Startseite A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye

  • Abraham Amenay Zewde EMAIL logo , Lingling Zhang , Zifu Li und Emanuel Alepu Odey
Veröffentlicht/Copyright: 10. August 2019

Abstract

Nowadays the use of conventional wastewater treatment methods is becoming increasingly challenging mainly due to the presence of organic matter in wastewater. Therefore, an emerging technology is needed to deal with these highly concentrated and toxic non-biodegradable organic matters. In the last few decades, advanced oxidation process (AOP) has emerged to treat wastewaters discharged from industries. Recently, researchers have shown interest to use the application of ultrasound (US) in photocatalysis, i.e. sonophotocatalysis, to improve the performance of the treatment process in the degradation of organic and inorganic contaminants in aqueous streams. Sonophotocatalysis is the combination of the use of ultraviolet (UV) and US.

  1. Research funding: None declared.

  2. Conflict of interest: Authors state no conflict of interest.

  3. Informed consent: Not applicable.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

1. Capocelli M, Joyce E, Lancia A, Mason TJ, Musmarra D, Prisciandaro M. Sonochemical degradation of estradiols: incidence of ultrasonic frequency. Chem Eng J 2012;210:9–17.10.1016/j.cej.2012.08.084Suche in Google Scholar

2. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 2014;236:348–68.10.1016/j.cej.2013.09.090Suche in Google Scholar

3. Sudha M, Saranya A. Microbial degradation of azo dyes: a review. Int J Curr Microbiol 2014;3(2):670–90.Suche in Google Scholar

4. Ahmedchekkat F, Medjram MS, Chiha M, Al-Bsoul AMA. Sonophotocatalytic degradation of Rhodamine B using a novel reactor geometry: effect of operating conditions. Chem Eng J 2011;178:244–51.10.1016/j.cej.2011.10.061Suche in Google Scholar

5. Jamshidi M, Ghaedi M, Dashtian K, Ghaedi AM, Hajati S, Goudarzi A, et al. Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modeling and central composite design optimization. Spectrochim Acta A Mol Biomol Spectrosc 2015;153:257–67.10.1016/j.saa.2015.08.024Suche in Google Scholar PubMed

6. Nasiri Azad F, Ghaedi M, Dashtian K, Montazerozohori M, Hajati S, Alipanahpour E. Preparation and characterization of MWCNTs functionalized by N-(3-nitrobenzylidene)-N′-trimethoxysilylpropyl-ethane-1,2-diamine for the removal of aluminum(III) ions via complexation with eriochrome cyanine R: spectrophotometric detection and optimization. RSC Adv 2015;5(75):61060–9.10.1039/C5RA08746ESuche in Google Scholar

7. Sui K, Li Y, Liu R, Zhang Y, Zhao X, Liang H, et al. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydr Polym 2012;90(1):399–406.10.1016/j.carbpol.2012.05.057Suche in Google Scholar PubMed

8. Modirshahla N, Hassani A, Behnajady MA, Rahbarfam R. Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination 2011;271(1–3):187–92.10.1016/j.desal.2010.12.027Suche in Google Scholar

9. Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A. Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies. Chem Eng J 2012;195196:297–306.10.1016/j.cej.2012.04.074Suche in Google Scholar

10. Hassani A, Khataee AR, Alidokht L, Karaca S. Response surface analysis of removal of a textile dye by a Turkish coal powder. Adv Environ Res 2013;2:291–308.10.12989/aer.2013.2.4.291Suche in Google Scholar

11. Kiernan J. Classification and naming of dyes, stains and fluorochromes. Biotech Histochem 2001;76(5–6):261–78.10.1080/bih.76.5-6.261.278Suche in Google Scholar PubMed

12. Forgacs E, Cserháti T, Oros G. Environment removal of synthetic dyes from wastewaters: a review. Environ Int 2004;30:953–71.10.1016/j.envint.2004.02.001Suche in Google Scholar

