Abstract
A common observation in recordings of neuronal activity from the cerebral cortex is that populations of neurons show patterns of synchronized oscillatory activity. However, it has been suggested that neuronal synchronization can, in certain pathological conditions, become excessive and possibly have a pathogenic role. In particular, aberrant oscillatory activation patterns have been implicated in conditions involving cortical dysfunction. We here review the mechanisms thought to be involved in the generation of cortical oscillations and discuss their relevance in relation to a recent finding indicating that high-frequency oscillations in the cerebral cortex have an important role in the generation of levodopa-induced dyskinesia. On the basis of these insights, it is suggested that the identification of physiological changes associated with symptoms of disease is a particularly important first step toward a more rapid development of novel treatment strategies.
This work has been funded by: The Swedish Research Council [#325-2011-6441], Stiftelsen Olle Engkvist Byggmästare, The Parkinson Research Foundation, The Michael J Fox Foundation and Åke Wibergs Stiftelse. We would like to thank Martin Tamtè and Nedjeljka Ivica for comments on this manuscript, and we are thankful for the scientific environment created by friends and colleagues at the Neuronano Research Center coordinated by Dr. Jens Schouenborg.
References
Adrian, E.D. and Matthews, B.H. (1934). The interpretation of potential waves in the cortex. J. Physiol. 81, 440–471.10.1113/jphysiol.1934.sp003147Search in Google Scholar
Agari, T. and Date, I. (2012). Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurol. Med. Chir. 52, 470–474.10.2176/nmc.52.470Search in Google Scholar
Arroyo, S., Lesser, R.P., Gordon, B., Uematsu, S., Jackson, D., and Webber, R. (1993). Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr. Clin. Neurophysiol. 87, 76–87.10.1016/0013-4694(93)90114-BSearch in Google Scholar
Aziz, T.Z., Peggs, D., Sambrook, M.A., and Crossman, A.R. (1991). Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov. Disord. 6, 288–292.10.1002/mds.870060404Search in Google Scholar PubMed
Barlow, J.S. (1993). The electroencephalogram: its patterns and origins (Cambridge, MA: MIT Press, A Bradford Book, 1st ed.).Search in Google Scholar
Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K.D., and Buzsáki, G. (2004). Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608.10.1152/jn.01170.2003Search in Google Scholar PubMed
Bates, A.T., Liddle, P.F., Kiehl, K.A., and Ngan, E.T.C. (2004). State dependent changes in error monitoring in schizophrenia. J. Psychiatr. Res. 38, 347–356.10.1016/j.jpsychires.2003.11.002Search in Google Scholar PubMed
Baufreton, J., Atherton, J.F., Surmeier, D.J., and Bevan, M.D. (2005). Enhancement of excitatory synaptic integration by GABAergic inhibition in the subthalamic nucleus. J. Neurophysiol. 25, 8505–8517.10.1523/JNEUROSCI.1163-05.2005Search in Google Scholar PubMed PubMed Central
Benabid, A.L., Pollak, P., Louveau, A., Henry, S., and De Rougemont, J. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50, 344–346.10.1159/000100803Search in Google Scholar PubMed
Benabid, A.L., Pollak, P., Hommel, M., Gaio, J.M., De Rougemont, J., and Perret, J. (1989). Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus. Rev. Neurol. (Paris) 145, 320–323.Search in Google Scholar
Berger, H. (1929). Über das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh. 87, 527–570.10.1007/BF01797193Search in Google Scholar
Bergman, H., Wichmann, T., and DeLong, M.R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438.10.1126/science.2402638Search in Google Scholar PubMed
Bergman, H., Wichmann, T., Karmon, B., and DeLong, M.R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72, 507–520.10.1152/jn.1994.72.2.507Search in Google Scholar
Bernardi, G., Cherubini, E., Marciani, M.G., Mercuri, N., and Stanzione, P. (1982). Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Res. 245, 267–274.10.1016/0006-8993(82)90809-5Search in Google Scholar
Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P., and Wilson, C.J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25, 525–531.10.1016/S0166-2236(02)02235-XSearch in Google Scholar
Bevan, M.D., Atherton, J.F., and Baufreton, J. (2006). Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr. Opin. Neurobiol. 16, 621–628.10.1016/j.conb.2006.10.003Search in Google Scholar
Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363.10.1002/mds.10358Search in Google Scholar
Brown, P. and Marsden, C.D. (1998). What do the basal ganglia do? Lancet 351, 1801–1804.10.1016/S0140-6736(97)11225-9Search in Google Scholar
Brown, P. and Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clin. Neurophysiol. 116, 2510–2519.10.1016/j.clinph.2005.05.009Search in Google Scholar
Brown, R.M., Crane, A.M., and Goldman, P.S. (1979). Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168, 133–150.10.1016/0006-8993(79)90132-XSearch in Google Scholar
Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., and Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21, 1033–1038.10.1523/JNEUROSCI.21-03-01033.2001Search in Google Scholar
Brown, P., Kupsch, A., Magill, P.J., Sharott, A., Harnack, D., and Meissner, W. (2002). Oscillatory local field potentials recorded from the subthalamic nucleus of the alert rat. Exp. Neurol. 177, 581–585.10.1006/exnr.2002.7984Search in Google Scholar PubMed
Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M.G., Pilato, F., Tonali, P.A., and Di Lazzaro, V. (2004). Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp. Neurol. 188, 480–490.10.1016/j.expneurol.2004.05.009Search in Google Scholar
Brunel, N. and Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430.10.1152/jn.01095.2002Search in Google Scholar
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.10.1016/S0896-6273(02)00586-XSearch in Google Scholar
Buzsáki, G. and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225.10.1146/annurev-neuro-062111-150444Search in Google Scholar
Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., and Moore, C.I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667.10.1038/nature08002Search in Google Scholar
Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science 127, 471.10.1126/science.127.3296.471.aSearch in Google Scholar
Carta, M., Lindgren, H.S., Lundblad, M., Stancampiano, R., Fadda, F., and Cenci, M.A. (2006). Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J. Neurochem. 96, 1718–1727.10.1111/j.1471-4159.2006.03696.xSearch in Google Scholar
Cenci, M.A. and Konradi, C. (2010). Maladaptive striatal plasticity in l-DOPA-induced dyskinesia. Prog. Brain Res. 183, 209–233.10.1016/S0079-6123(10)83011-0Search in Google Scholar
Chatrian, G.E., Petersen, M.C., and Lazarte, J.A. (1959). The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr. Clin. Neurophysiol. 11, 497–510.10.1016/0013-4694(59)90048-3Search in Google Scholar
Chiodo, L.A. and Berger, T.W. (1986). Interactions between dopamine and amino acid-induced excitation and inhibition in the striatum. Brain Res. 375, 198–203.10.1016/0006-8993(86)90976-5Search in Google Scholar
Costa, R.M., Lin, S.-C., Sotnikova, T.D., Cyr, M., Gainetdinov, R.R., Caron, M.G., and Nicolelis, M.A.L. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52, 359–369.10.1016/j.neuron.2006.07.030Search in Google Scholar
Courtemanche, R., Fujii, N., and Graybiel, A.M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J. Neurosci. 23, 11741–11752.10.1523/JNEUROSCI.23-37-11741.2003Search in Google Scholar
Csicsvari, J., Jamieson, B., Wise, K.D., and Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322.10.1016/S0896-6273(02)01169-8Search in Google Scholar
Da Silva Alves, F., Figee, M., Van Avamelsvoort, T., Veltman, D., and De Haan, L. (2008). The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol. Bull. 41, 121–132.Search in Google Scholar
Dalmau, A., Bergman, B., and Brismar, B. (1999). Psychotic disorders among inpatients with abuse of cannabis, amphetamine and opiates. Do dopaminergic stimulants facilitate psychiatric illness? Eur. Psychiatry 14, 366–371.Search in Google Scholar
Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486.10.1176/ajp.148.11.1474Search in Google Scholar PubMed
