Startseite Naturwissenschaften Bicyclic and tricyclic phosphanes with p-block substituents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bicyclic and tricyclic phosphanes with p-block substituents

  • Jonas Bresien ORCID logo , Kirill Faust und Axel Schulz ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. April 2021

Abstract

This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.


Corresponding author: Axel Schulz, Anorganische Chemie, Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany; and Materialdesign, Leibniz-Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Overview of tricyclic heptaphosphanes P7R3

Table 2:

Overview of tricyclic heptaphosphanes with the sum composition P7R3 and R being monodentate p-block substituents. The references include such in which the respective derivative was prepared, used as starting material or alternatively investigated.

Structure # Substituents References
64 R1=R2=R3=Me (Baudler and Pontzen, 1983; Baudler et al., 1980; Charles et al., 1995; Fritz and Härer, 1983; Fritz et al., 1983b, 1992; Hölderich and Fritz, 1979; Noblet et al., 2011a; Patel et al., 2013)
R1=R2=R3=Et (Fritz and Schneider, 1990; Fritz et al., 1990, 1992)
R1=R2=R3=iPr (Baudler et al., 1983a; Fritz and Schneider, 1990; Fritz et al., 1983a; Milyukov et al., 2007)
R1=R2=R3=nBu (Charles et al., 1995; Fritz and Schneider, 1990; Milyukov et al., 2007)
R1=R2=R3=iBu (Fritz and Schneider, 1990; Fritz et al., 1992; Milyukov et al., 2007)
R1=R2=R3=C(H)Et2 Milyukov et al. (2007)
R1=R2=R3=nHex Milyukov et al. (2007)
R1=R2=R3=Ph (Hölderich and Fritz, 1979; Patel et al., 2013)
R1=R2=R3=SiH3 (Fritz and Schneider, 1990; Fritz et al., 1983a; Noblet et al., 2011a)
R1=R2=R3=SiH2Me Fritz and Schneider (1990)
63 R1=R2=R3=SiMe3 (Ahlrichs et al., 1996; Baudler et al., 1979; Cicač-Hudi et al., 2016; Cummins et al., 2014; Feierabend and von Hänisch, 2014; Fritz and Hanke, 1986; Fritz and Härer, 1983; Fritz and Hölderich, 1975a; Fritz et al., 1982, 1983a, 1983b, 1987, 1992; Hölderich and Fritz, 1979; Hönle and von Schnering, 1978; Huang and Diaconescu, 2012; Mujica et al., 1986; Noblet et al., 2011a; Patel et al., 2013; Peruzzini and Stoppioni, 1985; Schmidbaur and Bauer, 1995; Tondreau et al., 2014)
R1=R2=R3=SitBu3 (Karaghiosoff et al., 2002; Kovács et al., 1993; Wiberg et al., 1998a, 2005)
R1=R2=R3=SiPh3 (Fritz et al., 1983a; Mujica et al., 1986)
R1=R2=R3=Si6Me11 Noblet et al. (2011b)
R1=R2=R3= SiMe(SiMe3)2 Noblet et al. (2011b)
R1=R2=R3=SiMe2(PEt2) Fritz and Schneider (1990)
R1=R2=R3=Si(SiMe3)2Ph Noblet et al. (2011b)
R1=R2=R3=Si(SiMe3)3 (Cappello et al., 2006; Noblet et al., 2011b; Siegl et al., 1999)
R1=R2=R3=GeMe3 Fritz et al. (1983a)
R1=R2=R3=GePh3 Mujica et al. (1986)
R1=R2=R3=SnMe3 (Abicht et al., 1984; Fritz et al., 1983a)
R1=R2=R3=SnPh3 (Cummins et al., 2014; Mujica et al., 1986)
R1=R2=R3=PbMe3 (Fritz et al., 1983a; Weber et al., 1982)
R1=R2=R3=P(tBu)2 (Fritz et al., 1991a, 1991b, 1991c)
R1=R2=R3=Sb(tBu)2 Fritz et al. (1991c)
R1=R2=R3=O Baudler and Floruss (1995)
R1=R2=R3=S Baudler and Floruss (1994)
R1=R2=R3=Br Tattershall and Kendall (1994a)
R1=R2=R3=I Tattershall and Kendall (1994a)
R1=SiMe3, R2=R3=Me, Et, iPr, iBu, tBu (Fritz and Härer, 1983; Fritz and Mayer, 1992; Fritz et al., 1983b, 1992; Hölderich and Fritz, 1979)
R1=R2=SiMe3, R3=Me, Et, iPr, iBu, tBu (Fritz and Härer, 1983; Fritz et al., 1983a, 1992)
R1=Bn, R2=R3=Me, nBu Milyukov et al. (2007)
R1=Me, R2=R3=nBu Milyukov et al. (2007)
R1=SiMe3, R2=R3=Hyp Noblet et al. (2011a)
66 R1=R2=R3=[AsPh3]+ Donath et al. (2014)
65 Weigand et al. (2009)
67 Noblet et al. (2011a)
Fritz and Hölderich (1975a)

