Startseite The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder

  • Farzad Salehpour und Seyed Hossein Rasta EMAIL logo
Veröffentlicht/Copyright: 23. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Major depressive disorder is a common debilitating mood disorder that affects quality of life. Prefrontal cortex abnormalities, an imbalance in neurotransmitters, neuroinflammation, and mitochondrial dysfunction are the major factors in the etiology of major depressive disorder. Despite the efficacy of pharmacotherapy in the treatment of major depressive disorder, 30%–40% of patients do not respond to antidepressants. Given this, exploring the alternative therapies for treatment or prevention of major depressive disorder has aroused interest among scientists. Transcranial photobiomodulation therapy is the use of low-power lasers and light-emitting diodes in the far-red to near-infrared optical region for stimulation of neuronal activities. This non-invasive modality improves the metabolic capacity of neurons due to more oxygen consumption and ATP production. Beneficial effects of transcranial photobiomodulation therapy in the wide range of neurological and psychological disorders have been already shown. In this review, we focus on some issue relating to the application of photobiomodulation therapy for major depressive disorder. There is some evidence that transcranial photobiomodulation therapy using near-infrared light on 10-Hz pulsed mode appears to be a hopeful technique for treatment of major depressive disorder. However, further studies are necessary to find the safety of this method and to determine its effective treatment protocol.

Acknowledgments

We would like to thank Dr. Saeed Sadigh-Eteghad and Dr. Hassan Roudgari for their helpful comments on the manuscript.

  1. Conflict of interest statement: No financial support has been received in conjunction with the generation of this report. No competing financial interests exist.

References

Abdo, A. and Sahin, M. (2007). NIR light penetration depth in the rat peripheral nerve and brain cortex. 29th Annual International Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1723–1725.10.1109/IEMBS.2007.4352642Suche in Google Scholar

Amsterdam, J.D. (1998). Treatment-resistant depression: progress and limitations. Psychiatr. Ann. 28, 633–640.10.3928/0048-5713-19981101-08Suche in Google Scholar

Ando, T., Xuan, W., Xu, T., Dai, T., Sharma, S.K., Kharkwal, G.B., Huang, Y.-Y., Wu, Q., Whalen, M.J., and Sato, S. (2011). Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6, e26212.10.1371/journal.pone.0026212Suche in Google Scholar

Antunes, F., Boveris, A., and Cadenas, E. (2004). On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc. Natl. Acad. Sci. USA 101, 16774–16779.10.1073/pnas.0405368101Suche in Google Scholar

Barker, A.T., Jalinous, R., and Freeston, I.L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet 325, 1106–1107.10.1016/S0140-6736(85)92413-4Suche in Google Scholar

Barrett, D. and Gonzalez-Lima, F. (2013). Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230, 13–23.10.1016/j.neuroscience.2012.11.016Suche in Google Scholar

Beauvoit, B., Kitai, and T., Chance, B. (1994). Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach. Biophys. J. 67, 2501–2510.10.1016/S0006-3495(94)80740-4Suche in Google Scholar

Belmaker, R. and Agam, G. (2008). Major depressive disorder. N. Engl. J. Med. 358, 55–68.10.1056/NEJMra073096Suche in Google Scholar PubMed

Berlim, M.T., Van den Eynde, F., and Daskalakis, Z.J. (2013). Clinical utility of transcranial direct current stimulation (tDCS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. J. Psychiatr. Res. 47, 1–7.10.1016/j.jpsychires.2012.09.025Suche in Google Scholar PubMed

Blanco, N.J., Maddox, W.T., and Gonzalez-Lima, F. (2015). Improving executive function using transcranial infrared laser stimulation. J. Neuropsychol. doi:10.1111/jnp.12074.Suche in Google Scholar PubMed PubMed Central

Bradford, A., Barlow, A., and Chazot, P.L. (2005). Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: evidence of selective cytoprotection by IR1072. J. Photochem. Photobiol. B Biol. 81, 9–14.10.1016/j.jphotobiol.2005.05.005Suche in Google Scholar PubMed

Brambilla, P., Cipriani, A., Hotopf, M., and Barbui, C. (2005). Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: a meta-analysis of clinical trial data. Pharmacopsychiatry 38, 69–77.10.1055/s-2005-837806Suche in Google Scholar PubMed

