Abstract
This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Overview of tricyclic heptaphosphanes P7R3
Overview of tricyclic heptaphosphanes with the sum composition P7R3 and R being monodentate p-block substituents. The references include such in which the respective derivative was prepared, used as starting material or alternatively investigated.
References
Abicht, H.-P.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1984, 519, 7–23. https://doi.org/10.1002/zaac.19845191202.Suche in Google Scholar
Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Chem. Eur. J. 1996, 2, 238–244. https://doi.org/10.1002/chem.19960020217.Suche in Google Scholar
Baudler, M.; Aktalay, Y. Z. Anorg. Allg. Chem. 1983, 496, 29–39. https://doi.org/10.1002/zaac.19834960104.Suche in Google Scholar
Baudler, M.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1984, 39b, 275–283. https://doi.org/10.1515/znb-1984-0302.Suche in Google Scholar
Baudler, M.; Arndt, V. Chem. Ber. 1991, 124, 69–73. https://doi.org/10.1002/cber.19911240111.Suche in Google Scholar
Baudler, M.; de Riese-Meye, L. Angew. Chem. Int. Ed. 1988, 100, 579–580. https://doi.org/10.1002/ange.19881000415.Suche in Google Scholar
Baudler, M.; de Riese-Meyer, L. Z. Naturforsch. B Chem. Sci. 1986, 41b, 399–404. https://doi.org/10.1515/znb-1986-0401.Suche in Google Scholar
Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1994, 620, 2070–2076. https://doi.org/10.1002/zaac.19946201209.Suche in Google Scholar
Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1995, 621, 207–212. https://doi.org/10.1002/zaac.19956210208.Suche in Google Scholar
Baudler, M.; Glinka, K. Chem. Rev. 1993, 93, 1623–1667. https://doi.org/10.1021/cr00020a010.Suche in Google Scholar
Baudler, M.; Makowka, B. Angew. Chem. Int. Ed. 1984, 96, 976–977. https://doi.org/10.1002/ange.19840961218.Suche in Google Scholar
Baudler, M.; Pontzen, T. Z. Naturforsch. B Chem. Sci. 1983, 38b, 955–960. https://doi.org/10.1515/znb-1983-0812.Suche in Google Scholar
Baudler, M.; Schnalke, M. Z. Anorg. Allg. Chem. 1990, 585, 18–26. https://doi.org/10.1002/zaac.19905850103.Suche in Google Scholar
Baudler, M.; Ständeke, H.; Borgardt, M.; Strabel, H. Die Naturwissenschaften 1965, 52, 345. https://doi.org/10.1007/bf00592013.Suche in Google Scholar
Baudler, M.; Ternberger, H.; Faber, W.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1979, 34b, 1690–1697. https://doi.org/10.1515/znb-1979-1214.Suche in Google Scholar
Baudler, M.; Faber, W.; Hahn, J. Z. Anorg. Allg. Chem. 1980, 469, 15–21. https://doi.org/10.1002/zaac.19804690103.Suche in Google Scholar
Baudler, M.; Hellmann, J.; Bachmann, P.; Tebbe, K.-F.; Fröhlich, R.; Fehér, M. Angew. Chem. Int. Ed. 1981, 20, 406–408. https://doi.org/10.1002/anie.198104061.Suche in Google Scholar
Baudler, M.; Aktalay, Y.; Tebbe, K.-F.; Heinlein, T. Angew. Chem. Int. Ed. 1981, 93, 1020–1022. https://doi.org/10.1002/ange.19810931125.Suche in Google Scholar
Baudler, M.; Aktalay, Y.; Hahn, J.; Därr, E. Z. Anorg. Allg. Chem. 1981, 473, 20–34. https://doi.org/10.1002/zaac.19814730203.Suche in Google Scholar
Baudler, M.; Aktalay, Y.; Arndt, V.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1983, 95, 1005–1006.10.1002/ange.19830951211Suche in Google Scholar
