Startseite Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria

  • Sergei V. Fedorovich EMAIL logo , Tatyana V. Waseem und Ludmila V. Puchkova
Veröffentlicht/Copyright: 14. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mitochondria of different cells are different in their morphological and biochemical properties. These organelles generate free radicals during activity, leading inevitably to mitochondrial DNA damage. It is not clear how this problem is addressed in long-lived cells, such as neurons. We propose the hypothesis that mitochondria within the same cell also differ in lifespan and ability to divide. According to our suggestion, cells have a pool of ‘stem’ mitochondria with low metabolic activity and a pool of ‘differentiated’ mitochondria with significantly shorter lifespans and high metabolic activity. We consider synaptic mitochondria as a possible example of ‘differentiated’ mitochondria. They are significantly smaller than mitochondria from the cell body, and they are different in key enzyme activity levels, proteome, and lipidome. Synaptic mitochondria are more sensitive to different damaging factors. It has been established that neurons have a sorting mechanism that sends mitochondria with high membrane potential to presynaptic endings. This review describes the properties of synaptic mitochondria and their role in the regulation of synaptic transmission.

References

Aitken, P.G. and Braitman, D.J. (1989). The effects of cyanide on neural and synaptic function in hippocampal slices. Neurotoxicology 10, 239–247.Suche in Google Scholar

Almeida, A., Almeida, J., Bolanos, J.P., and Moncada, S. (2001). Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically-generated ATP in astrocytes protection. Proc. Natl. Acad. Sci. U.S.A. 98, 15294–15299.10.1073/pnas.261560998Suche in Google Scholar

Arora, K.K. and Pedersen, P.L. (1988). Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. Am. Soc. Biochem. Mol. Biol. 263, 17422–17428.10.1016/S0021-9258(19)77853-3Suche in Google Scholar

Ashrafi, G., Schlehe, J.S., LaVoie, J.L., and Schwarz, T.L. (2014). Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 665–670.10.1083/jcb.201401070Suche in Google Scholar PubMed PubMed Central

Attwell, D. and Gibb, A. (2005). Neuroenergetic and the kinetic design of excitatory synapses. Nat. Rev. Neurosci. 6, 841–849.10.1038/nrn1784Suche in Google Scholar PubMed

Attwell, D. and Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.10.1097/00004647-200110000-00001Suche in Google Scholar PubMed

Bao, L., Avshalumov, M.V., and Rice, M.E. (2005). Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J. Neurochem. 25, 10029–10040.10.1523/JNEUROSCI.2652-05.2005Suche in Google Scholar PubMed PubMed Central

Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., and Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848.10.1242/jcs.03381Suche in Google Scholar PubMed

Billups, B. and Forsythe, I.D. (2002). Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847.10.1523/JNEUROSCI.22-14-05840.2002Suche in Google Scholar

Bolanos, J.P., Almeida, A., and Moncada, S. (2010). Glycolosis: a bioenergetic or a survival pathway? Trends Biochem. Sci. 35, 145–149.10.1016/j.tibs.2009.10.006Suche in Google Scholar PubMed

Brown, M.B., Sullivan, P.G., and Geddes, J.W. (2006). Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J. Biol. Chem. 281, 11658–11668.10.1074/jbc.M510303200Suche in Google Scholar PubMed

Cai, Q. and Tammineni, P. (2016). Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 10, 24.10.3389/fncel.2016.00024Suche in Google Scholar

Cai, Q., Zakaria, H.M., Simone, A., and Sheng, Z.H. (2012). Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr. Biol. 22, 545–552.10.1016/j.cub.2012.02.005Suche in Google Scholar

Cagalinec, M., Safiulina, D., Liiv, M., Liiv, J., Choubey, V., Wareski, P., Veksler, V., and Kaasik, A. (2013). Principles of the mitochondrial fusion and fission cycle in neurons. J. Cell Sci. 126, 2187–2197.10.1242/jcs.118844Suche in Google Scholar

Carafoli, E. (2003). Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem. Sci. 28, 175–181.10.1016/S0968-0004(03)00053-7Suche in Google Scholar

Castegna, A., Lauderback, C.M., Mohmmad-Abdul, H., and Butterfield, D.A. (2004). Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res. 1004, 193–197.10.1016/j.brainres.2004.01.036Suche in Google Scholar PubMed