Brunoni, A.R., Moffa, A.H., Fregni, F., Palm, U., Padberg, F., Blumberger, D.M., Daskalakis, Z.J., Bennabi, D., Haffen, E., Alonzo, A., et al. (2016). Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br. J. Psychiatry 208, 522–531.10.1192/bjp.bp.115.164715Suche in Google Scholar PubMed PubMed Central

Byrnes, K.R., Waynant, R.W., Ilev, I.K., Wu, X., Barna, L., Smith, K., Heckert, R., Gerst, H., and Anders, J.J. (2005). Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg. Med. 36, 171–185.10.1002/lsm.20143Suche in Google Scholar PubMed

Cassano, P., Cusin, C., Mischoulon, D., Hamblin, M.R., De Taboada, L., Pisoni, A., Chang, T., Yeung, A., Ionescu, D.F., and Petrie, S.R. (2015). Near-infrared transcranial radiation for major depressive disorder: proof of concept study. Psychiatr. J. 352979, 1–8.10.1155/2015/352979Suche in Google Scholar PubMed PubMed Central

Cassano, P., Petrie, S.R., Hamblin, M.R., Henderson, T.A., and Iosifescu, D.V. (2016). Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3, 031404.10.1117/1.NPh.3.3.031404Suche in Google Scholar PubMed PubMed Central

Chen, A.C.-H., Huang, Y.-Y., Sharma, S.K., and Hamblin, M.R. (2011a). Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomed. Laser Surg. 29, 383–389.10.1089/pho.2010.2837Suche in Google Scholar PubMed PubMed Central

Chen, A.C., Arany, P.R., Huang, Y.-Y., Tomkinson, E.M., Sharma, S.K., Kharkwal, G.B., Saleem, T., Mooney, D., Yull, F.E., and Blackwell, T.S. (2011b). Low-level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6, e22453.10.1371/journal.pone.0022453Suche in Google Scholar PubMed PubMed Central

Cusin, C. and Dougherty, D.D. (2012). Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biol. Mood. Anxiety. Disord. 2, 1.10.1186/2045-5380-2-14Suche in Google Scholar PubMed PubMed Central

de Freitas, L.F. and Hamblin, M.R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22, 1–17.10.1109/JSTQE.2016.2561201Suche in Google Scholar PubMed PubMed Central

Demirtas-Tatlidede, A., Vahabzadeh-Hagh, A.M., Bernabeu, M., Tormos, J.M., and Pascual-Leone, A. (2012). Noninvasive brain stimulation in traumatic brain injury. J. Head Trauma Rehabil. 27, 274–292.10.1097/HTR.0b013e318217df55Suche in Google Scholar

De Taboada, L., Ilic, S., Leichliter-Martha, S., Oron, U., Oron, A., and Streeter, J. (2006). Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg. Med. 38, 70–73.10.1002/lsm.20256Suche in Google Scholar

De Taboada, L., Yu, J., El-Amouri, S., Gattoni-Celli, S., Richieri, S., McCarthy, T., Streeter, J., and Kindy, M.S. (2011). Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J. Alzheimer’s Dis. 23, 521–535.10.3233/JAD-2010-100894Suche in Google Scholar

Disner, S.G., Beevers, C.G., and Gonzalez-Lima, F. (2016). Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul. 9, 780–787.10.1016/j.brs.2016.05.009Suche in Google Scholar

Drevets, W.C., Price, J.L., Simpson, J.R., Todd, R.D., Reich, T., Vannier, M., and Raichle, M.E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827.10.1038/386824a0Suche in Google Scholar

Duggett, N.A. and Chazot, P.L. (2014). Low-intensity light therapy (1068 nm) protects CAD neuroblastoma cells from β-amyloid-mediated cell death. Biol. Med.6, 1–6.10.4172/0974-8369.S1-003Suche in Google Scholar

Elhwuegi, A.S. (2004). Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 435–451.10.1016/j.pnpbp.2003.11.018Suche in Google Scholar

Fahim, C., Stip, E., Mancini-Marie, A., Mensour, B., Leroux, J., Beaudoin, G., Bourgouin, P., and Beauregard, M. (2004). Abnormal prefrontal and anterior cingulate activation in major depressive disorder during episodic memory encoding of sad stimuli. Brain Cogn. 54, 161–163.Suche in Google Scholar

Gawryluk, J.W., Wang, J.-F., Andreazza, A.C., Shao, L., and Young, L.T. (2011). Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 14, 123–130.10.1017/S1461145710000805Suche in Google Scholar

Geddes, J. and Group UER. (2003). Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361, 799–808.10.1016/S0140-6736(03)12705-5Suche in Google Scholar

Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., and Mayberg, H. (2004). Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61, 34–41.10.1001/archpsyc.61.1.34Suche in Google Scholar PubMed

Grillo, S.L., Duggett, N.A., Ennaceur, A., and Chazot, P.L. (2013). Non-invasive infra-red therapy (1072nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. J. Photochem. Photobiol. B, Biol. 123, 13–22.10.1016/j.jphotobiol.2013.02.015Suche in Google Scholar PubMed

Hamblin, M.R. (2008). The role of nitric oxide in low level light therapy. Biomed. Opt. 6846, 684602–684614.10.1117/12.764918Suche in Google Scholar

Hamblin, M.R. (2016). Shining light on the head: photobiomodulation for brain disorders. Biochom. Biophys. Acta Clin. 6, 113–124.10.1016/j.bbacli.2016.09.002Suche in Google Scholar PubMed PubMed Central

Hamblin, M.R. and Demidova, T.N. (2006). Mechanisms of low level light therapy. Biomed. Opt. 6140, 614001–614012.10.1117/12.646294Suche in Google Scholar

Hamon, M. and Blier, P. (2013). Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 54–63.10.1016/j.pnpbp.2013.04.009Suche in Google Scholar PubMed

Hashmi, J.T., Huang, Y.Y., Sharma, S.K., Kurup, D.B., De Taboada, L., Carroll, J.D., and Hamblin, M.R. (2010). Effect of pulsing in low-level light therapy. Lasers Surg. Med. 42, 450–466.10.1002/lsm.20950Suche in Google Scholar PubMed PubMed Central

Henderson, T.A. and Morries, L.D. (2015). Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr. Dis. Treat. 11, 2191–2208.10.2147/NDT.S78182Suche in Google Scholar PubMed PubMed Central

Hennessy, M. and Hamblin, M.R. (2016). Photobiomodulation and the brain: a new paradigm. J. Opt. 19, 013003.10.1088/2040-8986/19/1/013003Suche in Google Scholar PubMed PubMed Central

Huang, Y.Y., Chen, A.C.H., Carroll, J.D., and Hamblin, M.R. (2009). Biphasic dose response in low level light therapy. Dose Response 7, 09–027.10.2203/dose-response.09-027.HamblinSuche in Google Scholar PubMed PubMed Central

Huang, Y.Y., Gupta, A., Vecchio, D., Arce, V.J., Huang, S.F., Xuan, W., and Hamblin, M.R. (2012). Transcranial low level laser (light) therapy for traumatic brain injury. J. Biophotonics 5, 827–837.10.1002/jbio.201200077Suche in Google Scholar PubMed PubMed Central

Hwang, J., Castelli, D.M., and Gonzalez-Lima, F. (2016). Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med. Sci. 31, 1–10.10.1007/s10103-016-1962-3Suche in Google Scholar PubMed

Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., et al. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235.10.1038/nature20587Suche in Google Scholar PubMed PubMed Central

Ilic, S., Leichliter, S., Streeter, J., Oron, A., DeTaboada, L., and Oron, U. (2006). Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed. Laser Ther. 24, 458–466.10.1089/pho.2006.24.458Suche in Google Scholar PubMed

Iosifescu, D.V., Bolo, N.R., Nierenberg, A.A., Jensen, J.E., Fava, M., and Renshaw, P.F. (2008). Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol. Psychiatry 63, 1127–1134.10.1016/j.biopsych.2007.11.020Suche in Google Scholar PubMed

Jacques, S.L. (2013). Optical properties of biological tissue: a review. Phys. Med. Biol. 58, R37.10.1088/0031-9155/58/11/R37Suche in Google Scholar PubMed

Jagdeo, J.R., Adams, L.E., Brody, N.I., and Siegel, D.M. (2012). Transcranial red and near infrared light transmission in a cadaveric model. PLoS One 7, e47460.10.1371/journal.pone.0047460Suche in Google Scholar PubMed PubMed Central

Johnstone, D.M., El Massri, N., Moro, C., Spana, S., Wang, X.S., Torres, N., Chabrol, C., De Jaeger, X., Reinhart, F., Purushothuman, S., et al. (2014). Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism–an abscopal neuroprotective effect. Neuroscience 274, 93–101.10.1016/j.neuroscience.2014.05.023Suche in Google Scholar PubMed