Dawson, T.M., Gehlert, D.R., McCabe, R.T., Barnett, A., and Wamsley, J.K. (1986). D-1 dopamine receptors in the rat brain: a quantitative autoradiographic analysis. J. Neurosci. 6, 2352–2365.10.1523/JNEUROSCI.06-08-02352.1986Search in Google Scholar
DeGiorgio, C.M., Shewmon, D.A., and Whitehurst, T. (2003). Trigeminal nerve stimulation for epilepsy. Neurology 61, 421–422.10.1212/01.WNL.0000073982.42650.57Search in Google Scholar PubMed
DeGiorgio, C.M,. Shewmon, A., Murray, D., and Whitehurst, T. (2006). Pilot study of trigeminal nerve stimulation (TNS) for epilepsy: a proof-of-concept trial. Epilepsia 47, 1213–1215.10.1111/j.1528-1167.2006.00594.xSearch in Google Scholar PubMed
Deniau, J.-M., Degos, B., Bosch, C., and Maurice, N. (2010). Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur. J. Neurosci. 32, 1080–1091.10.1111/j.1460-9568.2010.07413.xSearch in Google Scholar PubMed
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., and Kruse, W. (1988). Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 60, 121–130.10.1007/BF00202899Search in Google Scholar PubMed
Ermentrout, G. and Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217.10.1007/BF00160535Search in Google Scholar
Fanselow, E.E., Reid, A.P., and Nicolelis, M.A. (2000). Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J. Neurosci. 20, 8160–8168.10.1523/JNEUROSCI.20-21-08160.2000Search in Google Scholar
Fénelon, G., Goujon, C., Gurruchaga, J.-M., Cesaro, P., Jarraya, B., Palfi, S., and Lefaucheur, J.-P. (2012). Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism Relat. Disord. 18, 213–214.10.1016/j.parkreldis.2011.07.015Search in Google Scholar
Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224.10.1146/annurev.neuro.051508.135603Search in Google Scholar
Fuentes, R., Petersson, P., Siesser, W.B., Caron, M.G., and Nicolelis, M.A. (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 323, 1578–1582.10.1126/science.1164901Search in Google Scholar
Fuentes, R., Petersson, P., and Nicolelis, M.A. (2010). Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: mechanistic approach. Eur. J. Neurosci. 32, 1100–1108.10.1111/j.1460-9568.2010.07417.xSearch in Google Scholar
Gage, G.J., Stoetzner, C.R., Wiltschko, A.B., and Berke, J.D. (2010). Selective activation of striatal fast-spiking interneurons during choice execution. Neuron 67, 466–749.10.1016/j.neuron.2010.06.034Search in Google Scholar
Galarreta, M. and Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75.10.1038/47029Search in Google Scholar
Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., and Berger, B. (1991). Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann. Neurol. 30, 365–374.10.1002/ana.410300308Search in Google Scholar
Gaspar, P., Bloch, B., and Le Moine, C. (1995). D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neurosci. 7, 1050–1063.10.1111/j.1460-9568.1995.tb01092.xSearch in Google Scholar
Gastaut, H. (1952). Electrocorticographic study of the reactivity of rolandic rhythm. [Etude électrocorticographique de la réactivité des rythmes rolandiques.]. Rev. Neurol. 87, 176–182.Search in Google Scholar
Gastaut, H.J. and Bert, J. (1954). EEG changes during cinematographic presentation (Moving picture activation of the EEG). Electroencephalogr. Clin. Neurophysiol. 6, 433–444.10.1016/0013-4694(54)90058-9Search in Google Scholar
Gastaut, H., Terzian, H., and Gastaut, Y. (1952). Etude d’une activité éléctroencephalographique méconnue: Le rythme rolandique en arceau. Mars. Méd. 89, 296–310.Search in Google Scholar
Gibson, J.R., Beierlein, M., and Connors, B.W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.10.1038/47035Search in Google Scholar
Gittis, A.H., Hang, G.B., LaDow, E.S., Shoenfeld, L.R., Atallah, B.V., Finkbeiner, S., and Kreitzer, A.C. (2011). Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71, 858–868.10.1016/j.neuron.2011.06.035Search in Google Scholar
Goetz, C.G., Poewe, W., Rascol, O., and Sampaio, C. (2005). Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov. Disord. 20, 523–539.10.1002/mds.20464Search in Google Scholar
Goldman-Rakic, P.S., Muly, E.C., and Williams, G.V. (2000). D1 receptors in prefrontal cells and circuits. Brain Res. Brain Res. Rev. 31, 295–301.10.1016/S0165-0173(99)00045-4Search in Google Scholar
Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., and Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359.10.1126/science.1167093Search in Google Scholar PubMed PubMed Central
Gray, C.M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702.10.1073/pnas.86.5.1698Search in Google Scholar PubMed PubMed Central
Gray, C., König, P., Engel, A., and Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337.10.1038/338334a0Search in Google Scholar PubMed
Grillner, S., Hellgren, J., Ménard, A., Saitoh, K., and Wikström, M.A. (2005). Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci. 28, 364–370.10.1016/j.tins.2005.05.004Search in Google Scholar PubMed
Gutfreund, Y., Yarom, Y., and Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol. 483, Pt 3, 621–640.10.1113/jphysiol.1995.sp020611Search in Google Scholar PubMed PubMed Central
Hájos, N., Pálhalmi, J., Mann, E.O., Németh, B., Paulsen, O., and Freund, T.F. (2004). Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137.10.1523/JNEUROSCI.2113-04.2004Search in Google Scholar PubMed PubMed Central
Halje, P., Tamte, M., Richter, U., Mohammed, M., Cenci, M.A., and Petersson, P. (2012). Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J. Neurosci. 32, 16541–16551.10.1523/JNEUROSCI.3047-12.2012Search in Google Scholar
Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357–364.10.1016/j.tins.2007.05.004Search in Google Scholar
Hari, R. and Salmelin, R. (1997). Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 20, 44–49.10.1016/S0166-2236(96)10065-5Search in Google Scholar
Harrison, P.J. and Weinberger, D.R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68.10.1038/sj.mp.4001558Search in Google Scholar
Hassan, S., Amer, S., Alwaki, A., and Elborno, A. (2013). A patient with Parkinson’s disease benefits from spinal cord stimulation. J. Clin. Neurosci. 20, 1155–1156.10.1016/j.jocn.2012.08.018Search in Google Scholar
Herculano-Houzel, S., Munk, M.H., Neuenschwander, S., and Singer, W. (1999). Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 19, 3992–4010.10.1523/JNEUROSCI.19-10-03992.1999Search in Google Scholar
Herrling, P.L. and Hull, C.D. (1980). Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res. 192, 441–462.10.1016/0006-8993(80)90896-3Search in Google Scholar
Hill, M.P., Ravenscroft, P., Bezard, E., Crossman, A.R., Brotchie, J.M., Michel, A., Grimée, R., and Klitgaard, H. (2004). Levetiracetam potentiates the antidyskinetic action of amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. J. Pharmacol. Exp. Ther. 310, 386–394.10.1124/jpet.104.066191Search in Google Scholar PubMed
Hirsch, E.C. (1994). Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Mol. Neurobiol. 9, 135–142.10.1007/BF02816113Search in Google Scholar PubMed
Holroyd, C.B. and Coles, M.G.H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709.10.1037/0033-295X.109.4.679Search in Google Scholar PubMed
Hoogenboom, N., Schoffelen, J.-M., Oostenveld, R., Parkes, L.M., and Fries, P. (2006). Localizing human visual gamma-band activity in frequency, time and space. NeuroImage 29, 764–773.10.1016/j.neuroimage.2005.08.043Search in Google Scholar
Huot, P., Fox, S.H., Newman-Tancredi, A., and Brotchie, J.M. (2011). Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J. Pharmacol. Exp. Ther. 339, 2–8.10.1124/jpet.111.184093Search in Google Scholar
Huot, P., Johnston, T.H., Koprich, J.B., Fox, S.H., and Brotchie, J.M. (2013). The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s Disease. Pharmacol. Rev. 65, 171–222.10.1124/pr.111.005678Search in Google Scholar
Hutcheon, B. and Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–22.10.1016/S0166-2236(00)01547-2Search in Google Scholar
Jasper, H. and Penfield, W. (1949). Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Eur. Arch. Psychiatry Clin. Neurosci. 183, 163–174.10.1007/BF01062488Search in Google Scholar
Jefferys, J., Traub, R., and Whittington, M. (1996). Neuronal networks for induced “40 Hz” rhythms. Trends Neurosci. 19, 202–208.10.1016/S0166-2236(96)10023-0Search in Google Scholar