References

Abicht, H.-P.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1984, 519, 7–23. https://doi.org/10.1002/zaac.19845191202.Suche in Google Scholar

Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Chem. Eur. J. 1996, 2, 238–244. https://doi.org/10.1002/chem.19960020217.Suche in Google Scholar

Baudler, M.; Aktalay, Y. Z. Anorg. Allg. Chem. 1983, 496, 29–39. https://doi.org/10.1002/zaac.19834960104.Suche in Google Scholar

Baudler, M.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1984, 39b, 275–283. https://doi.org/10.1515/znb-1984-0302.Suche in Google Scholar

Baudler, M.; Arndt, V. Chem. Ber. 1991, 124, 69–73. https://doi.org/10.1002/cber.19911240111.Suche in Google Scholar

Baudler, M.; de Riese-Meye, L. Angew. Chem. Int. Ed. 1988, 100, 579–580. https://doi.org/10.1002/ange.19881000415.Suche in Google Scholar

Baudler, M.; de Riese-Meyer, L. Z. Naturforsch. B Chem. Sci. 1986, 41b, 399–404. https://doi.org/10.1515/znb-1986-0401.Suche in Google Scholar

Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1994, 620, 2070–2076. https://doi.org/10.1002/zaac.19946201209.Suche in Google Scholar

Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1995, 621, 207–212. https://doi.org/10.1002/zaac.19956210208.Suche in Google Scholar

Baudler, M.; Glinka, K. Chem. Rev. 1993, 93, 1623–1667. https://doi.org/10.1021/cr00020a010.Suche in Google Scholar

Baudler, M.; Makowka, B. Angew. Chem. Int. Ed. 1984, 96, 976–977. https://doi.org/10.1002/ange.19840961218.Suche in Google Scholar

Baudler, M.; Pontzen, T. Z. Naturforsch. B Chem. Sci. 1983, 38b, 955–960. https://doi.org/10.1515/znb-1983-0812.Suche in Google Scholar

Baudler, M.; Schnalke, M. Z. Anorg. Allg. Chem. 1990, 585, 18–26. https://doi.org/10.1002/zaac.19905850103.Suche in Google Scholar

Baudler, M.; Ständeke, H.; Borgardt, M.; Strabel, H. Die Naturwissenschaften 1965, 52, 345. https://doi.org/10.1007/bf00592013.Suche in Google Scholar

Baudler, M.; Ternberger, H.; Faber, W.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1979, 34b, 1690–1697. https://doi.org/10.1515/znb-1979-1214.Suche in Google Scholar

Baudler, M.; Faber, W.; Hahn, J. Z. Anorg. Allg. Chem. 1980, 469, 15–21. https://doi.org/10.1002/zaac.19804690103.Suche in Google Scholar

Baudler, M.; Hellmann, J.; Bachmann, P.; Tebbe, K.-F.; Fröhlich, R.; Fehér, M. Angew. Chem. Int. Ed. 1981, 20, 406–408. https://doi.org/10.1002/anie.198104061.Suche in Google Scholar

Baudler, M.; Aktalay, Y.; Tebbe, K.-F.; Heinlein, T. Angew. Chem. Int. Ed. 1981, 93, 1020–1022. https://doi.org/10.1002/ange.19810931125.Suche in Google Scholar

Baudler, M.; Aktalay, Y.; Hahn, J.; Därr, E. Z. Anorg. Allg. Chem. 1981, 473, 20–34. https://doi.org/10.1002/zaac.19814730203.Suche in Google Scholar

Baudler, M.; Aktalay, Y.; Arndt, V.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1983, 95, 1005–1006.10.1002/ange.19830951211Suche in Google Scholar

Baudler, M.; Aktalay, Y.; Kazmierczak, K.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1983, 38b, 428–433. https://doi.org/10.1515/znb-1983-0405.Suche in Google Scholar

Baudler, M.; Därr, E.; Binsch, G.; Stephenson, D. S. Z. Naturforsch. B Chem. Sci. 1984, 39b, 1671–1675. https://doi.org/10.1515/znb-1984-1209.Suche in Google Scholar

Baudler, M.; Michels, M.; Hahn, J.; Pieroth, M. Angew. Chem. Int. Ed. 1985, 24, 504–505. https://doi.org/10.1002/anie.198505041.Suche in Google Scholar