Kalu, U.G., Sexton, C.E., Loo, C.K., and Ebmeier, K.P.(2012). Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol. Med. 42, 1791–1800.10.1017/S0033291711003059Suche in Google Scholar PubMed

Karu, T.I. (1990). Effects of visible radiation on cultured cells. Photochem. Photobiol. 52, 1089–1098.10.1111/j.1751-1097.1990.tb08450.xSuche in Google Scholar PubMed

Karu, T.I. (2000). Mechanisms of low-power laser light action on cellular level. EOS/SPIE EurBiomed. Opt. Week. 1–17.10.1117/12.405918Suche in Google Scholar

Karu, T. and Kolyakov, S. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23, 355–361.10.1089/pho.2005.23.355Suche in Google Scholar PubMed

Karu, T.I., Pyatibrat, L.V., and Afanasyeva, N.I. (2005). Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 36, 307–314.10.1002/lsm.20148Suche in Google Scholar PubMed

Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, and K.R., Walters, E.E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602.10.1001/archpsyc.62.6.593Suche in Google Scholar PubMed

Lampl, Y., Zivin, J.A., Fisher, M., Lew, R., Welin, L., Dahlof, B., Borenstein, P., Andersson, B., Perez, J., and Caparo, C. (2007). Infrared laser therapy for ischemic stroke: a new treatment strategy results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38, 1843–1849.10.1161/STROKEAHA.106.478230Suche in Google Scholar PubMed

Lapchak, P.A. and De Taboada, L. (2010). Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 1306, 100–105.10.1016/j.brainres.2009.10.022Suche in Google Scholar PubMed

Lapchak, P.A., Wei, J., and Zivin, J.A. (2004). Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35, 1985–1988.10.1161/01.STR.0000131808.69640.b7Suche in Google Scholar PubMed

Lapchak, P.A., Boitano, P.D., Butte, P.V., Fisher, D.J., Hölscher, T., Ley, E.J., Nuño, M., Voie, A.H., and Rajput, P.S. (2015). Transcranial near-infrared laser transmission (NILT) profiles (800 nm): systematic comparison in four common research species. PLoS One 10, e0127580.10.1371/journal.pone.0127580Suche in Google Scholar PubMed PubMed Central

Lee, B.-H., Kim, H., Park, S.-H., and Kim, Y.-K. (2007). Decreased plasma BDNF level in depressive patients. J. Affect. Disord. 101, 239–244.10.1016/j.jad.2006.11.005Suche in Google Scholar PubMed

Litscher, D. and Litscher, G. (2013). Laser therapy and stroke: quantification of methodological requirements in consideration of yellow laser. Int. J. Photoenergy 575798, 1–4.10.1155/2013/575798Suche in Google Scholar

Mechan, A.O., Fowler, A., Seifert, N., Rieger, H., Wöhrle, T., Etheve, S., Wyss, A., Schüler, G., Colletto, and B., Kilpert, C. (2011). Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br. J. Nutr. 105, 1150–1163.10.1017/S0007114510004940Suche in Google Scholar PubMed

Michalikova, S., Ennaceur, A., van Rensburg, R., and Chazot, P.L. (2008). Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol. Learn. Mem. 89, 480–488.10.1016/j.nlm.2007.07.014Suche in Google Scholar PubMed

Mohammed, H.S. (2016). Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med. Sci. 31, 1–6.10.1007/s10103-016-2033-5Suche in Google Scholar PubMed

Morries, L.D., Cassano, P., and Henderson, T.A. (2015). Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr. Dis. Treat. 11, 2159–2175.10.2147/NDT.S65809Suche in Google Scholar

Muili, K.A., Gopalakrishnan, S., Meyer, S.L., Eells, J.T., and Lyons, J.A. (2012). Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 7, e30655.10.1371/journal.pone.0030655Suche in Google Scholar

Naeser, M.A., Saltmarche, A., Krengel, M.H., Hamblin, M.R., and Knight, J.A. (2011). Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29, 351–358.10.1089/pho.2010.2814Suche in Google Scholar

Naeser, M.A., Zafonte, R., Krengel, M.H., Martin, P.I., Frazier, J., Hamblin, M.R., Knight, J.A., Meehan III, W.P., and Baker, E.H. (2014). Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma 31, 1008–1017.10.1089/neu.2013.3244Suche in Google Scholar

Park, H. and Poo, M.-m. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23.10.1038/nrn3379Suche in Google Scholar