Castro, M.A., Beltran, F.A., Brauchi, S., and Concha, I.I. (2009). A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J. Neurochem. 110, 423–440.10.1111/j.1471-4159.2009.06151.xSuche in Google Scholar PubMed

Chung, W.S., Clarke, L.E., Wang, G.X., Stafford, B.K., Sher, A., Chakraborty, C., Joung, J., Foo, L.C., Thompson, A., Chen, C., et al. (2013). Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400.10.1038/nature12776Suche in Google Scholar PubMed PubMed Central

Cobine, P.A., Ojeda, L.D., Rigby, K.M., and Winge, D.R. (2004). Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 279, 14447–14455.10.1074/jbc.M312693200Suche in Google Scholar PubMed

Cobine, P.A., Pierrel, F., Bestwick, M.L., and Winge, D.R. (2006). Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J. Biol. Chem. 281, 36552–36559.10.1074/jbc.M606839200Suche in Google Scholar PubMed

Copeland, W.C. and Longley, M.J. (2014). Mitochondrial genome maintenance in health and disease. DNA Rep. (Amsterdam) 19, 190–198.10.1016/j.dnarep.2014.03.010Suche in Google Scholar PubMed PubMed Central

Costa, C., Belcastro, V., Tozzi, A., Di Filippo, M., Siliguini, S., Autuori, A., Picconi, B., Fedele, E., Pittaluga, A., Raiteri, M., et al. (2008). Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28, 8040–8052.10.1523/JNEUROSCI.1947-08.2008Suche in Google Scholar PubMed PubMed Central

Dagani, F., Gorini, A., Polgatti, M., Villa, R.F., and Benzi, G. (1983). Rat cortex synaptic and nonsynaptic mitochondria: enzymatic characterization and pharmacological effects of naftidrofuryl. J. Neurosci. Res. 10, 135–140.10.1002/jnr.490100203Suche in Google Scholar PubMed

Davey, G.P., Canevari, L., and Clark, J.B. (1997). Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J. Neurochem. 69, 2564–2570.10.1046/j.1471-4159.1997.69062564.xSuche in Google Scholar PubMed

Davis, C.H., Kim, K.Y., Bushong, E.A., Milis, E.A., Boassa, D., Shih, T., Kinebuchi, M., Phan, S., Zhou, Y., Bihlmeyer, N.A., et al. (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA 111, 9633–9638.10.1073/pnas.1404651111Suche in Google Scholar PubMed PubMed Central

De Rasmo, D., Signorile, A., Roca, E., and Papa, S. (2009). cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J. 276, 4325–4333.10.1111/j.1742-4658.2009.07133.xSuche in Google Scholar PubMed

De Robertis, E.D. and Bennett, H.S. (1955). Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol. 1, 47–58.10.1083/jcb.1.1.47Suche in Google Scholar PubMed PubMed Central

DeKosky, S.T., Scheff, S.W., and Styren, S.D. (1996). Structural correlates of cognition in dementia: quantification and assessment of synaptic charge. Neurodegeneration 5, 417–421.10.1006/neur.1996.0056Suche in Google Scholar PubMed

Desmukh, D.R., Owen, O.E., and Patel, M.S. (1980). Effect of aging on the metabolism of pyruvate and 3-hydroxybutyrate in nonsynaptic and synaptic mitochondria from rat brain. J. Neurochem. 34, 1219–1224.10.1111/j.1471-4159.1980.tb09962.xSuche in Google Scholar PubMed

Diaz-Ruiz, R., Averet, N., Araiza, D., Pinson, B., Uribe-Carvajal, S., Devin, A., and Rigoulet, M. (2008). Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J. Biol. Chem. 283, 26948–26955.10.1074/jbc.M800408200Suche in Google Scholar PubMed

Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and Yan, S.S.D. (2010). Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA 107, 18670–18675.10.1073/pnas.1006586107Suche in Google Scholar PubMed PubMed Central

Dubinski, J.M. (2009). Heterogenity of nervous system mitochondria: location, location, location! Exp. Neurol. 218, 293–307.10.1016/j.expneurol.2009.05.020Suche in Google Scholar PubMed

Duncan, T., Trewick, S.C., Koivisto, P., Bates, P.A., Lindahl, T., and Sedgwick, B. (2002). Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. U.S.A. 99, 16660–16665.10.1073/pnas.262589799Suche in Google Scholar PubMed PubMed Central