Baudler, M.; Koll, B.; Adamek, C.; Gleiter, R. Angew. Chem. Int. Ed. 1987, 99, 371–372. https://doi.org/10.1002/ange.19870990431.Suche in Google Scholar

Baudler, M.; Schlitte, S.; Hasenbach, J. Z. Anorg. Allg. Chem. 1988, 560, 7–17. https://doi.org/10.1002/zaac.19885600102.Suche in Google Scholar

Baudler, M.; de Riese-Meyer, L.; Wiaterek, C. Z. Naturforsch. B Chem. Sci. 1989, 44b, 375–380. https://doi.org/10.1515/znb-1989-0401.Suche in Google Scholar

Baudler, M.; Jachow, H.; Lieser, B.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1989, 101, 1245–1247. https://doi.org/10.1002/ange.19891010910.Suche in Google Scholar

Baudler, M.; Schnalke, M.; Wiaterek, C.; Opiela, S.; Hahn, J. Z. Anorg. Allg. Chem. 1989, 578, 7–17. https://doi.org/10.1002/zaac.19895780102.Suche in Google Scholar

Baudler, M.; Wiaterek, C.; Kazmierczak, K. Z. Anorg. Allg. Chem. 1989, 579, 7–15. https://doi.org/10.1002/zaac.19895790102.Suche in Google Scholar

Baudler, M.; Schnalke, M.; Wiaterek, C. Z. Anorg. Allg. Chem. 1990, 585, 7–17. https://doi.org/10.1002/zaac.19905850102.Suche in Google Scholar

Baudler, M.; Koll, B.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1990, 45b, 1517–1521. https://doi.org/10.1515/znb-1990-1110.Suche in Google Scholar

Becke-Goehring, M.; Hoffmann, H. Z. Anorg. Allg. Chem. 1969, 369, 73–82. https://doi.org/10.1002/zaac.19693690111.Suche in Google Scholar

Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E. Dalton Trans. 2004, 9, 499–501. https://doi.org/10.1039/b315793h.Suche in Google Scholar PubMed

Bihlmeier, A.; Gonsior, M.; Raabe, I.; Trapp, N.; Krossing, I. Chem. Eur. J. 2004, 10, 5041–5051. https://doi.org/10.1002/chem.200400096.Suche in Google Scholar PubMed

Bolli, C.; Köchner, T.; Knapp, C. Z. Anorg. Allg. Chem. 2012, 638, 559–564. https://doi.org/10.1002/zaac.201100448.Suche in Google Scholar

Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2014, 53, 12836–12839. https://doi.org/10.1002/anie.201405879.Suche in Google Scholar PubMed

Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2016, 55, 613–617. https://doi.org/10.1002/anie.201508916.Suche in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Chem. Eur. J. 2015, 21, 18543–18546. https://doi.org/10.1002/chem.201503808.Suche in Google Scholar PubMed

Bresien, J.; Faust, K.; Schulz, A.; Villinger, A. Angew. Chem. Int. Ed. 2015, 54, 6926–6930. https://doi.org/10.1002/anie.201500892.Suche in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 601–604. https://doi.org/10.1080/10426507.2015.1128915.Suche in Google Scholar

Bresien, J.; Faust, K.; Hering-Junghans, C.; Rothe, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 1998–2007. https://doi.org/10.1039/c5dt02757h.Suche in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 498–501. https://doi.org/10.1039/c5dt03928b.Suche in Google Scholar PubMed

Butts, C. P.; Green, M.; Hooper, T. N.; Kilby, R. J.; McGrady, J. E.; Pantazis, D. A.; Russell, C. A. Chem. Commun. 2008, 1, 856–858. https://doi.org/10.1039/b717204d.Suche in Google Scholar PubMed

Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178–4235. https://doi.org/10.1021/cr900349u.Suche in Google Scholar PubMed

Cappello, V.; Baumgartner, J.; Dransfeld, A.; Flock, M.; Hassler, K. Eur. J. Inorg. Chem. 2006, 2006, 2393–2405. https://doi.org/10.1002/ejic.200600028.Suche in Google Scholar

Charles, S.; Fettinger, J. C.; Eichhron, B. W. J. Am. Chem. Soc. 1995, 117, 5303–5311. https://doi.org/10.1021/ja00124a013.Suche in Google Scholar

Cicač-Hudi, M.; Bender, J.; Schlindwein, S. H.; Bispinghoff, M.; Nieger, M.; Grützmacher, H.; Gudat, D. Eur. J. Inorg. Chem. 2016, 2016, 649–658.10.1002/ejic.201501017Suche in Google Scholar