Baudler, M.; Aktalay, Y.; Kazmierczak, K.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1983, 38b, 428–433. https://doi.org/10.1515/znb-1983-0405.Suche in Google Scholar
Baudler, M.; Därr, E.; Binsch, G.; Stephenson, D. S. Z. Naturforsch. B Chem. Sci. 1984, 39b, 1671–1675. https://doi.org/10.1515/znb-1984-1209.Suche in Google Scholar
Baudler, M.; Michels, M.; Hahn, J.; Pieroth, M. Angew. Chem. Int. Ed. 1985, 24, 504–505. https://doi.org/10.1002/anie.198505041.Suche in Google Scholar
Baudler, M.; Koll, B.; Adamek, C.; Gleiter, R. Angew. Chem. Int. Ed. 1987, 99, 371–372. https://doi.org/10.1002/ange.19870990431.Suche in Google Scholar
Baudler, M.; Schlitte, S.; Hasenbach, J. Z. Anorg. Allg. Chem. 1988, 560, 7–17. https://doi.org/10.1002/zaac.19885600102.Suche in Google Scholar
Baudler, M.; de Riese-Meyer, L.; Wiaterek, C. Z. Naturforsch. B Chem. Sci. 1989, 44b, 375–380. https://doi.org/10.1515/znb-1989-0401.Suche in Google Scholar
Baudler, M.; Jachow, H.; Lieser, B.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1989, 101, 1245–1247. https://doi.org/10.1002/ange.19891010910.Suche in Google Scholar
Baudler, M.; Schnalke, M.; Wiaterek, C.; Opiela, S.; Hahn, J. Z. Anorg. Allg. Chem. 1989, 578, 7–17. https://doi.org/10.1002/zaac.19895780102.Suche in Google Scholar
Baudler, M.; Wiaterek, C.; Kazmierczak, K. Z. Anorg. Allg. Chem. 1989, 579, 7–15. https://doi.org/10.1002/zaac.19895790102.Suche in Google Scholar
Baudler, M.; Schnalke, M.; Wiaterek, C. Z. Anorg. Allg. Chem. 1990, 585, 7–17. https://doi.org/10.1002/zaac.19905850102.Suche in Google Scholar
Baudler, M.; Koll, B.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1990, 45b, 1517–1521. https://doi.org/10.1515/znb-1990-1110.Suche in Google Scholar
Becke-Goehring, M.; Hoffmann, H. Z. Anorg. Allg. Chem. 1969, 369, 73–82. https://doi.org/10.1002/zaac.19693690111.Suche in Google Scholar
Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E. Dalton Trans. 2004, 9, 499–501. https://doi.org/10.1039/b315793h.Suche in Google Scholar PubMed
Bihlmeier, A.; Gonsior, M.; Raabe, I.; Trapp, N.; Krossing, I. Chem. Eur. J. 2004, 10, 5041–5051. https://doi.org/10.1002/chem.200400096.Suche in Google Scholar PubMed
Bolli, C.; Köchner, T.; Knapp, C. Z. Anorg. Allg. Chem. 2012, 638, 559–564. https://doi.org/10.1002/zaac.201100448.Suche in Google Scholar
Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2014, 53, 12836–12839. https://doi.org/10.1002/anie.201405879.Suche in Google Scholar PubMed
Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2016, 55, 613–617. https://doi.org/10.1002/anie.201508916.Suche in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Chem. Eur. J. 2015, 21, 18543–18546. https://doi.org/10.1002/chem.201503808.Suche in Google Scholar PubMed
Bresien, J.; Faust, K.; Schulz, A.; Villinger, A. Angew. Chem. Int. Ed. 2015, 54, 6926–6930. https://doi.org/10.1002/anie.201500892.Suche in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 601–604. https://doi.org/10.1080/10426507.2015.1128915.Suche in Google Scholar
Bresien, J.; Faust, K.; Hering-Junghans, C.; Rothe, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 1998–2007. https://doi.org/10.1039/c5dt02757h.Suche in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 498–501. https://doi.org/10.1039/c5dt03928b.Suche in Google Scholar PubMed