Jocham, G. and Ullsperger, M. (2009). Neuropharmacology of performance monitoring. Neurosci. Biobehav. Rev. 33, 48–60.10.1016/j.neubiorev.2008.08.011Search in Google Scholar PubMed
Jones, E.G. (2009). Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann. N. Y. Acad. Sci. 1157, 10–23.10.1111/j.1749-6632.2009.04534.xSearch in Google Scholar PubMed
Kandel, A. and Buzsáki, G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J. Neurosci. 17, 6783–6797.10.1523/JNEUROSCI.17-17-06783.1997Search in Google Scholar
Kapur, S. and Seeman, P. (2002). NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors: implications for models of schizophrenia. Mol. Psychiatry 7, 837–844.10.1038/sj.mp.4001093Search in Google Scholar PubMed
Kehr, W., Lindqvist, M., and Carlsson, A. (1976). Distribution of dopamine in the rat cerebral cortex. J. Neural. Transm. 38, 173–180.10.1007/BF01249437Search in Google Scholar PubMed
Kempf, F., Brücke, C., Salih, F., Trottenberg, T., Kupsch, A., Schneider, G.-H., Doyle Gaynor, L.M.F., Hoffmann, K.-T., Vesper, J., Wöhrle, J., et al. (2009). Gamma activity and reactivity in human thalamic local field potentials. Eur. J. Neurosci. 29, 943–953.10.1111/j.1460-9568.2009.06655.xSearch in Google Scholar PubMed
Klausberger, T., Magill, P.J., Márton, L.F., Roberts, J.D.B., Cobden, P.M., Buzsáki, G., and Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848.10.1038/nature01374Search in Google Scholar PubMed
Klitgaard, H., Matagne, A., Grimee, R., Vanneste-Goemaere, J., and Margineanu, D.-G. (2003). Electrophysiological, neurochemical and regional effects of levetiracetam in the rat pilocarpine model of temporal lobe epilepsy. Seizure 12, 92–100.10.1016/S1059131102001930Search in Google Scholar
Kühn, A.A., Kupsch, A., Schneider G.-H., and Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960.10.1111/j.1460-9568.2006.04717.xSearch in Google Scholar PubMed
Kühn, A.A., Kempf, F., Brücke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G.-H., Hariz, et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28, 6165–6173.10.1523/JNEUROSCI.0282-08.2008Search in Google Scholar PubMed PubMed Central
Kwon, J.S., O’Donnell, B.F., Wallenstein, G.V., Greene, R.W., Hirayasu, Y., Nestor, P.G., Hasselmo, M.E., Potts, G.F., Shenton, M.E., and McCarley, R.W. (1999). Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch. Gen. Psychiatry 56, 1001–1005.10.1001/archpsyc.56.11.1001Search in Google Scholar PubMed PubMed Central
Lachowicz, J.E. and Sibley, D.R. (1997). Molecular characteristics of mammalian dopamine receptors. Pharmacol. Toxicol. 81, 105–113.10.1111/j.1600-0773.1997.tb00039.xSearch in Google Scholar PubMed
Leventhal, D.K., Gage, G.J., Schmidt, R., Pettibone, J.R., Case, A.C., and Berke, J.D. (2012). Basal ganglia beta oscillations accompany cue utilization. Neuron 73, 523–536.10.1016/j.neuron.2011.11.032Search in Google Scholar PubMed PubMed Central
Levy, R., Hutchison, W.D., Lozano, A.M., and Dostrovsky, J.O. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 20, 7766–7775.10.1523/JNEUROSCI.20-20-07766.2000Search in Google Scholar
Levy, R., Ashby, P., Hutchison, W.D., Lang, A.E., Lozano, A.M., and Dostrovsky, J.O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125, 1196–1209.10.1093/brain/awf128Search in Google Scholar
Li, S., Arbuthnott, G.W., Jutras, M.J., Goldberg, J.A., and Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J. Neurophysiol. 98, 3525–3537.10.1152/jn.00808.2007Search in Google Scholar
Lidow, M.S., Goldman-Rakic, P.S., Gallager, D.W., and Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40, 657–671.10.1016/0306-4522(91)90003-7Search in Google Scholar
Lieberman, J.A., Kinon, B.J., and Loebel, A.D. (1990). Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr. Bull. 16, 97–110.10.1093/schbul/16.1.97Search in Google Scholar
Llinás, R.R. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664.10.1126/science.3059497Search in Google Scholar
Llinás, R. and Ribary, U. (1993). Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA 90, 2078–2081.10.1073/pnas.90.5.2078Search in Google Scholar
Lopes da Silva, F. and Storm Van Leeuwen, W. (1977). The cortical source of the alpha rhythm. Neurosci. Lett. 6, 237–241.10.1016/0304-3940(77)90024-6Search in Google Scholar
