central

Reiter, E., Ahn, S., Shukla, A.K., and Lefkowitz, R.J. (2012). Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197.10.1146/annurev.pharmtox.010909.105800Suche in Google Scholar PubMed PubMed Central

Rupniak, N.M.J. and Kramer, M.S. (2017). NK1 receptor antagonists for depression: why a validated concept was abandoned. J. Affect. Disord. 223, 121–125.10.1016/j.jad.2017.07.042Suche in Google Scholar PubMed

Schmidt, D. (2009). Drug treatment of epilepsy: options and limitations. Epilepsy Behav. 15, 56–65.10.1016/j.yebeh.2009.02.030Suche in Google Scholar PubMed

Schwindinger, W.F. and Robishaw, J.D. (2001). Heterotrimeric G-protein βγ-dimers in growth and differentiation. Oncogene 20, 1653–1660.10.1038/sj.onc.1204181Suche in Google Scholar PubMed

Shirayama, Y., Chen, A.C.H., Nakagawa, S., Russell, D.S., and Duman, R.S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.10.1523/JNEUROSCI.22-08-03251.2002Suche in Google Scholar PubMed

Simpson, I.A., Carruthers, A., and Vannucci, S.J. (2007). Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 1766–1791.10.1038/sj.jcbfm.9600521Suche in Google Scholar PubMed PubMed Central

Sirianni, A.C., Jiang, J., Zeng, J., Mao, L.L., Zhou, S., Sugarbaker, P., Zhang, X., Li, W., Friedlander, R.M., and Wang, X. (2015). N-Acetyl-L-tryptophan, but not N-acetyl-D-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis. J. Neurochem. 134, 956–968.10.1111/jnc.13190Suche in Google Scholar PubMed

Spitsin, S., Pappa, V., and Douglas, S.D. (2018). Truncation of neurokinin-1 receptor-negative regulation of substance P signaling. J. Leukoc. Biol. 103, 1–9.10.1002/JLB.3MIR0817-348RSuche in Google Scholar PubMed

Stanfield, P.R., Nakajima, Y., and Yamaguchi, K. (1985). Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 315, 498–501.10.1038/315498a0Suche in Google Scholar PubMed

Steinhoff, M.S., von Mentzer, B., Geppetti, P., Pothoulakis, C., and Bunnett, N.W. (2014). Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev. 94, 265–301.10.1152/physrev.00031.2013Suche in Google Scholar PubMed PubMed Central

Terrone, G., Salamone, A., and Vezzani, A. (2017). Inflammation and epilepsy: preclinical findings and potential clinical translation. Curr. Pharm. Des. 23, 5569–5576.10.2174/1381612823666170926113754Suche in Google Scholar PubMed

Thornton, E. and Vink, R. (2012). Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson’s disease. PLoS One 7, doi.org/10.1371/journal.pone.0034138.10.1371/journal.pone.0034138Suche in Google Scholar PubMed PubMed Central

Thornton, E. and Vink, R. (2015). Substance P and its tachykinin NK1 receptor: a novel neuroprotective target for Parkinson’s disease. Neural. Regen. Res. 10, 1403–1405.10.4103/1673-5374.165505Suche in Google Scholar PubMed PubMed Central

Thornton, E., Hassall, M.M., Corrigan, F., and Vink, R. (2014). The NK1 receptor antagonist N-acetyl-l-tryptophan reduces dyskinesia in a hemi-parkinsonian rodent model. Parkinsonism Relat Disord. 20, 508–513.10.1016/j.parkreldis.2014.02.008Suche in Google Scholar PubMed

Torrens, Y., De Montety, M.D., El Etr, M., Beaujouan, J.C., and Glowinski, J. (1989). Tachykinin receptors of the NK1 type (substance P) coupled positively to phospholipase C on cortical astrocytes from the newborn mouse in primary culture. J. Neurochem. 52, 1913–1918.10.1111/j.1471-4159.1989.tb07276.xSuche in Google Scholar PubMed