Passarella, S. (1989). HeNe laser irradiation of isolated mitochondria. J. Photochem. Photobiol. B. 3, 642–643.10.1016/1011-1344(89)80090-9Suche in Google Scholar

Passarella, S. and Karu, T. (2014). Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B 140, 344–358.10.1016/j.jphotobiol.2014.07.021Suche in Google Scholar PubMed

Peoples, C., Spana, S., Ashkan, K., Benabid, A.-L., Stone, J., Baker, G.E., and Mitrofanis, J. (2012). Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat. Disord. 18, 469–476.10.1016/j.parkreldis.2012.01.005Suche in Google Scholar PubMed

Petrie, S.R., Hamblin, M.R., Ionescu, D.F., Cusin, C., Yeung, A., and Cassano, P. (2016). Photobiomodulation in patients with low back pain: a case control series for the effect on depression. Qual. Prim. Care 24, 33–38.Suche in Google Scholar

Poreisz, C., Boros, K., Antal, A., and Paulus, W.(2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 208–214.10.1016/j.brainresbull.2007.01.004Suche in Google Scholar PubMed

Rasta, S.H., Manivannan, A., and Sharp, P.F. (2012). Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy. J. Biomed. Opt. 17, 116005.10.1117/1.JBO.17.11.116005Suche in Google Scholar PubMed

Rezin, G.T., Cardoso, M.R., Gonçalves, C.L., Scaini, G., Fraga, D.B., Riegel, R.E., Comim, C.M., Quevedo, J., and Streck, E.L. (2008). Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 53, 395–400.10.1016/j.neuint.2008.09.012Suche in Google Scholar PubMed

Rojas, J.C., Bruchey, A.K., and Gonzalez-Lima, F. (2012). Low-level light therapy improves cortical metabolic capacity and memory retention. J. Alzheimers Dis. 32, 741–752.10.3233/JAD-2012-120817Suche in Google Scholar PubMed

Sahay, A. and Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115.10.1038/nn1969Suche in Google Scholar PubMed

Salehpour, F. and Rasta, S.H. (2016). Transcranial low-level light therapy in psychological disorders-a review. Lasers Surg. Med. 48, 455–455.Suche in Google Scholar

Salehpour, F., Rasta, S.H., Mohaddes, G., Sadigh-Eteghad, S., and Salarirad, S. (2016). Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: a comparison between near-infrared and red wavelengths. Lasers Surg. Med. 48, 695–705.10.1002/lsm.22542Suche in Google Scholar PubMed

Salgado, A.S., Zângaro, R.A., Parreira, R.B., and Kerppers, I.I. (2015). The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med. Sci. 30, 339–346.10.1007/s10103-014-1669-2Suche in Google Scholar PubMed

Santana-Blank, L., Rodríguez-Santana, E., and Santana-Rodríguez, K. (2010). Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed. Laser Surg. 28, 41–52.10.1089/pho.2009.2647Suche in Google Scholar PubMed

Santana-Blank, L., Rodríguez-Santana, E., Santana-Rodríguez, K.E., and Reyes, H. (2016). ‘Quantum leap’ in photobiomodulation therapy ushers in a new generation of light-based treatments for cancer and other complex diseases: perspective and mini-review. Photomed. Laser Surg. 34, 93–101.10.1089/pho.2015.4015Suche in Google Scholar PubMed PubMed Central

Schiffer, F., Johnston, A.L., Ravichandran, C., Polcari, A., Teicher, M.H., Webb, R.H., and Hamblin, M.R. (2009). Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 5, 1.10.1186/1744-9081-5-46Suche in Google Scholar PubMed PubMed Central

Sharma, S.K., Kharkwal, G.B., Sajo, M., Huang, Y.Y., De Taboada, L., McCarthy, T., and Hamblin, M.R. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg. Med. 43, 851–859.10.1002/lsm.21100Suche in Google Scholar PubMed PubMed Central

Shumake, J. and Gonzalez-Lima, F. (2003). Brain systems underlying susceptibility to helplessness and depression. Behav. Cogn. Neurosci. Rev. 2, 198–221.10.1177/1534582303259057Suche in Google Scholar PubMed

Smith, K.C. (2007). Ten Lectures on Basic Science of Laser Phototherapy. Photochem. Photobiol. 83, 1539–1540.10.1111/j.1751-1097.2007.00229.xSuche in Google Scholar

Sommer, A.P., Pinheiro, A.L., Mester, A.R., Franke, R.P., and Whelan, H.T. (2001). Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J. Clin. Laser Med. Surg. 19, 29–33.10.1089/104454701750066910Suche in Google Scholar