Dunkley, P.R., Jarvie, P.E., and Robinson, P.J. (2008). A rapid percoll gradient procedure for preparation of synaptosomes. Nat. Protocols 3, 1718–1728.10.1038/nprot.2008.171Suche in Google Scholar PubMed

Ericson, N.G., Kulawiec, M., Vermulst, M., Sheahan, K., O’Sullivan, J., Salk, J.J., and Bielas, J.H. (2012). Decreased mitochondrial DNA mutagenesis in human colorectal cancer. PLoS Genet. 8, e1002689.10.1371/journal.pgen.1002689Suche in Google Scholar PubMed PubMed Central

Fedorovich, S.V., Aksentsev, S.L., and Konev, S.V. (1996). Acidosis inhibits calcium accumulation in intrasynaptosomal mitochondria. Acta Neurobiol. Exp. 56, 703.10.55782/ane-1996-1175Suche in Google Scholar

Finkel, T., Menazza, S., Holmstrom, K.M., Parks, R.J., Liu, J., Sun, J., Liu, J., Pan, X., and Murphy, E. (2015). The ins and outs of mitochondrial calcium. Circ. Res. 116, 1810–1819.10.1161/CIRCRESAHA.116.305484Suche in Google Scholar PubMed PubMed Central

Fogg, V.C., Lanning, N.J., and Mackeigan, J.P. (2011). Mitochondria in cancer: at the crossroads of life and death. Chin. J. Cancer. 30, 526–539.10.5732/cjc.011.10018Suche in Google Scholar PubMed PubMed Central

Fujiwara, T. and Harigae, H. (2015). Biology of heme in mammalian erythroid cells and related disorders. Biomed. Res. Int. 2015:278536.10.1155/2015/278536Suche in Google Scholar PubMed PubMed Central

Gazit, N., Vertkin, I., Shapira, I., Helm, M., Slomowitz, E., Sheiba, M., Mor, Y., Rizzoli, S., and Slutsky, I. (2016). IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron 89, 583–597.10.1016/j.neuron.2015.12.034Suche in Google Scholar PubMed PubMed Central

Giminez-Cassina, A., Martinez-Francois, J.R., Fisher, J.K., Szlyk, B., Polak, K., Wiwczar, J., Tanner, G.R., Lutas, A., Yellen, G., and Danial, N.N. (2012). BAD-dependent regulation of fuel metabolism and KATP channel activity confers resistance to epileptic seizures. Neuron 74, 719–730.10.1016/j.neuron.2012.03.032Suche in Google Scholar PubMed PubMed Central

Gray, E.G. and Whittaker, V.P. (1962). The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79–88.Suche in Google Scholar

Guzun, R., Kaambre, T., Bagur, R., Grichine, A., Usson, Y., Varikmaa, M., Anmann, T., Tepp, K., Timohhina, N., Shevchuk, I., et al. (2015). Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol. (Oxford) 213, 84–106.10.1111/apha.12287Suche in Google Scholar PubMed PubMed Central

Haag, S., Sloan, K.E., Ranjan, N., Warda, A.S., Kretschmer, J., Blessing, C., Hubner, B., Seikowski, J., Dennerlein, S., Rehling, P., et al. (2016). NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 35, 2104–2119.10.15252/embj.201694885Suche in Google Scholar

Hagen, T.M., Yowe, D.L., Bartholomew, J.C., Wehr, C.M., Do, K.L., Park, J.Y., and Ames, B.N. (1997). Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc. Natl. Acad. Sci. U.S.A. 94, 3064–3069.10.1073/pnas.94.7.3064Suche in Google Scholar

Hajos, F. (1975). An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93, 485–489.10.1016/0006-8993(75)90186-9Suche in Google Scholar

Hara, Y., Yuk, F., Puri, R., Janssen, W.G.M., Rapp, P.R., and Morrison, J.H. (2014). Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc. Natl. Acad. Sci. U.S.A. 111, 486–491.10.1073/pnas.1311310110Suche in Google Scholar PubMed PubMed Central

Harris, J.J., Jolivet, R., and Attwell, D. (2012). Synaptic energy use and supply. Neuron 75, 762–777.10.1016/j.neuron.2012.08.019Suche in Google Scholar PubMed

Herrero-Mendez, A., Almeida, A., Fernandez, E., Maestre, C., Moncada, S., and Bolanos, J.P. (2009). The bioenergetic and antioxidants status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747–752.10.1038/ncb1881Suche in Google Scholar PubMed