13. Planas C, Santos FJ, Rivera J. Occurrence of pesticides in spanish surface waters. analysis by high resolution gas chromatography coupled to mass spectrometry. Chemosphere 1997;34(11): 2393–406.10.1016/S0045-6535(97)00085-4Suche in Google Scholar

14. Salman JM, Njoku VO, Hameed BH. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem Eng J 2011;174:41–8.10.1016/j.cej.2011.08.026Suche in Google Scholar

15. Duran C, Ozdes D, Gundogdu A, Senturk HB. Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data 2011;56:2136–47.10.1021/je101204jSuche in Google Scholar

16. Gür E. A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J Hazard Mater 2010;179:658–64.10.1016/j.jhazmat.2010.03.053Suche in Google Scholar PubMed

17. Reddy MCS, Sivaramakrishna L, Reddy AV. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J Hazard Mater 2012;204:118–27.10.1016/j.jhazmat.2011.11.083Suche in Google Scholar PubMed

18. Kim G, Igunnu ET, Chen GZ. A sunlight assisted dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater. Chem Eng J 2014;244:411–21.10.1016/j.cej.2014.01.090Suche in Google Scholar

19. Bolong N, Ismail AF, Salim MR, Matsuura T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009;239:229–46.10.1016/j.desal.2008.03.020Suche in Google Scholar

20. Cronk R, Slaymaker T, Bartram J. Monitoring drinking water, sanitation, and hygiene in non-household settings: priorities for policy and practice. Int J Hyg Environ Health 2015;218: 694–703.10.1016/j.ijheh.2015.03.003Suche in Google Scholar PubMed

21. Gültekin I, Ince NH. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manage 2007;85:816–32.10.1016/j.jenvman.2007.07.020Suche in Google Scholar PubMed

22. Munter R, Trapido M, Veressinina Y, Goi A. Cost effectiveness of ozonation and AOPs for aromatic compound removal from water: a preliminary study. Ozone Sci Eng 2006;28: 287–93.10.1080/01919510600893875Suche in Google Scholar

23. Zhao L, Sun Z, Ma J, Liu H. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution. Environ Sci Technol 2009;43(6):2047–53.10.1021/es803125hSuche in Google Scholar

24. Daud NK, Ahmad MA, Hameed BH. Decolorization of acid red 1 dye solution by Fenton-like process using Fe-Montmorillonite K10 catalyst. Chem Eng J 2010;165(1):111–6.10.1016/j.cej.2010.08.072Suche in Google Scholar

25. Huang WJ, Fang GC, Wang CC. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids Surf A Physicochem Eng Asp 2005;260(1–3): 45–51.10.1016/j.colsurfa.2005.01.031Suche in Google Scholar

26. Kim BS, Fujita H, Sakai Y, Sakoda A, Suzuki M. Catalytic ozonation of an organophosphorus pesticide using microporous silicate and its effect on total toxicity reduction. Water Sci Technol 2002;46(4–5):35–41.10.2166/wst.2002.0545Suche in Google Scholar

27. Moncayo-Lasso A, Rincon AG, Pulgarin C, Benitez N. Significant decrease of THMs generated during chlorination of river water by previous photo-Fenton treatment at near neutral pH. J Photochem Photobiol A Chem 2012;229(1):46–52.10.1016/j.jphotochem.2011.12.001Suche in Google Scholar

28. García-Montaño J, Ruiz N, Muñoz I, Domènech X, García-Hortal JA, Torrades F, et al. Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. J Hazard Mater 2006;138(2):218–25.10.1016/j.jhazmat.2006.05.061Suche in Google Scholar

29. Gonze E, Commenges N, Gonthier Y, Bernis A. High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chem Eng J 2003; 92(1–3):215–25.10.1016/S1385-8947(02)00258-9Suche in Google Scholar

30. Sarria V, Péringer P, Cáceres J, Blanco J, Malato S, Pulgarin C. Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO2 and iron(III) catalyst with H2O2 and O2 as electron acceptors. Energy 2004;29(5–6):853–60.10.1016/S0360-5442(03)00190-7Suche in Google Scholar

31. Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 2011;409(20):4141–66.10.1016/j.scitotenv.2010.08.061Suche in Google Scholar PubMed

32. Michael I, Hapeshi E, Michael C, Varela AR, Kyriakou S, Manaia CM, et al. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 2012;46(17):5621–34.10.1016/j.watres.2012.07.049Suche in Google Scholar

33. Liu R, Chiu HM, Shiau CS, Yeh RYL, Hung YT. Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes. Dyes Pigments 2007;73(1):1–6.10.1016/j.dyepig.2005.10.002Suche in Google Scholar

34. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 2009;35(2):402–17.10.1016/j.envint.2008.07.009Suche in Google Scholar

35. Bauer C, Jacques P, Kalt A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A Chem 2001;140(1):87–92.10.1016/S1010-6030(01)00391-4Suche in Google Scholar

36. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev 1993;93:671–98.10.1021/cr00018a003Suche in Google Scholar

37. Kaur S, Singh V. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 2007;14(5):531–7.10.1016/j.ultsonch.2006.09.015Suche in Google Scholar

38. Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004;55:35–43.10.1016/j.chemosphere.2003.10.046Suche in Google Scholar

39. Baban A, Yediler A, Lienert D, Kemerdere N, Kettrup A. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dyes Pigments 2003;58(2):93–8.10.1016/S0143-7208(03)00047-0Suche in Google Scholar

40. Al-Kdasi A, Idris A, Saed K, Guan CT. Treatment of textile wastewater by advanced oxidation processes – a review. Global Nest: Int J 2005;6(3):222–30.10.30955/gnj.000288Suche in Google Scholar

41. Hussain SN, Ahmad A, Ali A, Sattar H, Asghar HMA. Wastewater treatment of textile industry via adsorption and electrochemical regeneration. Int Conf Adv Environ Res 2015;87:13–9.Suche in Google Scholar

42. Paul SA, Chavan SK, Khambe SD. Studies on characterization of textile industrial waste water in Solapur city. Int J Chem Sci 2012;10(2):635–42.Suche in Google Scholar

43. Kopf P, Gilbert E, Eberle SH. TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J Photochem Photobiol A Chem 2000;136(3):163–8.10.1016/S1010-6030(00)00331-2Suche in Google Scholar

44. Shirgaonkar IZ, Pandit AB. Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol. Ultrason Sonochem 1998;5(2):53–61.10.1016/S1350-4177(98)00013-3Suche in Google Scholar

45. Abdul-Zahra AJ, Mashkour MS, Juda AM, Al-Sultani HA. Photocatalytic degradation of paracetmol and procaine. Int J ChemTech Res 2016;9(11):412–25.Suche in Google Scholar

46. González AS, Martínez SS. Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrason Sonochem 2008;15(6):1038–42.10.1016/j.ultsonch.2008.03.008Suche in Google Scholar

47. Fang Y, Shimizu S, Yamamoto T, Komarov S. Generation of OH radical by ultrasonic irradiation in batch and circulatory reactor. IOP Conf Ser Earth Environ Sci 2018;120(1):12019.10.1088/1755-1315/120/1/012019Suche in Google Scholar

48. Lakshmi DS, Santoro S, Avruscio E, Tagarelli A, Figoli A. Preparation of polymer inclusion membranes (PIMs) with ionic liquid and its application in dye adsorption process supported by statistical analysis. Int J Membr Sci Technol 2015;2:65–7.10.15379/2410-1869.2015.02.02.07Suche in Google Scholar

49. Serpone N, Emeline AV. Suggested terms and definitions in photocatalysis and radiocatalysis. Int J Photoenergy 2002;4: 91–131.10.1155/S1110662X02000144Suche in Google Scholar

50. Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 2001;40(22): 4681–715.10.1021/ie010096lSuche in Google Scholar