Butts, C. P.; Green, M.; Hooper, T. N.; Kilby, R. J.; McGrady, J. E.; Pantazis, D. A.; Russell, C. A. Chem. Commun. 2008, 1, 856–858. https://doi.org/10.1039/b717204d.Suche in Google Scholar PubMed
Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178–4235. https://doi.org/10.1021/cr900349u.Suche in Google Scholar PubMed
Cappello, V.; Baumgartner, J.; Dransfeld, A.; Flock, M.; Hassler, K. Eur. J. Inorg. Chem. 2006, 2006, 2393–2405. https://doi.org/10.1002/ejic.200600028.Suche in Google Scholar
Charles, S.; Fettinger, J. C.; Eichhron, B. W. J. Am. Chem. Soc. 1995, 117, 5303–5311. https://doi.org/10.1021/ja00124a013.Suche in Google Scholar
Cicač-Hudi, M.; Bender, J.; Schlindwein, S. H.; Bispinghoff, M.; Nieger, M.; Grützmacher, H.; Gudat, D. Eur. J. Inorg. Chem. 2016, 2016, 649–658.10.1002/ejic.201501017Suche in Google Scholar
Cossairt, B. M.; Cummins, C. C. Angew. Chem. Int. Ed. 2008, 120, 8995–8998. https://doi.org/10.1002/ange.200803971.Suche in Google Scholar
Cossairt, B. M.; Cummins, C. C. New J. Chem. 2010, 34, 1533–1536. https://doi.org/10.1039/c0nj00124d.Suche in Google Scholar
Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164–4177. https://doi.org/10.1021/cr9003709.Suche in Google Scholar PubMed
Cowley, A. H.; Knueppel, P. C.; Nunn, C. M. Organometallics 1989, 8, 2490–2492. https://doi.org/10.1021/om00112a038.Suche in Google Scholar
Cummins, C. C.; Huang, C.; Miller, T. J.; Reintinger, M. W.; Stauber, J. M.; Tannou, I.; Tofan, D.; Toubaei, A.; Velian, A.; Wu, G. Inorg. Chem. 2014, 53, 3678–3687. https://doi.org/10.1021/ic403178j.Suche in Google Scholar PubMed
Daly, J. J.; Maier, L. Nature 1964, 203, 1167–1168. https://doi.org/10.1038/2031167b0.Suche in Google Scholar
Donath, M.; Conrad, E.; Jerabek, P.; Frenking, G.; Fröhlich, R.; Burford, N.; Weigand, J. J. Angew. Chem. Int. Ed. 2012, 51, 2964–2967. https://doi.org/10.1002/anie.201109010.Suche in Google Scholar PubMed
Donath, M.; Bodensteiner, M.; Weigand, J. J. Chem. Eur. J. 2014, 20, 17306–17310. https://doi.org/10.1002/chem.201405196.Suche in Google Scholar PubMed
Dube, J. W.; Graham, C. M. E.; Macdonald, C. L. B.; Brown, Z. D.; Power, P. P.; Ragogna, P. J. Chem. Eur. J. 2014, 20, 6739–6744. https://doi.org/10.1002/chem.201402031.Suche in Google Scholar PubMed
Feierabend, M.; Von Hänisch, C. Chem. Commun. 2014, 50, 4416–4419. https://doi.org/10.1039/c4cc00165f.Suche in Google Scholar PubMed
Fluck, E.; Riedel, R.; Hausen, H.; Heckmann, G. Z. Anorg. Allg. Chem. 1987, 551, 85–94. https://doi.org/10.1002/zaac.19875510809.Suche in Google Scholar
Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem. Int. Ed. 2005, 44, 7729–7733. https://doi.org/10.1002/anie.200502865.Suche in Google Scholar PubMed
Fritz, G.; Biastoch, R. AAC – J. Inorg. Gen. Chem. 1986, 535, 63–85. https://doi.org/10.1002/zaac.19865350409.Suche in Google Scholar
Fritz, G.; Hanke, D. Z. Anorg. Allg. Chem. 1986, 537, 17–30. https://doi.org/10.1002/zaac.19865370603.Suche in Google Scholar
Fritz, G.; Härer, J. Z. Anorg. Allg. Chem. 1983, 504, 23–37. https://doi.org/10.1002/zaac.19835040904.Suche in Google Scholar
Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Suche in Google Scholar
Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Suche in Google Scholar