Hong, S., Dissing-Oleson, L., and Stevens, B. (2016). New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 36, 128–134.10.1016/j.conb.2015.12.004Suche in Google Scholar PubMed PubMed Central

Hrynevich, S.V., Waseem, T.V., Hebert, A., Pellerin, L., Fedorovich, S.V. (2016). β-hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes. Neurochem. Int. 93, 73–81.10.1016/j.neuint.2015.12.014Suche in Google Scholar PubMed

Huster, D., Finegold, M.J., Morgan, C.T., Burkhead, J.L., Nixon, R., Vanderwerf, S.M., Gilliam, C.T., and Lutsenko, S. (2006). Consequences of copper accumulation in the livers of the Atp7b-/- (Wilson disease gene) knockout mice. Am. J. Pathol. 168, 423–434.10.2353/ajpath.2006.050312Suche in Google Scholar PubMed PubMed Central

Ikemoto, A., Bole, D.G., and Ueda, T. (2003). Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J. Biol. Chem. 278, 5929–5940.10.1074/jbc.M211617200Suche in Google Scholar PubMed

Ivannikov, M.V., Sugimori, M., and Llinas, R.R. (2013). Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume. J. Mol. Neurosci. 49, 223–230.10.1007/s12031-012-9848-8Suche in Google Scholar PubMed PubMed Central

Johnson, D.T., Harris, R.A¯, Blair, P.V., and Balaban, R.S. (2007a). Functional consequences of mitochondrial proteome heterogeneity. Am. J. Physiol. Cell. Physiol. 292, C698–C707.10.1152/ajpcell.00109.2006Suche in Google Scholar PubMed

Johnson, D.T., Johnson, D.T., Harris, R.A., French, S., Blair, P.V., You, J., Bemis, K.G., Wang, M., and Balaban, R.S. (2007b). Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell. Physiol. 292, C689–C697.10.1152/ajpcell.00108.2006Suche in Google Scholar PubMed

Kaasik, A., Saifiulina, D., Choubey, V., Kuum, V., Zharkovsky, A., and Veksler, V. (2007). Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons. J. Biol. Chem. 282, 32821–32826.10.1074/jbc.M702295200Suche in Google Scholar PubMed

Kamer, K.J. and Mootha, V.K. (2015). The molecular era of the mitochondrial calcium uniporter. Nature Rev. Mol. Cell. Biol. 16, 545–553.10.1038/nrm4039Suche in Google Scholar PubMed

Kanabus, M., Heales, S.J., and Rahman, S. (2014). Development of pharmacological strategies for mitochondrial disorders. Br. J. Pharmacol. 171, 1798–1817.10.1111/bph.12456Suche in Google Scholar PubMed PubMed Central

Kennedy, S.R., Salk, J.J., Schmitt, M.W., and Loeb, L.A. (2013). Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 9, e1003794.10.1371/journal.pgen.1003794Suche in Google Scholar PubMed PubMed Central

Kenney, G.E. and Rosenzweig, A.C. (2012). Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 7, 260–268.10.1021/cb2003913Suche in Google Scholar PubMed PubMed Central

Kiebish, M.A., Han, X., Cheng, H., Lunceford, A., Clarke, C.F., Moon, H., Chuang, J.H., and Seyfried, T.N. (2008). Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J. Neurochem. 106, 299–312.10.1111/j.1471-4159.2008.05383.xSuche in Google Scholar PubMed PubMed Central

Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008). Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 9, 505–518.10.1038/nrn2417Suche in Google Scholar PubMed PubMed Central

Kroemer, G., Galuzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163.10.1152/physrev.00013.2006Suche in Google Scholar PubMed

Lai, J.C.K. and Clark, J.B. (1976). Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154, 423–432.10.1042/bj1540423Suche in Google Scholar PubMed PubMed Central

Lai, J.C.K., Walsh, J.M., Dennis, S.C., and Clark, J.B. (1977). Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28, 625–631.10.1111/j.1471-4159.1977.tb10434.xSuche in Google Scholar PubMed

Lang, F., Lang, K.S., Lang, P.A., Huber, S.M., and Wieder, T. (2006). Mechanism and significance of eryptosis. Antioxid. Redox Signal. 8, 1183–1192.10.1089/ars.2006.8.1183Suche in Google Scholar PubMed

Lang, F., Gulbins, E., Lerche, H., Huber, S.M., Kempe, D.S., and Foller, M. (2008). Eryptosis, a window to systemic disease. Cell Physiol. Biochem. 22, 373–380.10.1159/000185448Suche in Google Scholar PubMed