Cossairt, B. M.; Cummins, C. C. Angew. Chem. Int. Ed. 2008, 120, 8995–8998. https://doi.org/10.1002/ange.200803971.Suche in Google Scholar

Cossairt, B. M.; Cummins, C. C. New J. Chem. 2010, 34, 1533–1536. https://doi.org/10.1039/c0nj00124d.Suche in Google Scholar

Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164–4177. https://doi.org/10.1021/cr9003709.Suche in Google Scholar PubMed

Cowley, A. H.; Knueppel, P. C.; Nunn, C. M. Organometallics 1989, 8, 2490–2492. https://doi.org/10.1021/om00112a038.Suche in Google Scholar

Cummins, C. C.; Huang, C.; Miller, T. J.; Reintinger, M. W.; Stauber, J. M.; Tannou, I.; Tofan, D.; Toubaei, A.; Velian, A.; Wu, G. Inorg. Chem. 2014, 53, 3678–3687. https://doi.org/10.1021/ic403178j.Suche in Google Scholar PubMed

Daly, J. J.; Maier, L. Nature 1964, 203, 1167–1168. https://doi.org/10.1038/2031167b0.Suche in Google Scholar

Donath, M.; Conrad, E.; Jerabek, P.; Frenking, G.; Fröhlich, R.; Burford, N.; Weigand, J. J. Angew. Chem. Int. Ed. 2012, 51, 2964–2967. https://doi.org/10.1002/anie.201109010.Suche in Google Scholar PubMed

Donath, M.; Bodensteiner, M.; Weigand, J. J. Chem. Eur. J. 2014, 20, 17306–17310. https://doi.org/10.1002/chem.201405196.Suche in Google Scholar PubMed

Dube, J. W.; Graham, C. M. E.; Macdonald, C. L. B.; Brown, Z. D.; Power, P. P.; Ragogna, P. J. Chem. Eur. J. 2014, 20, 6739–6744. https://doi.org/10.1002/chem.201402031.Suche in Google Scholar PubMed

Feierabend, M.; Von Hänisch, C. Chem. Commun. 2014, 50, 4416–4419. https://doi.org/10.1039/c4cc00165f.Suche in Google Scholar PubMed

Fluck, E.; Riedel, R.; Hausen, H.; Heckmann, G. Z. Anorg. Allg. Chem. 1987, 551, 85–94. https://doi.org/10.1002/zaac.19875510809.Suche in Google Scholar

Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem. Int. Ed. 2005, 44, 7729–7733. https://doi.org/10.1002/anie.200502865.Suche in Google Scholar PubMed

Fritz, G.; Biastoch, R. AAC – J. Inorg. Gen. Chem. 1986, 535, 63–85. https://doi.org/10.1002/zaac.19865350409.Suche in Google Scholar

Fritz, G.; Hanke, D. Z. Anorg. Allg. Chem. 1986, 537, 17–30. https://doi.org/10.1002/zaac.19865370603.Suche in Google Scholar

Fritz, G.; Härer, J. Z. Anorg. Allg. Chem. 1983, 504, 23–37. https://doi.org/10.1002/zaac.19835040904.Suche in Google Scholar

Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Suche in Google Scholar

Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Suche in Google Scholar

Fritz, G.; Mayer, B. Z. Anorg. Allg. Chem. 1992, 610, 51–56. https://doi.org/10.1002/zaac.19926100109.Suche in Google Scholar

Fritz, G.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1990, 584, 12–20. https://doi.org/10.1002/zaac.19905840103.Suche in Google Scholar

Fritz, G.; Härer, J.; Scheider, K. H. Z. Anorg. Allg. Chem. 1982, 487, 44–58. https://doi.org/10.1002/zaac.19824870105.Suche in Google Scholar

Fritz, G.; Hoppe, K. D.; Hönle, W.; Weber, D.; Mujica, C.; Manriquez, V.; von Schnering, H. G. J. Organomet. Chem. 1983, 249, 63–80. https://doi.org/10.1016/s0022-328x(00)98800-4.Suche in Google Scholar

Fritz, G.; Härer, J.; Stoll, K.; Vaahs, T. Phosphorus Sulfur Relat. Elem. 1983, 18, 65–68. https://doi.org/10.1080/03086648308075968.Suche in Google Scholar

Fritz, G.; Biastoch, R.; Stoll, K.; Vaahs, T.; Hanke, D.; Schneider, H. W. Phosphorus Sulfur Relat. Elem. 1987, 30, 385–388. https://doi.org/10.1080/03086648708080601.Suche in Google Scholar

Fritz, G.; Schneider, H.-W.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1990, 584, 21–50. https://doi.org/10.1002/zaac.19905840104.Suche in Google Scholar