Souery, D., Amsterdam, J., De Montigny, C., Lecrubier, Y., Montgomery, S., Lipp, O., Racagni, G., Zohar, J., and Mendlewicz, J. (1999). Treatment resistant depression: methodological overview and operational criteria. Eur. Neuropsychopharmacol. 9, 83–91.10.1016/S0924-977X(98)00004-2Suche in Google Scholar

Stahl, S.M. (2009). Stahl’s illustrated antidepressants. (New York, NY, USA: Cambridge University Press).10.1017/9781139194457Suche in Google Scholar

Szundi, I., Liao, G.-L., and Einarsdóttir, Ó. (2001). Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen. Biochemistry 40, 2332–2339.10.1021/bi002220vSuche in Google Scholar PubMed

Taddeucci, A., Martelli, F., Barilli, M., Ferrari, M., and Zaccanti, G. (1996). Optical properties of brain tissue. J. Biomed. Opt. 1, 117–123.10.1117/12.227816Suche in Google Scholar PubMed

Tagliari, B., Noschang, C.G., Ferreira, A.G., Ferrari, O.A., Feksa, L.R., Wannmacher, C.M., Dalmaz, C., and Wyse, A.T. (2010). Chronic variable stress impairs energy metabolism in prefrontal cortex and hippocampus of rats: prevention by chronic antioxidant treatment. Metab. Brain Dis. 25, 169–176.10.1007/s11011-010-9194-xSuche in Google Scholar PubMed

Tian, F., Hase, S.N., Gonzalez-Lima, F., and Liu, H. (2016). Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg. Med. 48, 343–349.10.1002/lsm.22471Suche in Google Scholar PubMed PubMed Central

Tuby, H., Maltz, L., and Oron, U. (2011). Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg. Med. 43, 401–409.10.1002/lsm.21063Suche in Google Scholar PubMed

Uccelli, A., Benvenuto, F., Laroni, A., and Giunti, D. (2011). Neuroprotective features of mesenchymal stem cells. Best. Pract. Res. Clin. Haematol. 24, 59–64.10.1016/j.beha.2011.01.004Suche in Google Scholar PubMed

Uozumi, Y., Nawashiro, H., Sato, S., Kawauchi, S., Shima, K., and Kikuchi, M. (2010). Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg. Med. 42, 566–576.10.1002/lsm.20938Suche in Google Scholar PubMed

Videbech, P. (2000). PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr. Scand. 101, 11–20.10.1034/j.1600-0447.2000.101001011.xSuche in Google Scholar PubMed

Weiner, R.D. (2000). Retrograde amnesia with electroconvulsive therapy: characteristics and implications. Arch. Gen. Psychiatry 57, 591–592.10.1001/archpsyc.57.6.591Suche in Google Scholar PubMed

Wu, X., Alberico, S.L., Moges, H., De Taboada, L., Tedford, C.E., and Anders, J.J. (2012). Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg. Med. 44, 227–232.10.1002/lsm.22004Suche in Google Scholar PubMed

Xu, Z., Guo, X., Yang, Y., Tucker, D., Lu, Y., Xin, N., Zhang, G., Yang, L., Li, J., and Du, X. (2016). Low-level laser irradiation improves depression-like behaviors in mice. Mol. Neurobiol. 1–9.10.1007/s12035-016-9983-2Suche in Google Scholar PubMed PubMed Central

Xuan, W., Vatansever, F., Huang, L., and Hamblin, M.R. (2014). Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J. Biomed. Opt. 19, 108003–108015.10.1117/1.JBO.19.10.108003Suche in Google Scholar PubMed PubMed Central

Zivin, J.A., Albers, G.W., Bornstein, N., Chippendale, T., Dahlof, B., Devlin, T., Fisher, M., Hacke, W., Holt, W., and Ilic, S. (2009). Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40, 1359–1364.10.1161/STROKEAHA.109.547547Suche in Google Scholar PubMed

Zunszain, P.A., Hepgul, N., and Pariante, C.M. (2012). Inflammation and depression. Behavioral Neurobiology of Depression and Its Treatment. (Berlin Heidelberg: Springer), pp. 135–151.10.1007/7854_2012_211Suche in Google Scholar PubMed

Received: 2016-12-24
Accepted: 2017-1-10
Published Online: 2017-2-23
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0087/html?lang=de
Button zum nach oben scrollen