Leary, S.C., Winge, D.R., and Cobine, P.A. (2009). “Pulling the plug” on cellular copper: the role of mitochondria in copper export. Biochim. Biophys. Acta 1793, 146–153.10.1016/j.bbamcr.2008.05.002Suche in Google Scholar PubMed PubMed Central

Lemasters, J.J. (2014). Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3). Redox Biol. 2:749–754.10.1016/j.redox.2014.06.004Suche in Google Scholar PubMed PubMed Central

Leong, S.F., Lai, J.C.K., Lim, L., and Clark, J.B. (1984). The activities of some energy-metabolizing enzymes in nonsynaptic (free) and synaptic mitochondria derived from selected brain regions. J. Neurochem. 42, 1306–1312.10.1111/j.1471-4159.1984.tb02788.xSuche in Google Scholar PubMed

Li, Z., Okamoto, K.-I., Hayashi, Y., and Sheng, M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887.10.1016/j.cell.2004.11.003Suche in Google Scholar PubMed

Li, H., Alavin, K.N., Lazrove, E., Mehta, N., Jones, A., Zhang, P., Licznerski, P., Graham, M., Uo, T., Guo, J., et al. (2013). A BCL-Xl-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat. Cell Biol. 15, 773–785.10.1038/ncb2791Suche in Google Scholar PubMed PubMed Central

Li, C., Zhang, G., Zhao, L., Ma, Z., and Chen, H. (2016). Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 14, 15.10.1186/s12957-016-0769-9Suche in Google Scholar

Lill, R., Srinivasan, V., and Muhlenhoff, U. (2014). The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation. Curr. Opin. Microbiol. 22, 111–119.10.1016/j.mib.2014.09.015Suche in Google Scholar

Lin, M.T. and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.10.1038/nature05292Suche in Google Scholar

Lores-Arnaiz, S. and Bustamante, J. (2011). Age-related alterations in mitochondrial physiological parameters and nitric oxide production in synaptic and non-synaptic brain cortex mitochondria. Neuroscience 188, 117–124.10.1016/j.neuroscience.2011.04.060Suche in Google Scholar

MacAskill, A.F., Atkin, T.A., and Kittler, J.T. (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur. J. Neurosci. 32, 231–240.10.1111/j.1460-9568.2010.07345.xSuche in Google Scholar

Maftah, A., Ratinaud, M.H., Dumas, M., Bont, F., Meybeck, A., and Julien, R. (1994). Human epidermal cells progressively lose their cardiolipins during ageing without change in mitochondrial transmembrane potential. Mech. Ageing Dev. 77, 83–96.10.1016/0047-6374(94)90017-5Suche in Google Scholar

Marland, J.R., Hasel, P., Bonnycastle, K., and Cousin, M.A. (2016). Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J. Biol. Chem. 291, 2080–2086.10.1074/jbc.M115.686956Suche in Google Scholar

Martinez, A.O., Over, D., Armstrong, L.S., Manzano, L., Taylor, R., and Chambers, J. (1991). Separation of two subpopulations of old human fibroblasts by mitochondria (rhodamine 123) fluorescence. Growth Dev. Aging 55, 185–191.Suche in Google Scholar

Mattson, M.P. (2015). Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. Aging Mech. Dis. 1, 15003.10.1038/npjamd.2015.3Suche in Google Scholar

Mattson, M.P., Gleichman, M., and Cheung, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766.10.1016/j.neuron.2008.10.010Suche in Google Scholar

McFarland, R., Taylor, R.W., and Turnbull, D.M. (2007). Mitochondrial disease – its impact, etiology and pathology. Curr. Top. Dev. Biol. 77, 113–155.10.1016/S0070-2153(06)77005-3Suche in Google Scholar

McKenna, M.C., Hopkins, I.B., Lindauer, S.L., and Bamford, P. (2006). Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influences transient hetero-enzyme complex (metabolon) formation. Neurochem. Int. 48, 629–636.10.1016/j.neuint.2005.11.018Suche in Google Scholar PubMed

Mettert, E.L. and Kiley, P.J. (2015). Fe-S proteins that regulate gene expression. Biochim. Biophys. Acta. 1853, 1284–1293.10.1016/j.bbamcr.2014.11.018Suche in Google Scholar PubMed PubMed Central