Fritz, G.; Mayer, B. Z. Anorg. Allg. Chem. 1992, 610, 51–56. https://doi.org/10.1002/zaac.19926100109.Suche in Google Scholar
Fritz, G.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1990, 584, 12–20. https://doi.org/10.1002/zaac.19905840103.Suche in Google Scholar
Fritz, G.; Härer, J.; Scheider, K. H. Z. Anorg. Allg. Chem. 1982, 487, 44–58. https://doi.org/10.1002/zaac.19824870105.Suche in Google Scholar
Fritz, G.; Hoppe, K. D.; Hönle, W.; Weber, D.; Mujica, C.; Manriquez, V.; von Schnering, H. G. J. Organomet. Chem. 1983, 249, 63–80. https://doi.org/10.1016/s0022-328x(00)98800-4.Suche in Google Scholar
Fritz, G.; Härer, J.; Stoll, K.; Vaahs, T. Phosphorus Sulfur Relat. Elem. 1983, 18, 65–68. https://doi.org/10.1080/03086648308075968.Suche in Google Scholar
Fritz, G.; Biastoch, R.; Stoll, K.; Vaahs, T.; Hanke, D.; Schneider, H. W. Phosphorus Sulfur Relat. Elem. 1987, 30, 385–388. https://doi.org/10.1080/03086648708080601.Suche in Google Scholar
Fritz, G.; Schneider, H.-W.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1990, 584, 21–50. https://doi.org/10.1002/zaac.19905840104.Suche in Google Scholar
Fritz, G.; Layher, E.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1991, 595, 67–94. https://doi.org/10.1002/zaac.19915950110.Suche in Google Scholar
Fritz, G.; Layher, E.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1991, 598, 111–120. https://doi.org/10.1002/zaac.19915980111.Suche in Google Scholar
Fritz, G.; Layher, E.; Goesmann, H.; Hanke, D.; Persau, C. Z. Anorg. Allg. Chem. 1991, 594, 36–46. https://doi.org/10.1002/zaac.19915940105.Suche in Google Scholar
Fritz, G.; Rothmann, H.; Matern, E. Z. Anorg. Allg. Chem. 1992, 610, 33–45. https://doi.org/10.1002/zaac.19926100107.Suche in Google Scholar
Gärtner, S.; Korber, N. Structure and Bonding; Fässler, T. F., Ed. Springer-Verlag: Berlin, Heidelberg, 2011; pp 25–57.10.1007/430_2011_43Suche in Google Scholar
Gi, N. A.; Hendsbee, A. D.; Roemmele, T. L.; Lumsden, M. D.; Pye, C. C.; Masuda, J. D.; Giffin, N. A. Inorg. Chem. 2012, 51, 11837–11850.10.1021/ic301758kSuche in Google Scholar
Giffin, N. A.; Masuda, J. D. Coord. Chem. Rev. 2011, 255, 1342–1359. https://doi.org/10.1016/j.ccr.2010.12.016.Suche in Google Scholar
Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wüllen, L. Chem. Eur. J. 2002, 8, 4475–4492. https://doi.org/10.1002/1521-3765(20021004)8:19<4475::aid-chem4475>3.0.co;2-m.10.1002/1521-3765(20021004)8:19<4475::AID-CHEM4475>3.0.CO;2-MSuche in Google Scholar
He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815–7880. https://doi.org/10.1021/cr400547x.Suche in Google Scholar
Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Angew. Chem. Int. Ed. 2014, 53, 7639–7642. https://doi.org/10.1002/anie.201403295.Suche in Google Scholar PubMed
Hennersdorf, F.; Weigand, J. J. Angew. Chem. Int. Ed. 2017, 129, 7966–7970. https://doi.org/10.1002/ange.201703953.Suche in Google Scholar
Hölderich, W.; Fritz, G. Z. Anorg. Allg. Chem. 1979, 457, 127–142.10.1002/zaac.19794570114Suche in Google Scholar
Holschumacher, D.; Bannenberg, T.; Ibrom, K.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Dalton Trans. 2010, 39, 10590–10592. https://doi.org/10.1039/c0dt01045f.Suche in Google Scholar PubMed
Holthausen, M. H.; Weigand, J. J. J. Am. Chem. Soc. 2009, 131, 14210–14211. https://doi.org/10.1021/ja906878q.Suche in Google Scholar PubMed