Fritz, G.; Layher, E.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1991, 595, 67–94. https://doi.org/10.1002/zaac.19915950110.Suche in Google Scholar

Fritz, G.; Layher, E.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1991, 598, 111–120. https://doi.org/10.1002/zaac.19915980111.Suche in Google Scholar

Fritz, G.; Layher, E.; Goesmann, H.; Hanke, D.; Persau, C. Z. Anorg. Allg. Chem. 1991, 594, 36–46. https://doi.org/10.1002/zaac.19915940105.Suche in Google Scholar

Fritz, G.; Rothmann, H.; Matern, E. Z. Anorg. Allg. Chem. 1992, 610, 33–45. https://doi.org/10.1002/zaac.19926100107.Suche in Google Scholar

Gärtner, S.; Korber, N. Structure and Bonding; Fässler, T. F., Ed. Springer-Verlag: Berlin, Heidelberg, 2011; pp 25–57.10.1007/430_2011_43Suche in Google Scholar

Gi, N. A.; Hendsbee, A. D.; Roemmele, T. L.; Lumsden, M. D.; Pye, C. C.; Masuda, J. D.; Giffin, N. A. Inorg. Chem. 2012, 51, 11837–11850.10.1021/ic301758kSuche in Google Scholar

Giffin, N. A.; Masuda, J. D. Coord. Chem. Rev. 2011, 255, 1342–1359. https://doi.org/10.1016/j.ccr.2010.12.016.Suche in Google Scholar

Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wüllen, L. Chem. Eur. J. 2002, 8, 4475–4492. https://doi.org/10.1002/1521-3765(20021004)8:19<4475::aid-chem4475>3.0.co;2-m.10.1002/1521-3765(20021004)8:19<4475::AID-CHEM4475>3.0.CO;2-MSuche in Google Scholar

He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815–7880. https://doi.org/10.1021/cr400547x.Suche in Google Scholar

Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Angew. Chem. Int. Ed. 2014, 53, 7639–7642. https://doi.org/10.1002/anie.201403295.Suche in Google Scholar PubMed

Hennersdorf, F.; Weigand, J. J. Angew. Chem. Int. Ed. 2017, 129, 7966–7970. https://doi.org/10.1002/ange.201703953.Suche in Google Scholar

Hölderich, W.; Fritz, G. Z. Anorg. Allg. Chem. 1979, 457, 127–142.10.1002/zaac.19794570114Suche in Google Scholar

Holschumacher, D.; Bannenberg, T.; Ibrom, K.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Dalton Trans. 2010, 39, 10590–10592. https://doi.org/10.1039/c0dt01045f.Suche in Google Scholar PubMed

Holthausen, M. H.; Weigand, J. J. J. Am. Chem. Soc. 2009, 131, 14210–14211. https://doi.org/10.1021/ja906878q.Suche in Google Scholar PubMed

Holthausen, M. H.; Weigand, J. J. Z. Anorg. Allg. Chem. 2012, 638, 1103–1108. https://doi.org/10.1002/zaac.201200123.Suche in Google Scholar

Holthausen, M. H.; Weigand, J. J. Dalton Trans. 2016, 45, 1953–1961. https://doi.org/10.1039/c5dt01512j.Suche in Google Scholar PubMed

Holthausen, M. H.; Richter, C.; Hepp, A.; Weigand, J. J. Chem. Commun. 2010, 46, 6921–6923. https://doi.org/10.1039/c0cc02418j.Suche in Google Scholar PubMed

Holthausen, M. H.; Feldmann, K.-O.; Schulz, S.; Hepp, A.; Weigand, J. J. Inorg. Chem. 2012, 51, 3374–3387. https://doi.org/10.1021/ic2013304.Suche in Google Scholar PubMed

Holthausen, M. H.; Surmiak, S. K.; Jerabek, P.; Frenking, G.; Weigand, J. J. Angew. Chem. Int. Ed. 2013, 52, 11078–11082. https://doi.org/10.1002/anie.201302914.Suche in Google Scholar PubMed

Holthausen, M. H.; Hepp, A.; Weigand, J. J. Chem. Eur. J. 2013, 19, 9895–9907. https://doi.org/10.1002/chem.201204337.Suche in Google Scholar

Holthausen, M. H.; Sala, C.; Weigand, J. J. Eur. J. Inorg. Chem. 2016, 2016, 667–677. https://doi.org/10.1002/ejic.201500875.Suche in Google Scholar

Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 440, 171–182.10.1002/zaac.19784400117Suche in Google Scholar

Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216–2218. https://doi.org/10.1039/c2cc17638f.Suche in Google Scholar

Jutzi, P.; Brusdeilins, N. Z. Anorg. Allg. Chem. 1994, 620, 1375–1380. https://doi.org/10.1002/zaac.19946200809.Suche in Google Scholar