Miller, K.E. and Sheetz, M.P. (2004). Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117, 2791–2804.10.1242/jcs.01130Suche in Google Scholar PubMed

Miyamoto, A., Wake, H., Moorhouse, A.J., and Nabekura, J. (2013). Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front. Cell. Neurosci. 7, 70.10.3389/fncel.2013.00070Suche in Google Scholar PubMed PubMed Central

Naga, K.K., Sullivan, P.G., and Geddes, J.W. (2007). High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J. Neurosci. 27, 7469–7475.10.1523/JNEUROSCI.0646-07.2007Suche in Google Scholar PubMed PubMed Central

Neifakh, S.A. and Puchkova, L.V. (1974). Letter: On the repression of mitochondrial DNA transcription by fructose 1,6-diphosphate and its derepression by cyclic adenosine 3′,5′-monophosphate. Mol. Cell. Biochem. 3, 165–168.10.1007/BF01659188Suche in Google Scholar PubMed

Nicholls, D.G. (1993). The glutamatergic nerve terminals. Eur. J. Biochem. 212, 613–631.10.1007/978-3-642-78757-7_6Suche in Google Scholar

Opazo, K.M., Greenough, M.A., and Bush, A.I. (2014). Copper: from neurotransmission to neuroproteostasis. Front. Aging Neurosci. 6, 143.10.3389/fnagi.2014.00143Suche in Google Scholar PubMed PubMed Central

Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 460, 72–81.10.1016/j.bbrc.2015.01.137Suche in Google Scholar PubMed

Pan, Z., Sikandar, S., Witherspoon, M., Dizon, D., Nguyen, T., Benirschke, K., Wiley, C., Vrana, P., and Lipkin, S.M. (2008). Impaired placental trophoblast lineage differentiation in Alkbh1-/- mice. Dev. Dyn. 237, 316–327.10.1002/dvdy.21418Suche in Google Scholar PubMed

Panieri, E., Gogvadze, V., Norberg, E., Venkatesh, R., Orrenius, S., and Zhivotovsky, B. (2013). Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med. 57, 176–187.10.1016/j.freeradbiomed.2012.12.024Suche in Google Scholar PubMed

Parton, R.G., Simons, K., and Dotti, C.G. (1992). Axonal and dendritic endocytic pathway in cultured neurons. J. Cell. Biol. 119, 123–137.10.1083/jcb.119.1.123Suche in Google Scholar PubMed PubMed Central

Patergnani, S., Missiroli, S., Marchi, S., and Giorgi, C. (2015). Mitochondria-associated endoplasmic reticulum membranes microenvironment: targeting autophagic and apoptotic pathways in cancer therapy. Front. Oncol. 5, 173.10.3389/fonc.2015.00173Suche in Google Scholar PubMed PubMed Central

Pathak, D., Shields, L., Mendelsohn, B.A., Haddad, D., Lin, W., Gerencser, A.A., Kim, H., Brand, M.D., Edwards, R.H., and Nakamura, K. (2015). The role of mitochondrially derived ATP in synaptic vesicle recycling. J. Biol. Chem. 290, 22325–22336.10.1074/jbc.M115.656405Suche in Google Scholar PubMed PubMed Central

Pellerin, L. and Magistretti, P. (2012). Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32, 1152–1166.10.1038/jcbfm.2011.149Suche in Google Scholar PubMed PubMed Central

Peng, F., Lutsenko, S., Sun, X., and Muzik, O. (2012). Imaging copper metabolism imbalance in Atp7b-/- knockout mouse model of Wilson’s disease with PET-CT and orally administered 64CuCl2. Mol. Imaging Biol. 14, 600–607.10.1007/s11307-011-0532-0Suche in Google Scholar PubMed

Pivovarova, N.B. and Andrews, S.B. (2010). Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J. 277, 3622–3636.10.1111/j.1742-4658.2010.07754.xSuche in Google Scholar PubMed PubMed Central

Raiteri, L. and Raiteri, M. (2000). Synaptosomes still viable after 25 years of superfusion. Neurochem. Res. 25, 1265–1274.10.1023/A:1007648229795Suche in Google Scholar

Raiteri, L., Stigliani, S., Zedda, L., Raiteri, M., and Bonanno, G. (2002). Multiple mechanism of transmitter release evoked by ‘pathologically’ elevated extracellular [K+]: involvement transporter reversal and mitochondrial calcium. J. Neurochem. 80, 706–714.10.1046/j.0022-3042.2001.00750.xSuche in Google Scholar PubMed