Loucif, K.C., Wilson, C.L., Baig, R., Lacey, M.G., and Stanford, I.M. (2005). Functional interconnectivity between the globus pallidus and the subthalamic nucleus in the mouse brain slice. J. Physiol. 567, 977–987.10.1113/jphysiol.2005.093807Search in Google Scholar PubMed PubMed Central
Luft, A.R. and Schwarz, S. (2009). Dopaminergic signals in primary motor cortex. Int. J. Dev. Neurosci. 27, 415–421.10.1016/j.ijdevneu.2009.05.004Search in Google Scholar PubMed
Magill, P.J., Bolam, J.P., and Bevan, M.D. (2000). Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J. Neurosci. 20, 820–833.10.1523/JNEUROSCI.20-02-00820.2000Search in Google Scholar
Magill, P.J., Bolam, J.P., and Bevan, M.D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106, 313–330.10.1016/S0306-4522(01)00281-0Search in Google Scholar
Marceglia, S., Foffani, G., Bianchi, A.M., Baselli, G., Tamma, F., Egidi, M., and Priori, A. (2006). Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson’s disease. J. Physiol. 571, 579–591.10.1113/jphysiol.2005.100271Search in Google Scholar
Marín, O. (2012). Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120.10.1038/nrn3155Search in Google Scholar
Martres, M.P., Bouthenet, M.L., Sales, N., Sokoloff, P., and Schwartz, J.C. (1985). Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. Science 228, 752–755.10.1126/science.3838821Search in Google Scholar
Masimore, B., Schmitzer-Torbert, N.C., Kakalios, J., and Redish, A.D. (2005). Transient striatal gamma local field potentials signal movement initiation in rats. Neuroreport 16, 2021–2024.10.1097/00001756-200512190-00010Search in Google Scholar
McCarthy, M.M., Moore-Kochlacs, C., Gu, X., Boyden, E.S., Han, X., and Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 108, 11620–11625.10.1073/pnas.1107748108Search in Google Scholar
Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.10.1152/physrev.1998.78.1.189Search in Google Scholar
Moore, R.Y., Whone, A.L., and Brooks, D.J. (2008). Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol. Dis. 29, 381–390.10.1016/j.nbd.2007.09.004Search in Google Scholar
Moro, E. and Lang, A.E. (2006). Criteria for deep-brain stimulation in Parkinson’s disease review and analysis. Exp. Rev. Neurother. 6, 1695–1705.10.1586/14737175.6.11.1695Search in Google Scholar
Muriel, M.-P., Bernard, V., Levey, A.I., Laribi, O., Abrous, D.N., Agid, Y., Bloch, B., and Hirsch, E.C. (1999). Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson’s disease. Ann. Neurol. 46, 103–111.10.1002/1531-8249(199907)46:1<103::AID-ANA15>3.0.CO;2-ZSearch in Google Scholar
Murthy, V.N. and Fetz, E.E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. USA 89, 5670–5674.10.1073/pnas.89.12.5670Search in Google Scholar
Nicolelis, M.A.L. and Fanselow, E.E. (2002). Dynamic shifting in thalamocortical processing during different behavioural states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1753–1758.10.1098/rstb.2002.1175Search in Google Scholar
Nicolelis, M.A., Fuentes, R., Petersson, P., Thevathasan, W., and Brown, P. (2010). Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology 75, 1484; author reply 1484–1485.10.1212/WNL.0b013e3181f46f10Search in Google Scholar
Niedermeyer, E. and Lopes da Silva, F. (2005). Electroencephalo- graphy: basic principles, clinical applications, and related fields (Philadelphia, PA: Lippincott Williams & Wilkins).Search in Google Scholar
Nini, A., Feingold, A., Slovin, H., and Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74, 1800–1805.10.1152/jn.1995.74.4.1800Search in Google Scholar
Nunez, P.L., Wingeier, B.M., and Silberstein, R.B. (2001). Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum. Brain Mapp. 13, 125–164.10.1002/hbm.1030Search in Google Scholar
Oades, R.D. and Halliday, G.M. (1987). Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res. 434, 117–165.10.1016/0165-0173(87)90011-7Search in Google Scholar
Ostock, C.Y., Dupre, K.B., Jaunarajs, K.L.E., Walters, H., George, J., Krolewski, D., Walker, P.D., and Bishop, C. (2011). Role of the primary motor cortex in L-DOPA-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology 61, 753–760.10.1016/j.neuropharm.2011.05.021Search in Google Scholar
