Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity in the USA as well as in the world. As a result of TBI, the visual system is also affected often causing complete or partial visual loss, which in turn affects the quality of life. It may also lead to ocular motor dysfunction, defective accommodation, and impaired visual perception. As a part of the therapeutic strategy, early rehabilitative optometric intervention is important. Orthoptic therapy, medication, stem cell therapy, motor and attention trainings are the available treatment options. Gene therapy is one of the most promising emerging strategies. Use of state-of-the-art nanomedicine approaches to deliver drug(s) and/or gene(s) might enhance the therapeutic efficacy of the present and future modalities. More research is needed in these fields to improve the outcome of this debilitating condition. This review focuses on different visual pathologies caused by TBI, advances in pre-clinical and clinical research, and available treatment options.
Acknowledgments
This work is supported by Veterans Affairs Merit Review grant (BX002668) to Subhra Mohapatra, and Research Career Scientist Awards to Dr. Subhra Mohapatra (IK6BX004212) and Dr. Shyam Mohapatra (IK6 BX003778). Though this report is based upon work supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, the contents of this report do not represent the views of the Department of Veterans Affairs or the United States Government.
Conflict of interest statement: The authors of this article have no competing interest to declare.
References
Alexander, A.L., Lee, J.E., Lazar, M., and Field, A.S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329.10.1016/j.nurt.2007.05.011Suche in Google Scholar PubMed PubMed Central
Arias, M.J. (1985). Bilateral traumatic abducens nerve palsy without skull fracture and with cervical spine fracture: case report and review of the literature. Neurosurgery 16, 232–234.10.1227/00006123-198502000-00020Suche in Google Scholar PubMed
ASNR. (2018). Traumatic brain injury (TBI) and concussion. https://www.asnr.org/patientinfo/conditions/tbi.shtml#block2.Suche in Google Scholar
Atkins, E.J., Newman, N.J., and Biousse, V. (2008). Post-traumatic visual loss. Rev. Neurol. Dis. 5, 73–81.Suche in Google Scholar PubMed
Bainbridge, J.W., Mehat, M.S., Sundaram, V., Robbie, S.J., Barker, S.E., Ripamonti, C., Georgiadis, A., Mowat, F.M., Beattie, S.G., Gardner, P.J., et al. (2015). Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 372, 1887–1897.10.1056/NEJMoa1414221Suche in Google Scholar PubMed PubMed Central
Berkelaar, M., Clarke, D.B., Wang, Y.C., Bray, G.M., and Aguayo, A.J. (1994). Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J. Neurosci. 14, 4368–4374.10.1523/JNEUROSCI.14-07-04368.1994Suche in Google Scholar PubMed
Bertram, J.P., Saluja, S.S., McKain, J., and Lavik, E.B. (2009). Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months. J. Microencapsul. 26, 18–26.10.1080/02652040802095250Suche in Google Scholar PubMed
Bhang, S.H., Lim, J.S., Choi, C.Y., Kwon, Y.K., and Kim, B.S. (2007). The behavior of neural stem cells on biodegradable synthetic polymers. J. Biomater. Sci. Polym. Ed. 18, 223–239.10.1163/156856207779116711Suche in Google Scholar PubMed