Raiteri, L., Zapettini, S., Milanese, M., Fedele, M., Raiteri, M., and Bonanno, G. (2007). Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ‘pathologically’ elevated extraterminal K+ concentration. J. Neurochem. 103, 952–961.10.1111/j.1471-4159.2007.04784.xSuche in Google Scholar PubMed

Rangaraju, V., Calloway, N., and Ryan, T.A. (2014). Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835.10.1016/j.cell.2013.12.042Suche in Google Scholar PubMed PubMed Central

Rasgado-Flores, H. and Blaustein, M.P. (1987). ATP-dependent regulation of cytoplasmic free calcium in nerve terminals. Am. J. Physiol. 252, C588–C594.10.1152/ajpcell.1987.252.6.C588Suche in Google Scholar PubMed

Rintoul, G.L., Filiano, A.J., Brocard, J.B., Kress, G.J., and Reynolds, I.J. (2003). Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J. Neurosci. 23, 7881–7888.10.1523/JNEUROSCI.23-21-07881.2003Suche in Google Scholar

Rizzuto, R. and Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408.10.1152/physrev.00004.2005Suche in Google Scholar PubMed

Rizzuto, R., De Stefani, D., Raffaello, A., and Mammucari, C. (2012). Mitochondria as sensors and regulators of calcium signaling. Nat. Rev. Mol. Cell. Biol. 13, 566–578.10.1038/nrm3412Suche in Google Scholar PubMed

Scarpulla, R.C. (2012). Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim. Biophys. Acta 1819, 1088–1097.10.1016/j.bbagrm.2011.10.011Suche in Google Scholar PubMed PubMed Central

Schafer, D.P. and Stevens, B. (2013). Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr. Opin. Neurobiol. 23, 1034–1040.10.1016/j.conb.2013.09.012Suche in Google Scholar PubMed PubMed Central

Scheffler, I.E. (1999). Mitochondria (New York, USA: J. Willy and Sons, Inc.).10.1002/0471223891Suche in Google Scholar

Shokolenko, I.N., Wilson, G.L., and Alexeyev, M.F. (2014). Aging: a mitochondrial DNA perspective, critical analysis and an update. World J. Exp. Med. 4, 46–57.10.5493/wjem.v4.i4.46Suche in Google Scholar PubMed PubMed Central

Stauch, K.L., Purnell, P.R., and Fox, H.S. (2014). Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J. Proteome Res. 13, 2620–2636.10.1021/pr500295nSuche in Google Scholar PubMed PubMed Central

Stehling, O. and Lill, R. (2013). The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb. Perspect. Biol. 5, a011312.10.1101/cshperspect.a011312Suche in Google Scholar PubMed PubMed Central

Stotland, A. and Gottlieb, R.A. (2015). Mitochondrial quality control: easy come, easy go. Biochim. Biophys. Acta 1853, 2802–2811.10.1016/j.bbamcr.2014.12.041Suche in Google Scholar PubMed PubMed Central

Stotland, A. and Gottlieb, R.A. (2016). a-MHC MitoTimer mouse: in vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J. Mol. Cell. Cardiol. 90, 53–58.10.1016/j.yjmcc.2015.11.032Suche in Google Scholar PubMed PubMed Central

Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547.10.1146/annurev.neuro.26.041002.131412Suche in Google Scholar PubMed

Sudhof, T.C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690.10.1016/j.neuron.2013.10.022Suche in Google Scholar PubMed PubMed Central

Szczepanowska, K. and Trifunovic, A. (2015). Different faces of mitochondrial DNA mutators. Biochim. Biophys. Acta 1847, 1362–1372.10.1016/j.bbabio.2015.05.016Suche in Google Scholar PubMed

Thomas, R.L. and Gustafsson, A.B. (2013). MCL1 is critical for mitochondrial function and autophagy in the heart. Autophagy 9, 1902–1903.10.4161/auto.26168Suche in Google Scholar PubMed PubMed Central

Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.10.1002/ana.410300410Suche in Google Scholar PubMed

Tuppen, H.A., Blakely, E.L., Turnbull, D.M., and Taylor, R.W. (2010). Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 1797, 113–128.10.1016/j.bbabio.2009.09.005Suche in Google Scholar PubMed