Holthausen, M. H.; Weigand, J. J. Z. Anorg. Allg. Chem. 2012, 638, 1103–1108. https://doi.org/10.1002/zaac.201200123.Suche in Google Scholar
Holthausen, M. H.; Weigand, J. J. Dalton Trans. 2016, 45, 1953–1961. https://doi.org/10.1039/c5dt01512j.Suche in Google Scholar PubMed
Holthausen, M. H.; Richter, C.; Hepp, A.; Weigand, J. J. Chem. Commun. 2010, 46, 6921–6923. https://doi.org/10.1039/c0cc02418j.Suche in Google Scholar PubMed
Holthausen, M. H.; Feldmann, K.-O.; Schulz, S.; Hepp, A.; Weigand, J. J. Inorg. Chem. 2012, 51, 3374–3387. https://doi.org/10.1021/ic2013304.Suche in Google Scholar PubMed
Holthausen, M. H.; Surmiak, S. K.; Jerabek, P.; Frenking, G.; Weigand, J. J. Angew. Chem. Int. Ed. 2013, 52, 11078–11082. https://doi.org/10.1002/anie.201302914.Suche in Google Scholar PubMed
Holthausen, M. H.; Hepp, A.; Weigand, J. J. Chem. Eur. J. 2013, 19, 9895–9907. https://doi.org/10.1002/chem.201204337.Suche in Google Scholar
Holthausen, M. H.; Sala, C.; Weigand, J. J. Eur. J. Inorg. Chem. 2016, 2016, 667–677. https://doi.org/10.1002/ejic.201500875.Suche in Google Scholar
Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 440, 171–182.10.1002/zaac.19784400117Suche in Google Scholar
Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216–2218. https://doi.org/10.1039/c2cc17638f.Suche in Google Scholar
Jutzi, P.; Brusdeilins, N. Z. Anorg. Allg. Chem. 1994, 620, 1375–1380. https://doi.org/10.1002/zaac.19946200809.Suche in Google Scholar
Jutzi, P.; Meyer, U. J. Organomet. Chem. 1987, 333, C18–C20. https://doi.org/10.1016/0022-328x(87)85161-6.Suche in Google Scholar
Jutzi, P.; Wippermann, T. J. Organomet. Chem. 1985, 287, C5–C7. https://doi.org/10.1016/0022-328x(85)80078-4.Suche in Google Scholar
Jutzi, P.; Kroos, R.; Müller, A.; Penk, M. Angew. Chem. Int. Ed. 1989, 101, 628–629. https://doi.org/10.1002/ange.19891010519.Suche in Google Scholar
Jutzi, P.; Kroos, R.; Müller, A.; Bögge, H.; Penk, M. Chem. Ber. 1991, 124, 75–81. https://doi.org/10.1002/cber.19911240112.Suche in Google Scholar
Karaghiosoff, K.; Lerner, H.-W.; Wörner, A.; Wiberg, N. Z. Naturforsch. 2002, 57b, 1027–1035.10.1515/znb-2002-0909Suche in Google Scholar
Khan, S.; Michel, R.; Dieterich, J. M.; Mata, R. A.; Roesky, H. W.; Demers, J.; Lange, A.; Stalke, D. J. Am. Chem. Soc. 2011, 133, 17889–17894. https://doi.org/10.1021/ja207538g.Suche in Google Scholar
Köchner, T.; Riedel, S.; Lehner, A. J.; Scherer, H.; Raabe, I.; Engesser, T. A.; Scholz, F. W.; Gellrich, U.; Eiden, P.; Paz Schmidt, R. A.; Plattner, D. A.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 8139–8143. https://doi.org/10.1002/anie.201003031.Suche in Google Scholar
Köhler, H.; Michaelis, A. Ber. Dtsch. Chem. Ges. 1877, 10, 807–814. https://doi.org/10.1002/cber.187701001222.Suche in Google Scholar
Kollegger, G. M.; Katzenbeisser, U.; Hassler, K.; Krüger, C.; Brauer, D.; Gielen, R. J. Organomet. Chem. 1997, 543, 103–110. https://doi.org/10.1016/s0022-328x(97)00128-9.Suche in Google Scholar
Korber, N.; Daniels, J. J. Chem. Soc., Dalton Trans. 1996, 1653–1658. https://doi.org/10.1039/dt9960001653.Suche in Google Scholar
Korber, N.; Richter, F. Chem. Commun. 1996, 2023–2024. https://doi.org/10.1039/cc9960002023.Suche in Google Scholar