Blennow, K., Brody, D.L., Kochanek, P.M., Levin, H., McKee, A., Ribbers, G.M., Yaffe, K., and Zetterberg, H. (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084.10.1038/nrdp.2016.84Suche in Google Scholar PubMed
Brahm, K.D., Wilgenburg, H.M., Kirby, J., Ingalla, S., Chang, C.Y., and Goodrich, G.L. (2009). Visual impairment and dysfunction in combat-injured servicemembers with traumatic brain injury. Optom. Vis. Sci. 86, 817–825.10.1097/OPX.0b013e3181adff2dSuche in Google Scholar PubMed
Bricker-Anthony, C., D’Surney, L., Lunn, B., Hines-Beard, J., Jo, M., Bernardo-Colon, A., and Rex, T.S. (2017). Erythropoietin either prevents or exacerbates retinal damage from eye trauma depending on treatment timing. Optom. Vis. Sci. 94, 20–32.10.1097/OPX.0000000000000898Suche in Google Scholar PubMed PubMed Central
Bruce, B.B., Zhang, X., Kedar, S., Newman, N.J., and Biousse, V. (2006). Traumatic homonymous hemianopia. J. Neurol. Neurosurg. Psychiatry 77, 986–988.10.1136/jnnp.2006.088799Suche in Google Scholar PubMed PubMed Central
Burger, L.J., Kalvin, N.H., and Smith, J.L. (1970). Acquired lesions of the fourth cranial nerve. Brain 93, 567–574.10.1093/brain/93.3.567Suche in Google Scholar PubMed
Caesar, R., Gajus, M., and Davies, R. (2003). Compressed air injury of the orbit in the absence of external trauma. Eye (Lond) 17, 661–662.10.1038/sj.eye.6700420Suche in Google Scholar PubMed
Cernak, I. and Noble-Haeusslein, L.J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30, 255–266.10.1038/jcbfm.2009.203Suche in Google Scholar PubMed
Chalela, J.A., Kidwell, C.S., Nentwich, L.M., Luby, M., Butman, J.A., Demchuk, A.M., Hill, M.D., Patronas, N., Latour, L., and Warach, S. (2007). Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369, 293–298.10.1016/S0140-6736(07)60151-2Suche in Google Scholar PubMed
Chen, C.C., Pai, Y.M., Wang, R.F., Wang, T.L., and Chong, C.F. (2005). Isolated oculomotor nerve palsy from minor head trauma. Br. J. Sports Med. 39, e34.10.1136/bjsm.2004.016311Suche in Google Scholar PubMed PubMed Central
Cifu, D., Hurley, R., Peterson, M., Cornis-Pop, M., Rikli, P.A., Ruff, R.L., Scott, S.G., Sigford, B.J., Silva, K.A., Tortorice, K., et al. (2009). VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J. Rehabil. Res. Dev. 46, CP1–68.10.1682/JRRD.2008.03.0038Suche in Google Scholar PubMed
Ciuffreda, K.J., Kapoor, N., Rutner, D., Suchoff, I.B., Han, M.E., and Craig, S. (2007). Occurrence of oculomotor dysfunctions in acquired brain injury: a retrospective analysis. Optometry 78, 155–161.10.1016/j.optm.2006.11.011Suche in Google Scholar PubMed
Ciuffreda, K.J., Rutner, D., Kapoor, N., Suchoff, I.B., Craig, S., and Han, M.E. (2008). Vision therapy for oculomotor dysfunctions in acquired brain injury: a retrospective analysis. Optometry 79, 18–22.10.1016/j.optm.2007.10.004Suche in Google Scholar PubMed
Cockerham, G.C., Goodrich, G.L., Weichel, E.D., Orcutt, J.C., Rizzo, J.F., Bower, K.S., and Schuchard, R.A. (2009). Eye and visual function in traumatic brain injury. J. Rehabil. Res. Dev. 46, 811–818.10.1682/JRRD.2008.08.0109Suche in Google Scholar PubMed
Cockerham, G.C., Lemke, S., Rice, T.A., Wang, G., Glynn-Milley, C., Zumhagen, L., and Cockerham, K.P. (2014). Closed-globe injuries of the ocular surface associated with combat blast exposure. Ophthalmology 121, 2165–2172.10.1016/j.ophtha.2014.06.009Suche in Google Scholar PubMed