Tsybko, A.S., Ilchibaeva, T.V., and Popova, N.K. (2017). Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev. Neurosci. 28, 219–233.10.1515/revneuro-2016-0063Suche in Google Scholar PubMed

Tye, K.M., Mirzabekov, J.J., Warden, M.R., Ferenczi, E.A., Tsai, H.C., Finkelstein, J., Kim, S.Y., Adhikari, A., Thompson, K.R., Andalman, A.S., et al. (2013). Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537.10.1038/nature11740Suche in Google Scholar PubMed PubMed Central

Van Der Hart, M.G., De Biurrun, G., Czéh, B., Rupniak, N.M., Den Boer, J.A., and Fuchs, E. (2005). Chronic psychosocial stress in tree shrews: effect of the substance P (NK 1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters. Psychopharmacology 181, 207–216.10.1007/s00213-005-2260-0Suche in Google Scholar PubMed

Vilisaar, J., Kawabe, K., Braitch, M., Aram, J., Furtun, Y., Fahey, A.J., Chopra, M., Tanasescu, R., Tighe, P.J., Gran, B., et al. (2015). Reciprocal regulation of substance P and IL-12/IL-23 and the associated cytokines, IFNγ/IL-17: a perspective on the relevance of this interaction to multiple sclerosis. J. Neuroimmun. Pharmacol. 10, 457–467.10.1007/s11481-015-9589-xSuche in Google Scholar PubMed PubMed Central

Wang, Q., Chu, C.H., Qian, L., Chen, S.H., Wilson, B., Oyarzabal, E., Jiang, L., Ali, S., Robinson, B., Kim, H.C., et al. (2014). Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase. J Neurosci. 34, 12490–12503.10.1523/JNEUROSCI.2238-14.2014Suche in Google Scholar PubMed PubMed Central

Wang, X.F., Ge, T.T., Fan, J., Yang, W., and Cui, R.J. (2017). The role of substance P in epilepsy and seizure disorders. Oncotarget 8, 78225–78233.10.18632/oncotarget.20606Suche in Google Scholar PubMed PubMed Central

Wei, F., Yan, L.M., Su, T., He, N., Lin, Z.J., Wang, J., Shi, Y.W., Yi, Y.H., and Liao, W.P. (2017). Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci. Bull. 33, 455–477.10.1007/s12264-017-0134-1Suche in Google Scholar PubMed PubMed Central

Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y., and Zheng, J.C. (2009). Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem. 108, 1343–1359.10.1111/j.1471-4159.2009.05886.xSuche in Google Scholar PubMed PubMed Central

World Health Organization. (2017). WHO | Depression, WHO. World Health Organization. Available at: http://www.who.int/mental_health/management/depression/en/. (Accessed: January 15, 2018).Suche in Google Scholar

Wu, Z.Z., Guan, B.C., Li, Z.W., Yang, Q., Liu, C.J., and Chen, J.G. (2004). Sustained potentiation by substance P of NMDA-activated current in rat primary sensory neurons. Brain Res. 1010, 117–126.10.1016/j.brainres.2004.03.010Suche in Google Scholar PubMed

Yang, X., Zhao, H., Shi, H., Wang, X., Zhang, S., Zhang, Z., Zu, J., Zhang, W., Shen, X., Cui, G., et al. (2015). Intranigral administration of substance P receptor antagonist attenuated levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Exp. Neurol. 271, 168–174.10.1016/j.expneurol.2015.05.007Suche in Google Scholar PubMed

Ye, R.D. (2001). Regulation of nuclear factor kappaB activation by G-protein-coupled receptors. J. Leukoc. Biol. 70, 839–848.10.1189/jlb.70.6.839Suche in Google Scholar PubMed

Received: 2018-03-05
Accepted: 2018-07-07
Published Online: 2018-09-27
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2018-0021/html
Button zum nach oben scrollen