Jutzi, P.; Meyer, U. J. Organomet. Chem. 1987, 333, C18–C20. https://doi.org/10.1016/0022-328x(87)85161-6.Suche in Google Scholar

Jutzi, P.; Wippermann, T. J. Organomet. Chem. 1985, 287, C5–C7. https://doi.org/10.1016/0022-328x(85)80078-4.Suche in Google Scholar

Jutzi, P.; Kroos, R.; Müller, A.; Penk, M. Angew. Chem. Int. Ed. 1989, 101, 628–629. https://doi.org/10.1002/ange.19891010519.Suche in Google Scholar

Jutzi, P.; Kroos, R.; Müller, A.; Bögge, H.; Penk, M. Chem. Ber. 1991, 124, 75–81. https://doi.org/10.1002/cber.19911240112.Suche in Google Scholar

Karaghiosoff, K.; Lerner, H.-W.; Wörner, A.; Wiberg, N. Z. Naturforsch. 2002, 57b, 1027–1035.10.1515/znb-2002-0909Suche in Google Scholar

Khan, S.; Michel, R.; Dieterich, J. M.; Mata, R. A.; Roesky, H. W.; Demers, J.; Lange, A.; Stalke, D. J. Am. Chem. Soc. 2011, 133, 17889–17894. https://doi.org/10.1021/ja207538g.Suche in Google Scholar

Köchner, T.; Riedel, S.; Lehner, A. J.; Scherer, H.; Raabe, I.; Engesser, T. A.; Scholz, F. W.; Gellrich, U.; Eiden, P.; Paz Schmidt, R. A.; Plattner, D. A.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 8139–8143. https://doi.org/10.1002/anie.201003031.Suche in Google Scholar

Köhler, H.; Michaelis, A. Ber. Dtsch. Chem. Ges. 1877, 10, 807–814. https://doi.org/10.1002/cber.187701001222.Suche in Google Scholar

Kollegger, G. M.; Katzenbeisser, U.; Hassler, K.; Krüger, C.; Brauer, D.; Gielen, R. J. Organomet. Chem. 1997, 543, 103–110. https://doi.org/10.1016/s0022-328x(97)00128-9.Suche in Google Scholar

Korber, N.; Daniels, J. J. Chem. Soc., Dalton Trans. 1996, 1653–1658. https://doi.org/10.1039/dt9960001653.Suche in Google Scholar

Korber, N.; Richter, F. Chem. Commun. 1996, 2023–2024. https://doi.org/10.1039/cc9960002023.Suche in Google Scholar

Korber, N.; Daniels, J.; von Schnering, H. G. Angew. Chem. Int. Ed. 1996, 35, 1107–1110. https://doi.org/10.1002/anie.199611071.Suche in Google Scholar

Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Suche in Google Scholar

Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Suche in Google Scholar

Kovács, I.; Baum, G.; Fritz, G.; Fenske, D.; Wiberg, N.; Schuster, H.; Karaghiosoff, K. Z. Anorg. Allg. Chem. 1993, 619, 453–460. https://doi.org/10.1002/zaac.19936190902.Suche in Google Scholar

Krossing, I. J. Chem. Soc., Dalton Trans. 2002, 500–512. https://doi.org/10.1039/b103957c.Suche in Google Scholar

Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2001, 40, 4406–4409. https://doi.org/10.1002/1521-3773(20011203)40:23<4406::aid-anie4406>3.0.co;2-x.10.1002/1521-3773(20011203)40:23<4406::AID-ANIE4406>3.0.CO;2-XSuche in Google Scholar

Krossing, I.; Reisinger, A. Coord. Chem. Rev. 2006, 250, 2721–2744. https://doi.org/10.1016/j.ccr.2005.10.023.Suche in Google Scholar

Łapczuk-Krygier, A.; Baranowska, K.; Pikies, J. Acta Crystallogr. E 2008, 64, o2427.10.1107/S1600536808037938Suche in Google Scholar

Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 2005, 1932–1939. https://doi.org/10.1002/ejic.200400970.Suche in Google Scholar

Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Inorg. Chem. 2009, 48, 1005–1017. https://doi.org/10.1021/ic8016003.Suche in Google Scholar

Ma, J.; Hozaki, A.; Inagaki, S. Inorg. Chem. 2002, 41, 1876–1882. https://doi.org/10.1021/ic0107835.Suche in Google Scholar

Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486. https://doi.org/10.1039/c3cc42041h.Suche in Google Scholar

Matern, E.; Fritz, G.; Pikies, J. Z. Anorg. Allg. Chem. 1997, 623, 1769–1773. https://doi.org/10.1002/zaac.19976231118.Suche in Google Scholar