Coello, A.F., Canals, A.G., Gonzalez, J.M., and Martin, J.J. (2010). Cranial nerve injury after minor head trauma. J. Neurosurg. 113, 547–555.10.3171/2010.6.JNS091620Suche in Google Scholar PubMed
Cohen, A.H. (2013). Vision rehabilitation for visual-vestibular dysfunction: the role of the neuro-optometrist. Neuro. Rehabil. 32, 483–492.10.3233/NRE-130871Suche in Google Scholar
Cui, D.M., Zeng, T., Ren, J., Wang, K., Jin, Y., Zhou, L., and Gao, L. (2017). KLF4 knockdown attenuates TBI-induced neuronal damage through p53 and JAK-STAT3 signaling. CNS Neurosci. Ther. 23, 106–118.10.1111/cns.12633Suche in Google Scholar PubMed
Das, M., Leonardo, C.C., Rangooni, S., Pennypacker, K.R., Mohapatra, S., and Mohapatra, S.S. (2011). Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J. Neuroinflamm. 8, 148.10.1186/1742-2094-8-148Suche in Google Scholar
Das, M., Mohapatra, S., and Mohapatra, S.S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. J. Neuroinflamm. 9, 236.10.1186/1742-2094-9-236Suche in Google Scholar
Dhaliwal, A., West, A.L., Trobe, J.D., and Musch, D.C. (2006). Third, fourth, and sixth cranial nerve palsies following closed head injury. J. Neuroophthalmol. 26, 4–10.10.1097/01.wno.0000204661.48806.1dSuche in Google Scholar PubMed
Doherty, P., Williams, E., and Walsh, F.S. (1995). A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth. Neuron 14, 57–66.10.1016/0896-6273(95)90240-6Suche in Google Scholar PubMed
Dutca, L.M., Stasheff, S.F., Hedberg-Buenz, A., Rudd, D.S., Batra, N., Blodi, F.R., Yorek, M.S., Yin, T., Shankar, M., Herlein, J.A., et al. (2014). Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest. Ophthalmol. Vis. Sci. 55, 8330–8341.10.1167/iovs.14-15468Suche in Google Scholar PubMed PubMed Central
Edwards, T.L., Jolly, J.K., Groppe, M., Barnard, A.R., Cottriall, C.L., Tolmachova, T., Black, G.C., Webster, A. R., Lotery, A.J., Holder, G.E., et al. (2016). Visual acuity after retinal gene therapy for choroideremia. N. Engl. J. Med. 374, 1996–1998.10.1056/NEJMc1509501Suche in Google Scholar PubMed PubMed Central
Ellis-Behnke, R.G., Liang, Y.X., You, S.W., Tay, D.K., Zhang, S., So, K.F., and Schneider, G.E. (2006). Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA 103, 5054–5059.10.1073/pnas.0600559103Suche in Google Scholar PubMed PubMed Central
FDA. (2017). FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. United States Food and Drugs Administration News Release. https//www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm589467.htm.Suche in Google Scholar
Gauguet, J.M., Lindquist, P.A., and Shaffer, K. (2008). Orbital emphysema following ocular trauma and sneezing. Radiol. Case Rep. 3, 124.10.2484/rcr.v3i1.124Suche in Google Scholar PubMed PubMed Central
Gerbino, G., Ramieri, G.A., and Nasi, A. (2005). Diagnosis and treatment of retrobulbar haematomas following blunt orbital trauma: a description of eight cases. Int. J. Oral Maxillofac. Surg. 34, 127–131.10.1016/j.ijom.2004.05.001Suche in Google Scholar PubMed
Goldstein, L.E., Fisher, A.M., Tagge, C.A., Zhang, X.L., Velisek, L., Sullivan, J.A., Upreti, C., Kracht, J.M., Ericsson, M., Wojnarowicz, M.W., et al. (2012). Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4, 134ra160.10.1126/scitranslmed.3004862Suche in Google Scholar