Pfurtscheller, G. and Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68.10.1016/S0304-3940(97)00889-6Search in Google Scholar
Pfurtscheller, G. (1981). Central beta rhythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol. 51, 253–264.10.1016/0013-4694(81)90139-5Search in Google Scholar
Picton, T., Skinner, C., Champagne, S., Kellett, A., and Maiste, A. (1987). Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J. Acoust. Soc. Am. 82, 165–178.10.1121/1.395560Search in Google Scholar PubMed
Plenz, D. and Kital, S.T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400, 677–682.10.1038/23281Search in Google Scholar PubMed
Richardson, M.J.E., Brunel, N., and Hakim, V. (2003). From subthreshold to firing-rate resonance. J. Neurophysiol. 89, 2538–2354.10.1152/jn.00955.2002Search in Google Scholar PubMed
Rommelfanger, K.S. and Wichmann, T. (2010). Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat. 4, 139.10.3389/fnana.2010.00139Search in Google Scholar PubMed PubMed Central
Rossi, L., Marceglia, S., Foffani, G., Cogiamanian, F., Tamma, F., Rampini, P., Barbieri, S., Bracchi, F., and Priori, A. (2008). Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson’s disease. Brain Res. Bull. 76, 512–521.10.1016/j.brainresbull.2008.01.023Search in Google Scholar PubMed
Sanes, J.N. and Donoghue, J.P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. USA 90, 4470–4474.10.1073/pnas.90.10.4470Search in Google Scholar PubMed PubMed Central
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G.L., and Von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proc. Natl. Acad. Sci. USA 95, 7092–7096.10.1073/pnas.95.12.7092Search in Google Scholar PubMed PubMed Central
Seamans, J.K. and Yang, C.R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58.10.1016/j.pneurobio.2004.05.006Search in Google Scholar PubMed
Servan-Schreiber, D., Printz, H., and Cohen, J.D. (1990). A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 29–32.10.1126/science.2392679Search in Google Scholar PubMed
Shadlen, M.N. and Movshon, J.A. (1999). Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77, 111–125.Search in Google Scholar
Sharott, A., Magill, P.J., Bolam, J.P., and Brown, P. (2005). Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. J. Physiol. 562, 951–963.10.1113/jphysiol.2004.073189Search in Google Scholar PubMed PubMed Central
Simmonite, M., Bates, A.T., Groom, M.J., Jackson, G.M., Hollis, C., and Liddle, P.F. (2012). Error processing-associated event-related potentials in schizophrenia and unaffected siblings. Int. J. Psychophysiol. 84, 74–79.10.1016/j.ijpsycho.2012.01.012Search in Google Scholar PubMed
Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65.10.1016/S0896-6273(00)80821-1Search in Google Scholar
Stefansson, H., Rujescu, D., and Cichon, S. (2008). Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236.10.1038/nature07229Search in Google Scholar
Steriade, M. (1993). Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems. Curr. Opin. Neurobiol. 3, 619–625.10.1016/0959-4388(93)90064-6Search in Google Scholar
Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276.10.1016/S0306-4522(00)00353-5Search in Google Scholar
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106.10.1016/j.neuroscience.2005.10.029Search in Google Scholar
Surmeier, D.J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235.10.1016/j.tins.2007.03.008Search in Google Scholar
Tiihonen, J., Kajola, M., and Hari, R. (1989). Magnetic mu rhythm in man. Neuroscience 32, 793–800.10.1016/0306-4522(89)90299-6Search in Google Scholar
Timofeev, I. and Bazhenov, M. (2005). Mechanisms and biological role of thalamocortical oscillations. Trends in chronobiology research. F. Columbus, ed. (Hauppage, NY: Nova Science Publishers), pp. 1–47.Search in Google Scholar
Toda, H., Hamani, C., and Lozano, A. (2004). Deep brain stimulation in the treatment of dyskinesia and dystonia. Neurosurg. Focus 17, E2.10.3171/foc.2004.17.1.2Search in Google Scholar PubMed
