Startseite Does extracellular proteolysis control mammalian cognition?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Does extracellular proteolysis control mammalian cognition?

  • Hideki Tamura

    Hideki Tamura received MS and the PhD degrees from the Nara Institute of Science and Technology (NAIST), Japan, in 2003 and 2006, respectively. Since 2006, he has been Assistant Professor at NAIST. His current research interests include the neural basis of cognitive function and dysfunction.

    EMAIL logo
    , Yasuyuki Ishikawa

    Yasuyuki Ishikawa received MS and PhD degrees from Osaka University in 1998 and 2001, respectively. In 2003, he joined the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan, as an Assistant Professor. He has been an Associated Professor in Maebashi Institute of Technology, since 2013. His research interest is learning and memory.

    und Sadao Shiosaka

    Sadao Shiosaka received an MS degree from Nagoya University, Japan, in 1977 and a PhD degree from Osaka University, Japan, in 1982. In 1979, he joined the Department of Anatomy, Osaka University Medical School as Assistant Professor. He was appointed an Associated Professor in 1986. He is currently a Professor of Neuroscience at the Nara Institute of Science and Technology. His research interest is in activity-dependent synaptic plasticity via a local extracellular proteolytic activity at the synapse.

    EMAIL logo
Veröffentlicht/Copyright: 15. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recent advances in neuroscience techniques for analyzing synaptic functions, have revealed that even in a fully developed nervous system, dynamic structural changes in synapses can modify a variety of interactions between the presynaptic and postsynaptic neuron. Accumulating evidence suggests that extracellular proteases are involved in the structural modification of synapses through various pathways, including proteolytic cleavage at specific amino acid residues of the extracellular matrix proteins, cell adhesion molecules, and neurotrophic factors. Limited proteolysis induces changes in the properties of substrate proteins or releases functional domains (such as ligands) of the substrate proteins, which activate a signal transduction cascade, and hence could serve to initiate a variety of physiological functions. Such morphological and functional synaptic plasticity might underlie cognitive processes, including learning and memory in animals and humans. Here, we review potential molecular mechanisms of cognition-related focal proteolysis in the hippocampus. In addition, we developed a novel screening method to identify the physiological substrate for proteases.


Corresponding authors: Hideki Tamura and Sadao Shiosaka, Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan

About the authors

Hideki Tamura

Hideki Tamura received MS and the PhD degrees from the Nara Institute of Science and Technology (NAIST), Japan, in 2003 and 2006, respectively. Since 2006, he has been Assistant Professor at NAIST. His current research interests include the neural basis of cognitive function and dysfunction.

Yasuyuki Ishikawa

Yasuyuki Ishikawa received MS and PhD degrees from Osaka University in 1998 and 2001, respectively. In 2003, he joined the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan, as an Assistant Professor. He has been an Associated Professor in Maebashi Institute of Technology, since 2013. His research interest is learning and memory.

Sadao Shiosaka

Sadao Shiosaka received an MS degree from Nagoya University, Japan, in 1977 and a PhD degree from Osaka University, Japan, in 1982. In 1979, he joined the Department of Anatomy, Osaka University Medical School as Assistant Professor. He was appointed an Associated Professor in 1986. He is currently a Professor of Neuroscience at the Nara Institute of Science and Technology. His research interest is in activity-dependent synaptic plasticity via a local extracellular proteolytic activity at the synapse.

This work was supported by JSPS KAKENHI Grant No. 24500439 to HT, No. 23700449 to YI, No. 20300128 to SS, and Japan Science and Technology Agency (JST) CREST program to SS. We thank Dr. Zu-Lin Chen (The Rockefeller University) and Professor Robert Pawlak (University of Exeter) for their valuable comments.