Korber, N.; Daniels, J.; von Schnering, H. G. Angew. Chem. Int. Ed. 1996, 35, 1107–1110. https://doi.org/10.1002/anie.199611071.Suche in Google Scholar
Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Suche in Google Scholar
Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Suche in Google Scholar
Kovács, I.; Baum, G.; Fritz, G.; Fenske, D.; Wiberg, N.; Schuster, H.; Karaghiosoff, K. Z. Anorg. Allg. Chem. 1993, 619, 453–460. https://doi.org/10.1002/zaac.19936190902.Suche in Google Scholar
Krossing, I. J. Chem. Soc., Dalton Trans. 2002, 500–512. https://doi.org/10.1039/b103957c.Suche in Google Scholar
Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2001, 40, 4406–4409. https://doi.org/10.1002/1521-3773(20011203)40:23<4406::aid-anie4406>3.0.co;2-x.10.1002/1521-3773(20011203)40:23<4406::AID-ANIE4406>3.0.CO;2-XSuche in Google Scholar
Krossing, I.; Reisinger, A. Coord. Chem. Rev. 2006, 250, 2721–2744. https://doi.org/10.1016/j.ccr.2005.10.023.Suche in Google Scholar
Łapczuk-Krygier, A.; Baranowska, K.; Pikies, J. Acta Crystallogr. E 2008, 64, o2427.10.1107/S1600536808037938Suche in Google Scholar
Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 2005, 1932–1939. https://doi.org/10.1002/ejic.200400970.Suche in Google Scholar
Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Inorg. Chem. 2009, 48, 1005–1017. https://doi.org/10.1021/ic8016003.Suche in Google Scholar
Ma, J.; Hozaki, A.; Inagaki, S. Inorg. Chem. 2002, 41, 1876–1882. https://doi.org/10.1021/ic0107835.Suche in Google Scholar
Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486. https://doi.org/10.1039/c3cc42041h.Suche in Google Scholar
Matern, E.; Fritz, G.; Pikies, J. Z. Anorg. Allg. Chem. 1997, 623, 1769–1773. https://doi.org/10.1002/zaac.19976231118.Suche in Google Scholar
Miluykov, V.; Kataev, A.; Sinyashin, O.; Lönnecke, P.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. 2006, 632, 1728–1732. https://doi.org/10.1002/zaac.200600108.Suche in Google Scholar
Milyukov, V. A.; Kataev, A. V.; Hey-Hawkins, E.; Sinyashin, O. G. Russ. Chem. Bull. 2007, 56, 298–303. https://doi.org/10.1007/s11172-007-0048-6.Suche in Google Scholar
Möller, M. H.; Jeitschko, W. J. Solid State Chem. 1986, 65, 178–189. https://doi.org/10.1016/0022-4596(86)90052-6.Suche in Google Scholar
Moy, R. J. Electrochem. Soc. 1986, 133, 855–858. https://doi.org/10.1149/1.2108748.Suche in Google Scholar
Mujica, C.; Weber, D.; von Schnering, H. G. Z. Naturforsch. B Chem. Sci. 1986, 41b, 991–999. https://doi.org/10.1515/znb-1986-0811.Suche in Google Scholar
Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem. Int. Ed. 2006, 94, 553–554. https://doi.org/10.1002/ange.19820940725.Suche in Google Scholar
Noblet, P.; Dransfeld, A.; Fischer, R.; Flock, M.; Hassler, K. J. Organomet. Chem. 2011, 696, 652–660. https://doi.org/10.1016/j.jorganchem.2010.09.040.Suche in Google Scholar
Noblet, P.; Cappello, V.; Tekautz, G.; Baumgartner, J.; Hassler, K. Eur. J. Inorg. Chem. 2011, 2011, 101–109. https://doi.org/10.1002/ejic.201000749.Suche in Google Scholar
Oppenheim, A. Allgemeine Deutsche Biographie, Band 3; Duncker & Humblot: Leipzig (Germany), 1876; p 236.Suche in Google Scholar
Patel, D.; Tuna, F.; McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2013, 52, 13334–13337. https://doi.org/10.1002/anie.201306492.Suche in Google Scholar