Tseng, K.Y., Kasanetz, F., Kargieman, L., Riquelme, L.A., and Murer, M.G. (2001). Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J. Neurosci. 21, 6430–6439.10.1523/JNEUROSCI.21-16-06430.2001Search in Google Scholar
Uhlhaas, P.J. and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168.10.1016/j.neuron.2006.09.020Search in Google Scholar PubMed
Uhlhaas, P.J. and Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113.10.1038/nrn2774Search in Google Scholar
Ulloa, E.R. and Pineda, J.A. (2007). Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav. Brain Res. 183, 188–194.10.1016/j.bbr.2007.06.007Search in Google Scholar
van der Meer, M. (2009). Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task. Front. Integr. Neurosci. 3, 1–19.10.3389/neuro.07.009.2009Search in Google Scholar
Vincent, S.L., Khan, Y., and Benes, F.M. (1995). Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse (New York, NY) 19, 112–120.10.1002/syn.890190207Search in Google Scholar
Vives, F. and Mogenson, G. (1986). Electrophysiological study of the effects of D1 and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat. Neuroscience 17, 349–359.10.1016/0306-4522(86)90251-4Search in Google Scholar
Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268.10.1152/physrev.00035.2008Search in Google Scholar PubMed PubMed Central
Wang, X.J. and Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.10.1523/JNEUROSCI.16-20-06402.1996Search in Google Scholar
Waszczak, B.L. and Walters, J.R. (2013). Dopamine modulation of the effects of gamma-aminobutyric acid on substantia nigra pars reticulata neurons. Science, 220, 218–221.10.1126/science.6828891Search in Google Scholar PubMed
Weinberger, M., Hutchison, W.D., Lozano, A.M., Hodaie, M., and Dostrovsky, J.O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J. Neurophysiol. 101, 789–802.10.1152/jn.90837.2008Search in Google Scholar PubMed
Whittington, M., Traub, R., and Jefferys, J. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615.10.1038/373612a0Search in Google Scholar PubMed
Whittington, M.A., Cunningham, M.O., LeBeau, F.E.N., Racca, C., and Traub, R.D. (2011). Multiple origins of the cortical γ rhythm. Dev. Neurobiol. 71, 92–106.10.1002/dneu.20814Search in Google Scholar PubMed
Williams, D., Tijssen, M., Van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., Mazzone, P., Oliviero, A., Quartarone, A., Speelman, H., et al. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125, 1558–1569.10.1093/brain/awf156Search in Google Scholar PubMed
Wilson, C.J. and Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410.10.1523/JNEUROSCI.16-07-02397.1996Search in Google Scholar
Wilson, C.L., Cash, D., Galley, K., Chapman, H., Lacey, M.G., and Stanford, I.M. (2006). Subthalamic nucleus neurones in slices from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mice show irregular, dopamine-reversible firing pattern changes, but without synchronous activity. Neuroscience 143, 565–572.10.1016/j.neuroscience.2006.07.051Search in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Spreading depression and the clinical correlates of migraine
- Does extracellular proteolysis control mammalian cognition?
- Histone lysine methylation: critical regulator of memory and behavior
- Does the dopamine hypothesis explain schizophrenia?
- Serine-arginine protein kinases: new players in neurodegenerative diseases?
- Mechanisms underlying cortical resonant states: implications for levodopa-induced dyskinesia
- TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex
- The role of peripheral nerve ECM components in the tissue engineering nerve construction
Articles in the same Issue
- Masthead
- Masthead
- Spreading depression and the clinical correlates of migraine
- Does extracellular proteolysis control mammalian cognition?
- Histone lysine methylation: critical regulator of memory and behavior
- Does the dopamine hypothesis explain schizophrenia?
- Serine-arginine protein kinases: new players in neurodegenerative diseases?
- Mechanisms underlying cortical resonant states: implications for levodopa-induced dyskinesia
- TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex
- The role of peripheral nerve ECM components in the tissue engineering nerve construction