Greenwald, B.D., Kapoor, N., and Singh, A.D. (2012). Visual impairments in the first year after traumatic brain injury. Brain Inj. 26, 1338–1359.10.3109/02699052.2012.706356Suche in Google Scholar PubMed
Gupta, S., Rodier, J.T., Sharma, A., Giuliano, E.A., Sinha, P.R., Hesemann, N.P., Ghosh, A., and Mohan, R.R. (2017). Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo. PLoS One 12, e0172928.10.1371/journal.pone.0172928Suche in Google Scholar PubMed PubMed Central
Harmon, K.G., Drezner, J.A., Gammons, M., Guskiewicz, K.M., Halstead, M., Herring, S.A., Kutcher, J.S., Pana, A., Putukian, M., Roberts, W., et al. (2013). American Medical Society for Sports Medicine position statement: concussion in sport. Br J. Sports Med. 47, 15–26.10.1136/bjsports-2012-091941Suche in Google Scholar PubMed
Hassan, A., Crompton, J.L., and Sandhu, A. (2002). Traumatic chiasmal syndrome: a series of 19 patients. Clin. Exp. Ophthalmol. 30, 273–280.10.1046/j.1442-9071.2002.00534.xSuche in Google Scholar PubMed
Heinze, J. (1969). Cranial nerve avulsion and other neural injuries in road accidents. Med. J. Aust. 2, 1246–1249.10.5694/j.1326-5377.1969.tb103371.xSuche in Google Scholar PubMed
Heldt, S.A., Elberger, A.J., Deng, Y., Guley, N.H., Del Mar, N., Rogers, J., Choi, G.W., Ferrell, J., Rex, T.S., Honig, M.G., et al. (2014). A novel closed-head model of mild traumatic brain injury caused by primary overpressure blast to the cranium produces sustained emotional deficits in mice. Front Neurol. 5, 1–14.10.3389/fneur.2014.00002Suche in Google Scholar PubMed PubMed Central
Houston, K.E., Paschalis, E.I., Angueira, D.C., Bronstad, P.M., Barrett, A.M., and Iaccarino, M.A. (2017). Restoration of vision after brain injury using magnet glasses. Am. J. Phys. Med. Rehabil. 96, e70–74.10.1097/PHM.0000000000000592Suche in Google Scholar PubMed PubMed Central
Jackson, R.S. and Gigantelli, J.W. (2016). Traumatic optic neuropathy workup. Medscape: Drugs and Diseases > Otolaryngology and Facial Plastic Surgery. https://emedicine.medscape.com/article/868129-workup.Suche in Google Scholar
Jang, S.H. and Seo, J.P. (2015). Damage to the optic radiation in patients with mild traumatic brain injury. J. Neuroophthalmol. 35, 270–273.10.1097/WNO.0000000000000249Suche in Google Scholar PubMed
Jin, M., Kim, J.H., Jang, E., Lee, Y.M., Soo Han, H., Woo, D.K., Park, D.H., Kook, H., and Suk, K. (2014). Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J. Cereb. Blood Flow Metab. 34, 1306–1314.10.1038/jcbfm.2014.83Suche in Google Scholar PubMed
Johnson, T.V., DeKorver, N.W., Levasseur, V.A., Osborne, A., Tassoni, A., Lorber, B., Heller, J.P., Villasmil, R., Bull, N.D., Martin, K.R., et al. (2014). Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 137, 503–519.10.1093/brain/awt292Suche in Google Scholar PubMed
Kapoor, N. and Ciuffreda, K.J. (2002). Vision disturbances following traumatic brain injury. Curr. Treat. Options Neurol. 4, 271–280.10.1007/s11940-002-0027-zSuche in Google Scholar PubMed
Kasten, E., Bunzenthal, U., Muller-Oehring, E.M., Mueller, I., and Sabel, B.A. (2007). Vision restoration therapy does not benefit from costimulation: a pilot study. J. Clin. Exp. Neuropsychol. 29, 569–584.10.1080/13803390600878919Suche in Google Scholar PubMed