Miluykov, V.; Kataev, A.; Sinyashin, O.; Lönnecke, P.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. 2006, 632, 1728–1732. https://doi.org/10.1002/zaac.200600108.Suche in Google Scholar

Milyukov, V. A.; Kataev, A. V.; Hey-Hawkins, E.; Sinyashin, O. G. Russ. Chem. Bull. 2007, 56, 298–303. https://doi.org/10.1007/s11172-007-0048-6.Suche in Google Scholar

Möller, M. H.; Jeitschko, W. J. Solid State Chem. 1986, 65, 178–189. https://doi.org/10.1016/0022-4596(86)90052-6.Suche in Google Scholar

Moy, R. J. Electrochem. Soc. 1986, 133, 855–858. https://doi.org/10.1149/1.2108748.Suche in Google Scholar

Mujica, C.; Weber, D.; von Schnering, H. G. Z. Naturforsch. B Chem. Sci. 1986, 41b, 991–999. https://doi.org/10.1515/znb-1986-0811.Suche in Google Scholar

Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem. Int. Ed. 2006, 94, 553–554. https://doi.org/10.1002/ange.19820940725.Suche in Google Scholar

Noblet, P.; Dransfeld, A.; Fischer, R.; Flock, M.; Hassler, K. J. Organomet. Chem. 2011, 696, 652–660. https://doi.org/10.1016/j.jorganchem.2010.09.040.Suche in Google Scholar

Noblet, P.; Cappello, V.; Tekautz, G.; Baumgartner, J.; Hassler, K. Eur. J. Inorg. Chem. 2011, 2011, 101–109. https://doi.org/10.1002/ejic.201000749.Suche in Google Scholar

Oppenheim, A. Allgemeine Deutsche Biographie, Band 3; Duncker & Humblot: Leipzig (Germany), 1876; p 236.Suche in Google Scholar

Patel, D.; Tuna, F.; McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2013, 52, 13334–13337. https://doi.org/10.1002/anie.201306492.Suche in Google Scholar

Peruzzini, M.; Stoppioni, P. J. Organomet. Chem. 1985, 288, C44–C46. https://doi.org/10.1016/0022-328x(85)80133-9.Suche in Google Scholar

Power, M. B.; Barron, A. R. Angew. Chem. Int. Ed. 1991, 30, 1353–1354. https://doi.org/10.1002/anie.199113531.Suche in Google Scholar

Prabusankar, G.; Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A. Inorg. Chem. 2010, 49, 7976–7980. https://doi.org/10.1021/ic1010743.Suche in Google Scholar PubMed

Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770–12779. https://doi.org/10.1002/chem.200800987.Suche in Google Scholar PubMed

Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem. Int. Ed. 1985, 97, 1050. https://doi.org/10.1002/ange.19850971211.Suche in Google Scholar

Robertson, A. P. M.; Gray, P. A.; Burford, N. Angew. Chem. Int. Ed. 2014, 53, 6050–6069. https://doi.org/10.1002/anie.201307658.Suche in Google Scholar PubMed

Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J.-M.; Pfister-Guillouzo, G.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1995, 6, 1383–1385. https://doi.org/10.1039/c39950001383.Suche in Google Scholar

Rotter, C.; Schuster, M.; Karaghiosoff, K. Inorg. Chem. 2009, 48, 7531–7533. https://doi.org/10.1021/ic901149m.Suche in Google Scholar PubMed

Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T. F. Angew. Chem. Int. Ed. 2011, 123, 3712–3754. https://doi.org/10.1002/ange.201001630.Suche in Google Scholar

Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236–4256. https://doi.org/10.1021/cr100010e.Suche in Google Scholar PubMed

Schisler, A.; Lönnecke, P.; Gelbrich, T.; Hey-Hawkins, E. Dalton Trans. 2004, 2895–2898. https://doi.org/10.1039/b407736a.Suche in Google Scholar PubMed

Schisler, A.; Lönnecke, P.; Hey-Hawkins, E. Inorg. Chem. 2005, 44, 461–464. https://doi.org/10.1021/ic048844x.Suche in Google Scholar PubMed

Schmidbaur, H.; Bauer, A. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 102, 217–219. https://doi.org/10.1080/10426509508042560.Suche in Google Scholar

Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W. W.; Schmidpeter, A. Chem. Ber. 1997, 130, 1801–1805. https://doi.org/10.1002/cber.19971301215.Suche in Google Scholar

Sidiropoulos, A.; Osborne, B.; Simonov, A. N.; Dange, D.; Bond, A. M.; Stasch, A.; Jones, C. Dalton Trans. 2014, 43, 14858–14864. https://doi.org/10.1039/c4dt02074j.Suche in Google Scholar