51. Verma A, Kaur Hura A, Dixit D. Sequential photo-Fenton and sono-photo-Fenton degradation studies of Reactive Black 5 (RB5). Desalin Water Treat 2015;56(3):677–83.10.1080/19443994.2014.940390Suche in Google Scholar

52. Ge M-Z, Cao C-Y, Huang J-Y, Li S-H, Zhang S-N, Deng S, et al. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol Rev 2016;5(1):75–112.10.1515/ntrev-2015-0049Suche in Google Scholar

53. Klima J, Bernard C, Degrand C. Sonoelectrochemistry: transient cavitation in acetonitrile in the neighbourhood of a polarized electrode. J Electroanal Chem 1995;399(1–2):147–55.10.1016/0022-0728(95)04197-4Suche in Google Scholar

54. Thokchom B, Pandit AB, Qiu P, Park B, Choi J, Khim J. A review on sonoelectrochemical technology as an upcoming alternative for pollutant degradation. Ultrason Sonochem 2015;27:210–34.10.1016/j.ultsonch.2015.05.015Suche in Google Scholar PubMed

55. Walton DJ. Sonoelectrochemistry – the application of ultrasound to electrochemical systems. Arkivoc 2002;2002(iii):198–218.10.3998/ark.5550190.0003.322Suche in Google Scholar

56. González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V. Current topics on sonoelectrochemistry. Ultrasonics 2010;50(2):318–22.10.1016/j.ultras.2009.09.022Suche in Google Scholar

57. Bremner DH, Burgess AE, Li F. Coupling of chemical, electrochemical and ultrasonic energies for controlled generation of hydroxyl radicals direct synthesis of phenol by benzene hydroxylation. Appl Catal A Gen 2000;203:111–20.10.1016/S0926-860X(00)00479-8Suche in Google Scholar

58. Lei H, Tang Y, Wei J, Li J, Li X, Shi H. Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 2007;14:81–3.10.1016/j.ultsonch.2006.01.008Suche in Google Scholar

59. Shestakova M, Vinatoru M, Mason TJ, Iakovleva E, Sillanpää M. Sonoelectrochemical degradation of formic acid using Ti/Ta2O5-SnO2 electrodes. J Mol Liq 2016;223:388–94.10.1016/j.molliq.2016.08.054Suche in Google Scholar

60. Yaqub A, Ajab H. Applications of sonoelectrochemistry in wastewater treatment system. Rev Chem Eng 2013;29:123.10.1515/revce-2012-0017Suche in Google Scholar

61. Mason TJ, Lorimer JP, Walton DJ. Sonoelectrochemistry. Ultrasonics 1990;28(5):333–7.10.1002/352760054X.ch6Suche in Google Scholar

62. Yegnaraman S, Bharathi V. Sonoelectrocemistry an emerging era.pdf. Bull Electrochem 1992;08(02):84–5. ISSN 0256-1654.Suche in Google Scholar

63. Thokchom B, Kim K, Park J, Khim J. Ultrasonically enhanced electrochemical oxidation of ibuprofen. Ultrason Sonochem 2014;22:429–36.10.1016/j.ultsonch.2014.04.019Suche in Google Scholar

64. Venkatachalam N, Palanichamy M, Murugesan V. Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem 2007;273(1–2):177–85.10.1016/j.molcata.2007.03.077Suche in Google Scholar

65. Shukla PR, Wang S, Ang HM, Tadé MO. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep Purif Technol 2010;70(3):338–44.10.1016/j.seppur.2009.10.018Suche in Google Scholar

66. Khodja AA, Sehili T, Pilichowski J-F, Boule P, Khodja AA, Sehili T, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A Chem 2001;141(2–3):231–9.10.1016/S1010-6030(01)00423-3Suche in Google Scholar

Received: 2019-04-09
Accepted: 2019-06-25
Published Online: 2019-08-10
Published in Print: 2019-12-18

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/reveh-2019-0024/html?lang=de
Button zum nach oben scrollen