Khatib, T.Z. and Martin, K.R. (2017). Protecting retinal ganglion cells. Eye (Lond) 31, 218–224.10.1038/eye.2016.299Suche in Google Scholar PubMed
Kim, J.Y., You, Y.S., Kim, S.H., and Kwon, O.W. (2017). Epiretinal membrane formation after intravitreal autologous stem cell implantation in a retinitis pigmentosa patient. Retin. Cases Brief Rep. 11, 227–231.10.1097/ICB.0000000000000327Suche in Google Scholar
Kumaran, A.M., Sundar, G., and Chye, L.T. (2015). Traumatic optic neuropathy: a review. Craniomaxillofac Trauma Reconstr. 8, 31–41.10.1055/s-0034-1393734Suche in Google Scholar PubMed
Kurimoto, Y., Shibuki, H., Kaneko, Y., Ichikawa, M., Kurokawa, T., Takahashi, M., and Yoshimura, N. (2001). Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci. Lett. 306, 57–60.10.1016/S0304-3940(01)01857-2Suche in Google Scholar PubMed
Kwon, H.G., Kim, M.S., Kim, S.H., and Jang, S.H. (2013). Neurological picture. Injury of the oculomotor nerve in a patient with traumatic brain injury: diffusion tensor tractography study. J. Neurol. Neurosurg. Psychiatr. 84, 1073–1074.10.1136/jnnp-2013-305111Suche in Google Scholar PubMed
Laha, B., Stafford, B.K., and Huberman, A.D. (2017). Regenerating optic pathways from the eye to the brain. Science 356, 1031–1034.10.1126/science.aal5060Suche in Google Scholar PubMed PubMed Central
Lee, B. and Newberg, A. (2005). Neuroimaging in traumatic brain imaging. NeuroRx 2, 372–383.10.1602/neurorx.2.2.372Suche in Google Scholar PubMed PubMed Central
Lee, K.F., Muhd Nor, N.I., Yaakub, A., and Wan Hitam, W.H. (2010). Traumatic optic neuropathy: a review of 24 patients. Int J. Ophthalmol. 3, 175–178.Suche in Google Scholar PubMed
Levin, L.A. (2004). Neuro-ophthalmologic diagnosis and therapy of central nervous system trauma. Ophthalmol. Clin. North Am. 17, 455–464, vii.10.1016/j.ohc.2004.05.008Suche in Google Scholar PubMed
Levkovitch-Verbin, H. (2004). Animal models of optic nerve diseases. Eye (Lond) 18, 1066–1074.10.1038/sj.eye.6701576Suche in Google Scholar PubMed
Lipton, M.L., Kim, N., Park, Y.K., Hulkower, M.B., Gardin, T.M., Shifteh, K., Kim, M., Zimmerman, M.E., Lipton, R.B., and Branch, C.A. (2012). Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 6, 329–342.10.1007/s11682-012-9175-2Suche in Google Scholar PubMed
Magharious, M.M., D’Onofrio, P.M., and Koeberle, P.D. (2011). Optic nerve transection: a model of adult neuron apoptosis in the central nervous system. J. Vis. Exp. 12, 1–4.10.3791/2241Suche in Google Scholar PubMed PubMed Central
Martin, K.R., Quigley, H.A., Zack, D.J., Levkovitch-Verbin, H., Kielczewski, J., Valenta, D., Baumrind, L., Pease, M.E., Klein, R.L., and Hauswirth, W.W. (2003). Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44, 4357–4365.10.1167/iovs.02-1332Suche in Google Scholar PubMed
Maruta, J., Lee, S.W., Jacobs, E.F., and Ghajar, J. (2010). A unified science of concussion. Ann. NY Acad. Sci. 1208, 58–66.10.1111/j.1749-6632.2010.05695.xSuche in Google Scholar PubMed PubMed Central
McCann, J.D. and Seiff, S. (1994). Traumatic neuropathies of the optic nerve, optic chiasm, and ocular motor nerves. Curr. Opin. Ophthalmol. 5, 3–10.10.1097/00055735-199412000-00002Suche in Google Scholar PubMed