Siegl, H.; Krumlacher, W.; Hassler, K. Monatsh. Chem./Chem. Mon. 1999, 130, 139–145. https://doi.org/10.1007/s007060050170.Suche in Google Scholar

Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 1517–1521. https://doi.org/10.1016/s0277-5387(00)83446-4.Suche in Google Scholar

Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 2629–2637. https://doi.org/10.1016/s0277-5387(00)81313-3.Suche in Google Scholar

Tebbe, K.-F.; Heinlein, T. Z. Kristallogr. 1982, 160, 285–298. https://doi.org/10.1524/zkri.1982.160.3-4.285.Suche in Google Scholar

Tondreau, A. M.; Benkő, Z.; Harmer, J. R.; Grützmacher, H. Chem. Sci. 2014, 5, 1545. https://doi.org/10.1039/c3sc53140f.Suche in Google Scholar

Traut, S.; Von Hänisch, C.; Kathagen, H. J. Eur. J. Inorg. Chem. 2009, 2009, 777–783. https://doi.org/10.1002/ejic.200800903.Suche in Google Scholar

van IJzendoorn, B.; Mehta, M. Dalton Trans. 2020, 49, 14758–14765. https://doi.org/10.1039/d0dt02890h.Suche in Google Scholar PubMed

Von Hänisch, C.; Feierabend, M. Z. Anorg. Allg. Chem. 2013, 639, 788–793. https://doi.org/10.1002/zaac.201200544.Suche in Google Scholar

Von Hänisch, C.; Matern, E. Z. Anorg. Allg. Chem. 2005, 631, 1655–1659. https://doi.org/10.1002/zaac.200500092.Suche in Google Scholar

Von Hänisch, C.; Traut, S.; Stahl, S. Z. Anorg. Allg. Chem. 2007, 633, 2199–2204. https://doi.org/10.1002/zaac.200700180.Suche in Google Scholar

Von Hänisch, C. Z. Anorg. Allg. Chem. 2001, 627, 1414–1416. https://doi.org/10.1002/1521-3749(200107)627:7<1414::aid-zaac1414>3.0.co;2-f.10.1002/1521-3749(200107)627:7<1414::AID-ZAAC1414>3.0.CO;2-FSuche in Google Scholar

von Schnering, H. G.; Hoenle, W. Chem. Rev. 1988, 88, 243–273. https://doi.org/10.1021/cr00083a012.Suche in Google Scholar

Von Schnering, H. G.; Fenske, D.; Hönle, W.; Binnewies, M.; Peters, K. Angew. Chem. Int. Ed. 1979, 91, 755–756. https://doi.org/10.1002/ange.19790910928.Suche in Google Scholar

Weber, D.; Mujica, C.; von Schnering, H. G. Angew. Chem. Int. Ed. 1982, 94, 869–870.10.1002/ange.19820941116Suche in Google Scholar

Weber, L.; Meine, G.; Boese, R.; Niederprüm, N. Z. Naturforsch. B Chem. Sci. 1988, 43b, 1397–1403.Suche in Google Scholar

Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem. Int. Ed. 2009, 48, 295–298. https://doi.org/10.1002/anie.200804903.Suche in Google Scholar

Wiberg, E.; van Ghemen, M.; Müller-Schiedmayer, G. Angew. Chem. Int. Ed. 1963, 75, 814–823. https://doi.org/10.1002/ange.19630751803.Suche in Google Scholar

Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber./Recueil 1997, 130, 135–140. https://doi.org/10.1002/cber.19971300123.Suche in Google Scholar

Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; von Ragué Schleyer, P. Eur. J. Inorg. Chem. 1998, 1998, 833–841. https://doi.org/10.1002/(sici)1099-0682(199806)1998:6<833::aid-ejic833>3.0.co;2-1.10.1002/(SICI)1099-0682(199806)1998:6<833::AID-EJIC833>3.0.CO;2-1Suche in Google Scholar

Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch. B Chem. Sci. 1998, 53b, 1004–1014. https://doi.org/10.1515/znb-1998-0912.Suche in Google Scholar

Wiberg, N.; Wörner, A.; Nöth, H.; Karaghiosoff, K. Organosilicon Chemistry Set: From Molecules to Materials; Auner, N., Weis, J., Eds. Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp 195–201.10.1002/9783527620777.ch25aSuche in Google Scholar

Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem. Int. Ed. 2007, 46, 4511–4513. https://doi.org/10.1002/anie.200701203.Suche in Google Scholar

Received: 2020-12-08
Accepted: 2021-04-09
Published Online: 2021-04-27
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0028/html?lang=de
Button zum nach oben scrollen