Peruzzini, M.; Stoppioni, P. J. Organomet. Chem. 1985, 288, C44–C46. https://doi.org/10.1016/0022-328x(85)80133-9.Suche in Google Scholar
Power, M. B.; Barron, A. R. Angew. Chem. Int. Ed. 1991, 30, 1353–1354. https://doi.org/10.1002/anie.199113531.Suche in Google Scholar
Prabusankar, G.; Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A. Inorg. Chem. 2010, 49, 7976–7980. https://doi.org/10.1021/ic1010743.Suche in Google Scholar PubMed
Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770–12779. https://doi.org/10.1002/chem.200800987.Suche in Google Scholar PubMed
Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem. Int. Ed. 1985, 97, 1050. https://doi.org/10.1002/ange.19850971211.Suche in Google Scholar
Robertson, A. P. M.; Gray, P. A.; Burford, N. Angew. Chem. Int. Ed. 2014, 53, 6050–6069. https://doi.org/10.1002/anie.201307658.Suche in Google Scholar PubMed
Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J.-M.; Pfister-Guillouzo, G.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1995, 6, 1383–1385. https://doi.org/10.1039/c39950001383.Suche in Google Scholar
Rotter, C.; Schuster, M.; Karaghiosoff, K. Inorg. Chem. 2009, 48, 7531–7533. https://doi.org/10.1021/ic901149m.Suche in Google Scholar PubMed
Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T. F. Angew. Chem. Int. Ed. 2011, 123, 3712–3754. https://doi.org/10.1002/ange.201001630.Suche in Google Scholar
Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236–4256. https://doi.org/10.1021/cr100010e.Suche in Google Scholar PubMed
Schisler, A.; Lönnecke, P.; Gelbrich, T.; Hey-Hawkins, E. Dalton Trans. 2004, 2895–2898. https://doi.org/10.1039/b407736a.Suche in Google Scholar PubMed
Schisler, A.; Lönnecke, P.; Hey-Hawkins, E. Inorg. Chem. 2005, 44, 461–464. https://doi.org/10.1021/ic048844x.Suche in Google Scholar PubMed
Schmidbaur, H.; Bauer, A. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 102, 217–219. https://doi.org/10.1080/10426509508042560.Suche in Google Scholar
Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W. W.; Schmidpeter, A. Chem. Ber. 1997, 130, 1801–1805. https://doi.org/10.1002/cber.19971301215.Suche in Google Scholar
Sidiropoulos, A.; Osborne, B.; Simonov, A. N.; Dange, D.; Bond, A. M.; Stasch, A.; Jones, C. Dalton Trans. 2014, 43, 14858–14864. https://doi.org/10.1039/c4dt02074j.Suche in Google Scholar
Siegl, H.; Krumlacher, W.; Hassler, K. Monatsh. Chem./Chem. Mon. 1999, 130, 139–145. https://doi.org/10.1007/s007060050170.Suche in Google Scholar
Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 1517–1521. https://doi.org/10.1016/s0277-5387(00)83446-4.Suche in Google Scholar
Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 2629–2637. https://doi.org/10.1016/s0277-5387(00)81313-3.Suche in Google Scholar
Tebbe, K.-F.; Heinlein, T. Z. Kristallogr. 1982, 160, 285–298. https://doi.org/10.1524/zkri.1982.160.3-4.285.Suche in Google Scholar
Tondreau, A. M.; Benkő, Z.; Harmer, J. R.; Grützmacher, H. Chem. Sci. 2014, 5, 1545. https://doi.org/10.1039/c3sc53140f.Suche in Google Scholar
Traut, S.; Von Hänisch, C.; Kathagen, H. J. Eur. J. Inorg. Chem. 2009, 2009, 777–783. https://doi.org/10.1002/ejic.200800903.Suche in Google Scholar
van IJzendoorn, B.; Mehta, M. Dalton Trans. 2020, 49, 14758–14765. https://doi.org/10.1039/d0dt02890h.Suche in Google Scholar PubMed