Memon, M.Y. and Paine, K.W. (1971). Direct injury of the oculomotor nerve in craniocerebral trauma. J. Neurosurg. 35, 461–464.10.3171/jns.1971.35.4.0461Suche in Google Scholar PubMed
Miller, N.R. (1996). The ocular motor nerves. Curr. Opin. Neurol. 9, 21–25.10.1097/00019052-199602000-00005Suche in Google Scholar PubMed
Mohan, K., Kecova, H., Hernandez-Merino, E., Kardon, R.H., and Harper, M.M. (2013). Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest. Ophthalmol. Vis. Sci. 54, 3440–3450.10.1167/iovs.12-11522Suche in Google Scholar
Moreau, F., Asdaghi, N., Modi, J., Goyal, M., and Coutts, S.B. (2013). Magnetic resonance imaging versus computed tomography in transient ischemic attack and minor stroke: the more you see the more you know. Cerebrovasc. Dis. Extra 3, 130–136.10.1159/000355024Suche in Google Scholar PubMed
Muthu, P. and Pritty, P. (2001). Mild head injury with isolated third nerve palsy. Emerg. Med. J. 18, 310–311.10.1136/emj.18.4.310Suche in Google Scholar PubMed
Neitz, J. and Neitz, M. (2008). Colour vision: the wonder of hue. Curr. Biol. 18, R700–702.10.1016/j.cub.2008.06.062Suche in Google Scholar PubMed
Nkansah, M.K., Tzeng, S.Y., Holdt, A.M., and Lavik, E.B. (2008). Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor. Biotechnol. Bioeng. 100, 1010–1019.10.1002/bit.21822Suche in Google Scholar
Odebode, T.O., Ademola-Popoola, D.S., Ojo, T.A., and Ayanniyi, A.A. (2005). Ocular and visual complications of head injury. Eye (Lond) 19, 561–566.10.1038/sj.eye.6701566Suche in Google Scholar PubMed
Pease, M.E., Zack, D.J., Berlinicke, C., Bloom, K., Cone, F., Wang, Y., Klein, R.L., Hauswirth, W.W., and Quigley, H.A. (2009). Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 50, 2194–2200.10.1167/iovs.08-3013Suche in Google Scholar PubMed
Petras, J.M., Bauman, R.A., and Elsayed, N.M. (1997). Visual system degeneration induced by blast overpressure. Toxicology 121, 41–49.10.1016/S0300-483X(97)03654-8Suche in Google Scholar PubMed
Prow, T.W., Bhutto, I., Kim, S.Y., Grebe, R., Merges, C., McLeod, D.S., Uno, K., Mennon, M., Rodriguez, L., Leong, K., et al. (2008). Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4, 340–349.10.1016/j.nano.2008.06.003Suche in Google Scholar PubMed PubMed Central
Reiner, A., Heldt, S.A., Presley, C.S., Guley, N.H., Elberger, A.J., Deng, Y., D’Surney, L., Rogers, J.T., Ferrell, J., Bu, W., et al. (2014). Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int J. Mol. Sci. 16, 758–787.10.3390/ijms16010758Suche in Google Scholar PubMed PubMed Central
Saad, N. and Lee, J. (1992). The role of botulinum toxin in third nerve palsy. Aust. NZ J. Ophthalmol. 20, 121–127.10.1111/j.1442-9071.1992.tb00723.xSuche in Google Scholar PubMed
Salunke, P., Savardekar, A., and Sura, S. (2012). Delayed-onset bilateral abducens paresis after head trauma. Indian J. Ophthalmol. 60, 149–150.10.4103/0301-4738.90491Suche in Google Scholar PubMed PubMed Central
Sarkies, N. (2004). Traumatic optic neuropathy. Eye (Lond) 18, 1122–1125.10.1038/sj.eye.6701571Suche in Google Scholar PubMed
Sawhney, R., Kochhar, S., Gupta, R., Jain, R., and Sood, S. (2003). Traumatic optic nerve avulsion: role of ultrasonography. Eye (Lond) 17, 667–670.10.1038/sj.eye.6700411Suche in Google Scholar PubMed