Vandresen-Filho, S., Martins, W.C., Bertoldo, D.B., Mancini, G., De Bem, A.F., and Tasca, C.I. (2015). Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress. Neurol. Sci. 36, 1449–1456.10.1007/s10072-015-2180-7Suche in Google Scholar PubMed

Venditti, P., Di Stefano, L., and Di Meo, S. (2013). Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13, 71–82.10.1016/j.mito.2013.01.008Suche in Google Scholar PubMed

Verstreken, P., Ly, C.V., Venken, K.J.T., Koh, T.-W., Zhou, Y., and Bellen, H.J. (2005). Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378.10.1016/j.neuron.2005.06.018Suche in Google Scholar PubMed

Vest, K.E., Wang, J., Gammon, M.G., Maynard, M.K., White, O.L., Cobine, J.A., Mahone, W.K., and Cobine, P.A. (2016). Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae. Open Biol. 6, 150223.10.1098/rsob.150223Suche in Google Scholar PubMed PubMed Central

Villa, R.F., Gorini, A., and Hoyer, S. (2006). Differentiated effect of ageing on the enzymes of Kreb’s cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. J. Neural Transm. 113, 1659–1670.10.1007/s00702-006-0569-4Suche in Google Scholar PubMed

Volgyi, K., Gulyassy, P., Haden, K., Kis, V., Badics, K., Kekest, K.A., Simor, A., Gyorffy, B., Toth, E.A., Lubec, G., et al. (2015). Synaptic mitochondria: a brain mitochondria cluster with a specific proteome. J. Proteom. 120, 142–157.10.1016/j.jprot.2015.03.005Suche in Google Scholar PubMed

Wallace, D.C. (2011). Bioenergetic origins of complexity and disease. Cold Spring Harb. Symp. Quant. Biol. 76, 1–16.10.1101/sqb.2011.76.010462Suche in Google Scholar PubMed PubMed Central

Wang, L.Y. and Augustine, G.J. (2015). Presynaptic nanodomains: a tale of two synapses. Front. Cell. Neurosci. 8, 455.10.3389/fncel.2014.00455Suche in Google Scholar PubMed PubMed Central

Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J., and Schwartz, T.L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest motility. Cell 147, 893–906.10.1016/j.cell.2011.10.018Suche in Google Scholar PubMed PubMed Central

Westbye, M.P., Feyzi, E., Aas, P.A., Vågbø, C.B., Talstad, V.A., Kavli, B., Hagen, L., Sundheim, O., Akbari, M., Liabakk, N.B., et al. (2008). Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J. Biol. Chem. 283, 25046–25056.10.1074/jbc.M803776200Suche in Google Scholar PubMed PubMed Central

Wilhelm, B.G., Mandad, S., Truckenbrodt, S., Krцhnert, K, Schдfer, C., Rammner, B., Koo, S.J., Claβen, G.A., Krauss, M., Haucke, V., et al. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028.10.1126/science.1252884Suche in Google Scholar PubMed

Yarana, C., Sanit, J., Chattipakorn, N., and Chattipakorn, S. (2012). Synaptic and nonsynaptic mitochondria demonstrate a different degree of calcium-induced mitochondrial dysfunction. Life Sci. 90, 808–814.10.1016/j.lfs.2012.04.004Suche in Google Scholar PubMed

Zatulovskaia, Y.A., Ilyechova, E.Y., and Puchkova, L.V. (2015). The features of copper metabolism in the rat liver during development. PLoS One 10, e0140797.10.1371/journal.pone.0140797Suche in Google Scholar PubMed PubMed Central

Zheng, W., Khrapko, K., Coller, H.A., Thilly, W.G., and Copeland, W.C. (2006). Origins of human mitochondrial point mutations as DNA polymerase γ-mediated errors. Mutat. Res. 599, 11–20.10.1016/j.mrfmmm.2005.12.012Suche in Google Scholar PubMed

Zhu, P.J. and Krnjevic, K. (1997). Adenosine release mediates cyanide-induced suppression of CA1 neuronal activity. J. Neurosci. 17, 2355–2364.10.1523/JNEUROSCI.17-07-02355.1997Suche in Google Scholar

Zischka, H. and Lichtmannegger, J. (2014). Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models. Ann. N. Y. Acad. Sci. 1315, 6–15.10.1111/nyas.12347Suche in Google Scholar PubMed

Received: 2016-11-28
Accepted: 2016-12-29
Published Online: 2017-2-14
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0077/html?lang=de
Button zum nach oben scrollen