Von Hänisch, C.; Feierabend, M. Z. Anorg. Allg. Chem. 2013, 639, 788–793. https://doi.org/10.1002/zaac.201200544.Suche in Google Scholar
Von Hänisch, C.; Matern, E. Z. Anorg. Allg. Chem. 2005, 631, 1655–1659. https://doi.org/10.1002/zaac.200500092.Suche in Google Scholar
Von Hänisch, C.; Traut, S.; Stahl, S. Z. Anorg. Allg. Chem. 2007, 633, 2199–2204. https://doi.org/10.1002/zaac.200700180.Suche in Google Scholar
Von Hänisch, C. Z. Anorg. Allg. Chem. 2001, 627, 1414–1416. https://doi.org/10.1002/1521-3749(200107)627:7<1414::aid-zaac1414>3.0.co;2-f.10.1002/1521-3749(200107)627:7<1414::AID-ZAAC1414>3.0.CO;2-FSuche in Google Scholar
von Schnering, H. G.; Hoenle, W. Chem. Rev. 1988, 88, 243–273. https://doi.org/10.1021/cr00083a012.Suche in Google Scholar
Von Schnering, H. G.; Fenske, D.; Hönle, W.; Binnewies, M.; Peters, K. Angew. Chem. Int. Ed. 1979, 91, 755–756. https://doi.org/10.1002/ange.19790910928.Suche in Google Scholar
Weber, D.; Mujica, C.; von Schnering, H. G. Angew. Chem. Int. Ed. 1982, 94, 869–870.10.1002/ange.19820941116Suche in Google Scholar
Weber, L.; Meine, G.; Boese, R.; Niederprüm, N. Z. Naturforsch. B Chem. Sci. 1988, 43b, 1397–1403.Suche in Google Scholar
Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem. Int. Ed. 2009, 48, 295–298. https://doi.org/10.1002/anie.200804903.Suche in Google Scholar
Wiberg, E.; van Ghemen, M.; Müller-Schiedmayer, G. Angew. Chem. Int. Ed. 1963, 75, 814–823. https://doi.org/10.1002/ange.19630751803.Suche in Google Scholar
Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber./Recueil 1997, 130, 135–140. https://doi.org/10.1002/cber.19971300123.Suche in Google Scholar
Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; von Ragué Schleyer, P. Eur. J. Inorg. Chem. 1998, 1998, 833–841. https://doi.org/10.1002/(sici)1099-0682(199806)1998:6<833::aid-ejic833>3.0.co;2-1.10.1002/(SICI)1099-0682(199806)1998:6<833::AID-EJIC833>3.0.CO;2-1Suche in Google Scholar
Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch. B Chem. Sci. 1998, 53b, 1004–1014. https://doi.org/10.1515/znb-1998-0912.Suche in Google Scholar
Wiberg, N.; Wörner, A.; Nöth, H.; Karaghiosoff, K. Organosilicon Chemistry Set: From Molecules to Materials; Auner, N., Weis, J., Eds. Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp 195–201.10.1002/9783527620777.ch25aSuche in Google Scholar
Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem. Int. Ed. 2007, 46, 4511–4513. https://doi.org/10.1002/anie.200701203.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Bicyclic and tricyclic phosphanes with p-block substituents
- Ligand isomerism in Pt(II) complexes – structural aspects
- Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates
- Supercapacitor electrode materials: addressing challenges in mechanism and charge storage
- Techniques in the synthesis of organometallic compounds of Hafnium
Artikel in diesem Heft
- Frontmatter
- Bicyclic and tricyclic phosphanes with p-block substituents
- Ligand isomerism in Pt(II) complexes – structural aspects
- Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates
- Supercapacitor electrode materials: addressing challenges in mechanism and charge storage
- Techniques in the synthesis of organometallic compounds of Hafnium