Schumann, P., Kokemuller, H., Tavassol, F., Lindhorst, D., Lemound, J., Essig, H., Rucker, M., and Gellrich, N.C. (2013). Optic nerve monitoring. Craniomaxillofac. Trauma. Reconstr. 6, 75–86.10.1055/s-0033-1343783Suche in Google Scholar PubMed PubMed Central
Sen, N. (2017). An insight into the vision impairment following traumatic brain injury. Neurochem. Int. 111, 103–107.10.1016/j.neuint.2017.01.019Suche in Google Scholar PubMed PubMed Central
Shedd, D.F., Benko, N.A., Jones, J., Zaugg, B.E., Peiffer, R.L., and Coats, B. (2018). Long term temporal changes in structure and function of rat visual system after blast exposure. Invest. Ophthalmol. Vis. Sci. 59, 349–361.10.1167/iovs.17-21530Suche in Google Scholar PubMed
Steinsapir, K.D. and Goldberg, R.A. (2011). Traumatic optic neuropathy: an evolving understanding. Am J. Ophthalmol. 151, 928–933.10.1016/j.ajo.2011.02.007Suche in Google Scholar PubMed
Taber, K.H., Warden, D.L., and Hurley, R.A. (2006). Blast-related traumatic brain injury: what is known? J. Neuropsychiatry. Clin. Neurosci. 18, 141–145.10.1176/jnp.2006.18.2.141Suche in Google Scholar PubMed
Taylor, C.A., Bell, J.M., Breiding, M.J., and Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill. Summ. 66, 1–16.10.15585/mmwr.ss6609a1Suche in Google Scholar PubMed
Teasdale, G. (2014). “The glasgow structured approach to assessment of the glasgow coma scale” GCS at 40 eyes, verbal and motor. http://www.glasgowcomascale.org/.Suche in Google Scholar
Teasdale, G. and Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet 2, 81–84.10.1016/S0140-6736(74)91639-0Suche in Google Scholar
Tiffin, P.A., MacEwen, C.J., Craig, E.A., and Clayton, G. (1996). Acquired palsy of the oculomotor, trochlear and abducens nerves. Eye (Lond) 10, 377–384.10.1038/eye.1996.77Suche in Google Scholar PubMed
Tzameret, A., Sher, I., Belkin, M., Treves, A.J., Meir, A., Nagler, A., Levkovitch-Verbin, H., Barshack, I., Rosner, M., and Rotenstreich, Y. (2014). Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp. Eye Res. 118, 135–144.10.1016/j.exer.2013.10.023Suche in Google Scholar
Tzekov, R., Quezada, A., Gautier, M., Biggins, D., Frances, C., Mouzon, B., Jamison, J., Mullan, M., and Crawford, F. (2014). Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model. J. Neuropathol. Exp. Neurol. 73, 345–361.10.1097/NEN.0000000000000059Suche in Google Scholar
Uzan, M., Hanci, M., Sarioglu, A.C., Kaynar, M.Y., and Bozkus, H. (1996). Bilateral traumatic abducens nerve paralysis with cervical spine flexion injury. Eur. Spine J. 5, 275–277.10.1007/BF00301333Suche in Google Scholar PubMed
Van Stavern, G.P., Biousse, V., Lynn, M.J., Simon, D.J., and Newman, N.J. (2001). Neuro-ophthalmic manifestations of head trauma. J. Neuroophthalmol. 21, 112–117.10.1097/00041327-200106000-00012Suche in Google Scholar PubMed
Ventura, R.E., Balcer, L.J., and Galetta, S.L. (2014). The neuro- ophthalmology of head trauma. Lancet Neurol. 13, 1006–1016.10.1016/S1474-4422(14)70111-5Suche in Google Scholar PubMed
Vien, L., DalPorto, C., and Yang, D. (2017). Retrograde degeneration of retinal ganglion cells secondary to head trauma. Optom. Vis. Sci. 94, 125–134.10.1097/OPX.0000000000000899Suche in Google Scholar PubMed