References

Attwood, B.K., Bourgognon, J.-M., Patel, S., Mucha, M., Schiavon, E., Skrzypiec, A.E., Young, K.W., Shiosaka, S., Korostynski, M., Piechota, M., et al. (2011). Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473, 372–375.10.1038/nature09938Suche in Google Scholar

Baranes, D., Lederfein, D., Huang, Y.Y., Chen, M., Bailey, C.H., and Kandel, E.R. (1998). Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825.10.1016/S0896-6273(00)80597-8Suche in Google Scholar

Barr, D.S., Hoyt, K.L., Moore, S.D., and Wilson, W.A. (1997). Post-ictal depression transiently inhibits induction of LTP in area CA1 of the rat hippocampal slice. Epilepsy Res. 27, 111–118.10.1016/S0920-1211(97)01027-9Suche in Google Scholar

Barrett, A.J. and Rawlings, N.D. (1995). Families and clans of serine peptidases. Arch. Biochem. Biophys. 318, 247–250.10.1006/abbi.1995.1227Suche in Google Scholar

Berretta, S. (2012). Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62, 1584–1597.10.1016/j.neuropharm.2011.08.010Suche in Google Scholar

Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361, 31–39.10.1038/361031a0Suche in Google Scholar

Bliss, T., Errington, M., Fransen, E., Godfraind, J.M., Kauer, J.A., Kooy, R.F., Maness, P.F., and Furley, A.J. (2000). Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 10, 1607–1610.10.1016/S0960-9822(00)00865-4Suche in Google Scholar

Bozdagi, O., Nagy, V., Kwei, K.T., and Huntley, G.W. (2007). In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 98, 334–344.10.1152/jn.00202.2007Suche in Google Scholar

Chen, Z.L. and Strickland, S. (1997). Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925.10.1016/S0092-8674(00)80483-3Suche in Google Scholar

Chen, Z., Yoshida, S., Kato, K., Momota, Y., Suzuki, J., Tanaka, T., Ito, J., Nishino, H., Aimoto, S., Kiyama, H., et al. (1995). Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J. Neurosci. 15, 5088–5097.10.1523/JNEUROSCI.15-07-05088.1995Suche in Google Scholar

Corfas, G., Roy, K., and Buxbaum, J.D. (2004). Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci. 7, 575–580.10.1038/nn1258Suche in Google Scholar

Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258–264.10.1038/35025229Suche in Google Scholar

Denny, J.B., Polan-Curtain, J., Ghuman, A., Wayner, M.J., and Armstrong, D.L. (1990). Calpain inhibitors block long-term potentiation. Brain Res. 534, 317–320.10.1016/0006-8993(90)90148-5Suche in Google Scholar

Dickinson, D., Ramsey, M.E., and Gold, J.M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch. Gen. Psych. 64, 532–542.10.1001/archpsyc.64.5.532Suche in Google Scholar PubMed

Dityatev, A., Schachner, M., and Sonderegger, P. (2010). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746.10.1038/nrn2898Suche in Google Scholar PubMed

Engert, F. and Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70.10.1038/19978Suche in Google Scholar PubMed

Fernández-Monreal, M., López-Atalaya, J.P., Benchenane, K., Cacquevel, M., Dulin, F., Le Caer, J.-P., Rossier, J., Jarrige, A.-C., Mackenzie, E.T., Colloc’h, N., et al. (2004). Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 279, 50850–50856.10.1074/jbc.M407069200Suche in Google Scholar PubMed

Fisahn, A., Neddens, J., Yan, L., and Buonanno, A. (2009). Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb. Cortex. 19, 612–618.10.1093/cercor/bhn107Suche in Google Scholar PubMed PubMed Central

Grammer, M., Kuchay, S., Chishti, A., and Baudry, M. (2005). Lack of phenotype for LTP and fear conditioning learning in calpain 1 knock-out mice. Neurobiol. Learn. Mem. 84, 222–227.10.1016/j.nlm.2005.07.007Suche in Google Scholar PubMed

Hall, J., Whalley, H.C., Job, D.E., Baig, B.J., McIntosh, A.M., Evans, K.L., Thomson, P.A., Porteous, D.J., Cunningham-Owens, D.G., Johnstone, E.C., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat. Neurosci. 9, 1477–1478.10.1038/nn1795Suche in Google Scholar PubMed

Harrison, P.J. and Weinberger, D.R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry. 10, 40–68.10.1038/sj.mp.4001558Suche in Google Scholar