Wang, J., Fox, M.A., and Povlishock, J.T. (2013). Diffuse traumatic axonal injury in the optic nerve does not elicit retinal ganglion cell loss. J. Neuropathol. Exp. Neurol. 72, 768–781.10.1097/NEN.0b013e31829d8d9dSuche in Google Scholar PubMed PubMed Central
Warner, J.E. and Lessell, S. (1995). Traumatic optic neuropathy. Int. Ophthalmol. Clin. 35, 57–62.10.1097/00004397-199503510-00007Suche in Google Scholar PubMed
Warner, N. and Eggenberger, E. (2010). Traumatic optic neuropathy: a review of the current literature. Curr. Opin. Ophthalmol. 21, 459–462.10.1097/ICU.0b013e32833f00c9Suche in Google Scholar PubMed
Weichel, E.D., Colyer, M.H., Ludlow, S.E., Bower, K.S., and Eiseman, A.S. (2008). Combat ocular trauma visual outcomes during operations iraqi and enduring freedom. Ophthalmology 115, 2235–2245.10.1016/j.ophtha.2008.08.033Suche in Google Scholar PubMed
Weichel, E.D., Colyer, M.H., Bautista, C., Bower, K.S., and French, L.M. (2009). Traumatic brain injury associated with combat ocular trauma. J. Head Trauma Rehabil. 24, 41–50.10.1097/HTR.0b013e3181956ffdSuche in Google Scholar PubMed
Xu, G., Nie, D.Y., Wang, W.Z., Zhang, P.H., Shen, J., Ang, B.T., Liu, G.H., Luo, X.G., Chen, N.L., and Xiao, Z.C. (2004). Optic nerve regeneration in polyglycolic acid-chitosan conduits coated with recombinant L1-Fc. Neuroreport 15, 2167–2172.10.1097/00001756-200410050-00004Suche in Google Scholar PubMed
Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610.10.1016/j.biomaterials.2004.06.051Suche in Google Scholar PubMed
Yin, T.C., Voorhees, J.R., Genova, R.M., Davis, K.C., Madison, A.M., Britt, J.K., Cintron-Perez, C.J., McDaniel, L., Harper, M.M., and Pieper, A.A. (2016). Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice. E. Neuro. 3, 1–11.10.1523/ENEURO.0220-16.2016Suche in Google Scholar PubMed PubMed Central
Zampieri, T.P.D. (2007). Blinded Veterans Association Testimony House Committee on Veterans Affairs Subcommittee on health (Washington, DC, USA: Blinded Veterans Association), October 4, 1–8.Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target?
- Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders
- The optimal choices of animal models of white matter injury
- Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy
- Progress in research on the role of Omi/HtrA2 in neurological diseases
- GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus
- Vision impairment after traumatic brain injury: present knowledge and future directions
- Effects of stress on the auditory system: an approach to study a common origin for mood disorders and dementia
- Understanding the role of dopamine in conditioned and unconditioned fear
Artikel in diesem Heft
- Frontmatter
- Cortical and meningeal pathology in progressive multiple sclerosis: a new therapeutic target?
- Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders
- The optimal choices of animal models of white matter injury
- Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy
- Progress in research on the role of Omi/HtrA2 in neurological diseases
- GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus
- Vision impairment after traumatic brain injury: present knowledge and future directions
- Effects of stress on the auditory system: an approach to study a common origin for mood disorders and dementia
- Understanding the role of dopamine in conditioned and unconditioned fear