Hilgenberg, L.G., Su, H., Gu, H., O’Dowd, D.K., and Smith, M.A. (2006). Alpha3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125, 359–369.10.1016/j.cell.2006.01.052Suche in Google Scholar

Horii, Y., Yamasaki, N., Miyakawa, T., and Shiosaka, S. (2008). Increased anxiety-like behavior in neuropsin (kallikrein-related peptidase 8) gene-deficient mice. Behav. Neurosci. 122, 498–504.10.1037/0735-7044.122.3.498Suche in Google Scholar

Huang, Y.Y., Bach, M.E., Lipp, H.P., Zhuo, M., Wolfer, D.P., Hawkins, R.D., Schoonjans, L., Kandel, E.R., Godfraind, J.M., Mulligan, R., et al. (1996). Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.10.1073/pnas.93.16.8699Suche in Google Scholar

Izumi, A., Iijima, Y., Noguchi, H., Numakawa, T., Okada, T., Hori, H., Kato, T., Tatsumi, M., Kosuga, A., Kamijima, K., et al. (2008). Genetic variations of human neuropsin gene and psychiatric disorders: polymorphism screening and possible association with bipolar disorder and cognitive functions. Neuropsychopharmacology 33, 3237–3245.10.1038/npp.2008.29Suche in Google Scholar

Keifer, J., Sabirzhanov, B.E., Zheng, Z., Li, W., and Clark, T.G. (2009). Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning. J. Neurosci. 29, 14956–14964.10.1523/JNEUROSCI.3649-09.2009Suche in Google Scholar

Kishi, T., Kato, M., Shimizu, T., Kato, K., Matsumoto, K., Yoshida, S., Shiosaka, S., and Hakoshima, T. (1999). Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. J. Biol. Chem. 274, 4220–4224.10.1074/jbc.274.7.4220Suche in Google Scholar

Kishi, T., Matsuhashi, H., Bird, P.I., and Kato, K. (2002). Distribution of serine proteinase inhibitor, clade B, member 6 (Serpinb6) in the adult mouse brain. Brain Res. Gene Expr. Patterns. 1, 175–180.10.1016/S1567-133X(02)00014-5Suche in Google Scholar

Komai, S., Matsuyama, T., Matsumoto, K., Kato, K., Kobayashi, M., Imamura, K., Yoshida, S., Ugawa, S., and Shiosaka, S. (2000). Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur. J. Neurosci. 12, 1479–1486.10.1046/j.1460-9568.2000.00035.xSuche in Google Scholar PubMed

Krug, A., Markov, V., Eggermann, T., Krach, S., Zerres, K., Stöcker, T., Shah, N.J., Schneider, F., Nöthen, M.M., Treutlein, J., et al. (2008). Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals. NeuroImage 42, 1569–1576.10.1016/j.neuroimage.2008.05.058Suche in Google Scholar PubMed

La Marca, R., Cerri, F., Horiuchi, K., Bachi, A., Feltri, M.L., Wrabetz, L., Blobel, C.P., Quattrini, A., Salzer, J.L., and Taveggia, C. (2011). TACE (ADAM17) inhibits Schwann cell myelination. Nat. Neurosci. 14, 857–865.10.1038/nn.2849Suche in Google Scholar PubMed PubMed Central

Lee, Y-S. and Silva, A.J. (2009). The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140.10.1038/nrn2572Suche in Google Scholar PubMed PubMed Central

Loeb, J.A. and Fischbach, G.D. (1995). ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J. Cell Biol. 130, 127–135.10.1083/jcb.130.1.127Suche in Google Scholar PubMed PubMed Central

Lüthl, A., Laurent, J.P., Figurov, A., Muller, D., and Schachner, M. (1994). Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779.10.1038/372777a0Suche in Google Scholar PubMed

Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927.10.1126/science.283.5409.1923Suche in Google Scholar PubMed

Matsumoto-Miyai, K., Ninomiya, A., Yamasaki, H., Tamura, H., Nakamura, Y., and Shiosaka, S. (2003). NMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J. Neurosci. 23, 7727–7736.10.1523/JNEUROSCI.23-21-07727.2003Suche in Google Scholar

Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.10.1038/nature02617Suche in Google Scholar PubMed PubMed Central

Matys, T. and Strickland, S. (2003). Tissue plasminogen activator and NMDA receptor cleavage. Nat. Med. 9, 371–372.10.1038/nm0403-371Suche in Google Scholar PubMed

Matzel, L.D., Babiarz, J., Townsend, D.A., Grossman, H.C., and Grumet, M. (2008). Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype reflective of impulsivity. Genes Brain Behav. 7, 470–480.10.1111/j.1601-183X.2007.00382.xSuche in Google Scholar PubMed

Mizoguchi, H., Nakade, J., Tachibana, M., Ibi, D., Someya, E., Koike, H., Kamei, H., Nabeshima, T., Itohara, S., Takuma, K., et al. (2011). Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J. Neurosci. 31, 12963–12971.10.1523/JNEUROSCI.3118-11.2011Suche in Google Scholar PubMed PubMed Central

Mizutani, A., Tanaka, T., Saito, H., and Matsuki, N. (1997). Postsynaptic blockade of inhibitory postsynaptic currents by plasmin in CA1 pyramidal cells of rat hippocampus. Brain Res. 761, 93–96.10.1016/S0006-8993(97)00338-7Suche in Google Scholar

Molinari, F., Rio, M., Meskenaite, V., Encha-Razavi, F., Augé, J., Bacq, D., Briault, S., Vekemans, M., Munnich, A., Attié-Bitach, T., et al. (2002). Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298, 1779–1781.10.1126/science.1076521Suche in Google Scholar

Moore, S.D., Barr, D.S., and Wilson, W.A. (1993). Seizure-like activity disrupts LTP in vitro. Neurosci. Lett. 163, 117–119.10.1016/0304-3940(93)90243-ESuche in Google Scholar

Murase, S. and Schuman, E.M. (1999). The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell Biol. 11, 549–553.10.1016/S0955-0674(99)00019-8Suche in Google Scholar

Murray, A.J., Sauer, J.-F., Riedel, G., McClure, C., Ansel, L., Cheyne, L., Bartos, M., Wisden, W., and Wulff, P. (2011). Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci. 14, 297–299.10.1038/nn.2751Suche in Google Scholar PubMed PubMed Central

Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R.M., Silva, A.J., Kaczmarek, L., and Huntley, G.W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 26, 1923–1934.10.1523/JNEUROSCI.4359-05.2006Suche in Google Scholar PubMed PubMed Central

Nakamura, Y., Tamura, H., Horinouchi, K., and Shiosaka, S. (2006). Role of neuropsin in formation and maturation of Schaffer-collateral L1cam-immunoreactive synaptic boutons. J. Cell Sci. 119, 1341–1349.10.1242/jcs.02862Suche in Google Scholar PubMed

Neddens, J. and Buonanno, A. (2010). Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus 20, 724–744.Suche in Google Scholar

Ng, K.S., Leung, H.W., Wong, P.T., and Low, C.M. (2012). Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor. J. Biol. Chem. 287, 25520–25529.10.1074/jbc.M112.374397Suche in Google Scholar PubMed PubMed Central

Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E.T., Vivien, D., and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64.10.1038/83358Suche in Google Scholar PubMed

Norris, E.H. and Strickland, S. (2007). Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc. Natl. Acad. Sci. USA 104, 13473–13478.10.1073/pnas.0705848104Suche in Google Scholar PubMed PubMed Central

Nyman-Huttunen, H., Tian, L., Ning, L., and Gahmberg, C.G. (2006). Alpha-actinin-dependent cytoskeletal anchorage is important for ICAM-5-mediated neuritic outgrowth. J. Cell Sci. 119, 3057–3066.10.1242/jcs.03045Suche in Google Scholar

O’Donnell, C., Nolan, M.F., and Van Rossum, M.C.W. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J. Neurosci. 31, 16142–16156.10.1523/JNEUROSCI.2520-11.2011Suche in Google Scholar

O’Dushlaine, C., Kenny, E., Heron, E., Donohoe, G., Gill, M., Morris, D., and Corvin, A. (2011). Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol. Psych. 16, 286–292.10.1038/mp.2010.7Suche in Google Scholar

Oka, T., Hakoshima, T., Itakura, M., Yamamori, S., Takahashi, M., Hashimoto, Y., Shiosaka, S., and Kato, K. (2002). Role of loop structures of neuropsin in the activity of serine protease and regulated secretion. J. Biol. Chem. 277, 14724–14730.10.1074/jbc.M110725200Suche in Google Scholar

Oliver, M.W., Baudry, M., and Lynch, G. (1989). The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res. 505, 233–238.10.1016/0006-8993(89)91448-0Suche in Google Scholar

Pankonin, M.S., Sohi, J., Kamholz, J., and Loeb, J.A. (2009). Differential distribution of neuregulin in human brain and spinal fluid. Brain Res. 1258, 1–11.10.1016/j.brainres.2008.12.047Suche in Google Scholar PubMed

Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W-H., Hempstead, B.L., and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491.10.1126/science.1100135Suche in Google Scholar PubMed

Park, H. and Poo, M. (2012). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23.10.1038/nrn3379Suche in Google Scholar PubMed

Peixoto, R.T., Kunz, P.A., Kwon, H., Mabb, A.M., Sabatini, B.L., Philpot, B.D., and Ehlers. M.D. (2012). Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76, 396–409.10.1016/j.neuron.2012.07.006Suche in Google Scholar PubMed PubMed Central

Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J-E., and Woolfrey, K.M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293.10.1038/nn.2741Suche in Google Scholar PubMed PubMed Central

Puente, X.S., Sánchez, L.M., Overall, C.M., and López-Otín, C. (2003). Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558.10.1038/nrg1111Suche in Google Scholar PubMed

Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R., and Kuhl, D. (1993). Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457.10.1038/361453a0Suche in Google Scholar PubMed

Rybakowski, J.K., Skibinska, M., Kapelski, P., Kaczmarek, L., and Hauser, J. (2009). Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr. Res. 109, 90–93.10.1016/j.schres.2009.02.005Suche in Google Scholar PubMed

Samson, A.L., Nevin, S.T., Croucher, D., Niego, B., Daniel, P.B., Weiss, T.W., Moreno, E., Monard, D., Lawrence, D.A., and Medcalf, R.L. (2011). Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J. Neurochem. 107, 1091–1101.Suche in Google Scholar

Shamir, A., Kwon, O.B., Karavanova, I., Vullhorst, D., Leiva-Salcedo, E., Janssen, M.J., and Buonanno, A. (2012). The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J. Neurosci. 32, 2988–2997.10.1523/JNEUROSCI.1899-11.2012Suche in Google Scholar PubMed PubMed Central

Shimizu, C., Yoshida, S., Shibata, M., Kato, K., Momota, Y., Matsumoto, K., Shiosaka, T., Midorikawa, R., Kamachi, T., Kawabe, A., et al. (1998). Characterization of recombinant and brain neuropsin, a plasticity-related serine protease. J. Biol. Chem. 273, 11189–11196.10.1074/jbc.273.18.11189Suche in Google Scholar PubMed

Shimizu, K., Phan, T., Mansuy, I.M., and Storm, D.R. (2007). Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128, 1219–1229.10.1016/j.cell.2006.12.047Suche in Google Scholar PubMed PubMed Central

Shiosaka, S. (2004). Serine proteases regulating synaptic plasticity. Anat. Sci. Int. 79, 137–144.10.1111/j.1447-073x.2004.00080.xSuche in Google Scholar PubMed

Shiosaka, S. and Ishikawa, Y. (2011). Neuropsin–a possible modulator of synaptic plasticity. J. Chem. Neuroanat. 42, 24–29.10.1016/j.jchemneu.2011.05.014Suche in Google Scholar PubMed

Shors, T.J. and Matzel, L.D. (1997). Long-term potentiation: what’s learning got to do with it? Behav. Brain Sci. 20, 597–614.10.1017/S0140525X97001593Suche in Google Scholar

Slipczuk, L., Bekinschtein, P., Katche, C., Cammarota, M., Izquierdo, I., and Medina, J.H. (2009). BDNF Activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 4, 1–13.10.1371/journal.pone.0006007Suche in Google Scholar PubMed PubMed Central

Sorensen, S.D., Nicole, O., Peavy, R.D., Montoya, L.M., Lee, C.J., Murphy, T.J., Traynelis, S.F., and Hepler, J.R. (2003). Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol. 64, 1199–1209.10.1124/mol.64.5.1199Suche in Google Scholar PubMed

Südhof, T.C. (2012). The presynaptic active zone. Neuron 75, 11–25.10.1016/j.neuron.2012.06.012Suche in Google Scholar PubMed PubMed Central

Tamura, H., Ishikawa, Y., Hino, N., Maeda, M., Yoshida, S., Kaku, S., and Shiosaka, S. (2006). Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. J. Physiol. 570, 541–551.10.1113/jphysiol.2005.098715Suche in Google Scholar PubMed PubMed Central

Tamura, H., Kawata, M., Hamaguchi, S., Ishikawa, Y., and Shiosaka, S. (2012). Processing of neuregulin-1 by neuropsin regulates GABAergic neuron to control neural plasticity of the mouse hippocampus. J. Neurosci. 32, 12657–12672.10.1523/JNEUROSCI.2542-12.2012Suche in Google Scholar PubMed PubMed Central

Tian, L., Nyman, H., Kilgannon, P., Yoshihara, Y., Mori, K., Andersson, L.C., Kaukinen, S., Rauvala, H., Gallatin, WM., and Gahmberg, C.G. (2000). Intercellular adhesion molecule-5 induces dendritic outgrowth by homophilic adhesion. J. Cell Biol. 150, 243–252.10.1083/jcb.150.1.243Suche in Google Scholar PubMed PubMed Central

Tian, L., Stefanidakis, M., Ning, L., Van Lint, P., Nyman-Huttunen, H., Libert, C., Itohara, S., Mishina, M., Rauvala, H., and Gahmberg, C.G. (2007). Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178, 687–700.10.1083/jcb.200612097Suche in Google Scholar PubMed PubMed Central

Toni, N., Buchs, P.A., Nikonenko, I., Bron, C.R., and Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425.10.1038/46574Suche in Google Scholar PubMed

Traynelis, S.F. and Lipton, S.A. (2001). Is tissue plasminogen activator a threat to neurons? Nat. Med. 7, 17–18.Suche in Google Scholar

Traynelis, S.F. and Trejo, J. (2007). Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr. Opin. Hematol. 14, 230–235.10.1097/MOH.0b013e3280dce568Suche in Google Scholar PubMed

Vanderklish, P., Bednarski, E., and Lynch, G. (1996). Translational suppression of calpain blocks long-term potentiation. Learn. Mem. (Cold Spring Harb.) 3, 209–217.10.1101/lm.3.2-3.209Suche in Google Scholar PubMed

Wang, X., Bozdagi, O., Nikitczuk, J.S., Zhai, Z.W., Zhou, Q., and Huntley, G.W. (2008). Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl. Acad. Sci. USA 105, 19520–19525.10.1073/pnas.0807248105Suche in Google Scholar PubMed PubMed Central

Woo, R.-S., Li, X-M., Tao, Y., Carpenter-Hyland, E., Huang, Y.Z., Weber, J., Neiswender, H., Dong, X-P., Wu, J., Gassmann, M., et al. (2007). Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54, 599–610.10.1016/j.neuron.2007.04.009Suche in Google Scholar PubMed

Yoshida, S. and Shiosaka, S. (1999). Plasticity-related serine proteases in the brain (review). Int. J. Mol. Med. 3, 405–409.10.3892/ijmm.3.4.405Suche in Google Scholar PubMed

Received: 2013-3-12
Accepted: 2013-4-14
Published Online: 2013-05-15
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 19.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2013-0007/pdf
Button zum nach oben scrollen