Abstract
Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.
Research funding: Authors state no funding involved.
Conflict of interest: Authors state no conflict of interest.
Informed consent: Not applicable.
Ethical approval: The conducted research is not related to either human or animal use.
References
1. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009;30(4):293–342.10.1210/er.2009-0002Search in Google Scholar PubMed PubMed Central
2. Eick GN, Thornton JW. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol 2011;334(1–2):31–8.10.1016/j.mce.2010.09.003Search in Google Scholar PubMed
3. Beausoleil C, Beronius A, Bodin L, Bokkers B, Boon P, Burger M, et al. Review of non-monotonic dose-responses of substances for human risk assessment. EFSA Support Publ 2016;13(5):1027E.10.2903/sp.efsa.2016.EN-1027Search in Google Scholar
4. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs Jr DR, Lee D-H, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012;33(3):378–455.10.1210/er.2011-1050Search in Google Scholar PubMed PubMed Central
5. Schneider J, Kidd S, Anderson D. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol Lett 2013;217(1):75–81.10.1016/j.toxlet.2012.12.004Search in Google Scholar PubMed PubMed Central
6. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, Vom Saal FS. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 2003;111(8):994.10.1289/ehp.5494Search in Google Scholar PubMed PubMed Central
7. Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update 2000;6(3):225–36.10.1093/humupd/6.3.225Search in Google Scholar PubMed
8. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 2002;87(11):5185–90.10.1210/jc.2002-020209Search in Google Scholar PubMed
9. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 2011;127(3–5):204–15.10.1016/j.jsbmb.2011.08.007Search in Google Scholar PubMed PubMed Central
10. Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C: Embryo Today: Rev 2011;93(1):51–5.10.1002/bdrc.20199Search in Google Scholar PubMed PubMed Central
11. Barker D, Clark PM. Fetal undernutrition and disease in later life. Rev Reprod 1997;2(2):105–12.10.1530/ror.0.0020105Search in Google Scholar PubMed
12. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 2017;8(5):513–9.10.1017/S2040174417000733Search in Google Scholar PubMed
13. Barouki R. Endocrine disruptors: revisiting concepts and dogma in toxicology. C R Biol 2017;340(9–10):410–3.10.1016/j.crvi.2017.07.005Search in Google Scholar PubMed
14. Bornman MS, Aneck-Hahn NH, De Jager C, Wagenaar GM, Bouwman H, Barnhoorn IE, et al. Endocrine disruptors and health effects in Africa: a call for action. Environ Health Perspect 2017;125(8):085005.10.1289/EHP1774Search in Google Scholar PubMed PubMed Central
15. Waddington CH. The epigenotype. Endeavour 1942;1:18–20.10.1093/ije/dyr184Search in Google Scholar PubMed
16. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128(4):635–8.10.1016/j.cell.2007.02.006Search in Google Scholar PubMed
17. Hoopes L. Introduction to the gene expression and regulation topic room. Nat Educ 2008;1(1):160.Search in Google Scholar
18. Fazzari MJ, Greally JM. Introduction to epigenomics and epigenome-wide analysis. In: Statistical Methods in Molecular Biology. Totowa, NJ: Humana Press, 2010:243–65.10.1007/978-1-60761-580-4_7Search in Google Scholar PubMed
19. Sweatt JD, Meaney MJ, Nestler EJ, Akbarian S. An overview of the molecular basis of epigenetics. Epigenetic Regulation in the Nervous System: Basic Mechanisms and Clinical Impact. Cambridge, Massachusetts: Academic Press, 2013:3–33.10.1016/B978-0-12-391494-1.00001-XSearch in Google Scholar
20. Rivera RM, Bennett LB. Epigenetics in humans: an overview. Curr Opin Endocrinol Diab Obesity 2010;17(6):493–9.10.1097/MED.0b013e3283404f4bSearch in Google Scholar PubMed
21. Kim J, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci 2009;66(4):596.10.1007/s00018-008-8432-4Search in Google Scholar PubMed PubMed Central
22. Gibney E, Nolan C. Epigenetics and gene expression. Heredity 2010;105(1):4.10.1038/hdy.2010.54Search in Google Scholar
23. Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012;7(2):119–30.10.4161/epi.7.2.18764Search in Google Scholar
24. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999;274(46):33002–10.10.1074/jbc.274.46.33002Search in Google Scholar
25. Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, et al. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010;17(33):4052–71.10.2174/092986710793205372Search in Google Scholar
26. Siegfried Z, Cedar H. DNA methylation: a molecular lock. Curr Biol 1997;7(5):R305–7.10.1016/S0960-9822(06)00144-8Search in Google Scholar
27. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.10.1146/annurev.biochem.74.010904.153721Search in Google Scholar PubMed
28. Sant KE, Goodrich JM. Methods for Analysis of DNA Methylation. In: Toxicoepigenetics. Cambridge, Massachusetts: Academic Press, 2019:347–77.10.1016/B978-0-12-812433-8.00015-0Search in Google Scholar
29. Kouzarides T. Chromatin modifications and their function. Cell 2007;128(4):693–705.10.1016/j.cell.2007.02.005Search in Google Scholar PubMed
30. Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res 2015;116(4):715–36.10.1161/CIRCRESAHA.116.303936Search in Google Scholar PubMed
31. Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Reg 2016;60:144–50.10.1016/j.jbior.2015.09.008Search in Google Scholar PubMed
32. Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer’s disease. Alzheimers Dement: Diagn Assess Dis Monit 2016;2:123–31.10.1016/j.dadm.2016.02.002Search in Google Scholar PubMed PubMed Central
33. Pertea M. The human transcriptome: an unfinished story. Genes 2012;3(3):344–60.10.3390/genes3030344Search in Google Scholar PubMed PubMed Central
34. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12(11):847.10.1038/nrd4140Search in Google Scholar PubMed PubMed Central
35. Malumbres M. miRNAs and cancer: an epigenetics view. Mol Aspects Med 2013;34(4):863–74.10.1016/j.mam.2012.06.005Search in Google Scholar PubMed PubMed Central
36. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–33.10.1016/j.cell.2009.01.002Search in Google Scholar PubMed PubMed Central
37. Tammen SA, Friso S, Choi S-W. Epigenetics: the link between nature and nurture. Mol Aspects Med 2013;34(4):753–64.10.1016/j.mam.2012.07.018Search in Google Scholar PubMed PubMed Central
38. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007;61(5 Part 2):24R.10.1203/pdr.0b013e3180457684Search in Google Scholar PubMed
39. Konieczna A, Rutkowska A, Rachon D. Health risk of exposure to Bisphenol A (BPA). Roczniki Państwowego Zakładu Higieny 2015;66(1):5–11.Search in Google Scholar
40. Pouokam GB, Ajaezi GC, Mantovani A, Orisakwe OE, Frazzoli C. Use of bisphenol A-containing baby bottles in Cameroon and Nigeria and possible risk management and mitigation measures: community as milestone for prevention. Sci Total Environ 2014;481:296–302.10.1016/j.scitotenv.2014.02.026Search in Google Scholar PubMed
41. Baluka SA, Rumbeiha WK. Bisphenol A and food safety: lessons from developed to developing countries. Food Chem Toxicol 2016;92:58–63.10.1016/j.fct.2016.03.025Search in Google Scholar PubMed
42. Janesick A, Blumberg B. Obesogens, stem cells and the developmental programming of obesity. Int J Androl 2012;35(3):437–48.10.1111/j.1365-2605.2012.01247.xSearch in Google Scholar PubMed PubMed Central
43. Ross MG, Desai M. Developmental programming of offspring obesity, adipogenesis, and appetite. Clin Obstet Gynecol 2013;56(3):529.10.1097/GRF.0b013e318299c39dSearch in Google Scholar PubMed PubMed Central
44. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 2002;15(10):1281–7.10.1021/tx025548tSearch in Google Scholar PubMed
45. Oppeneer SJ, Robien K. Bisphenol A exposure and associations with obesity among adults: a critical review. Public Health Nutr 2015;18(10):1847–63.10.1017/S1368980014002213Search in Google Scholar PubMed
46. Inoue H, Tsuruta A, Kudo S, Ishii T, Fukushima Y, Iwano H, et al. Bisphenol A glucuronidation and excretion in liver of pregnant and nonpregnant female rats. Drug Metab Disposit 2005;33(1):55–9.10.1124/dmd.104.001537Search in Google Scholar PubMed
47. Strassburg C, Strassburg A, Kneip S, Barut A, Tukey R, Rodeck B, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 2002;50(2):259–65.10.1136/gut.50.2.259Search in Google Scholar PubMed PubMed Central
48. Burchell B, Coughtrie M, Jackson M, Harding D, Fournel-Gigleux S, Leakey J, et al. Development of human liver UDP-glucuronosyltransferases. Dev Pharmacol Ther 1989;13:70–7.10.1159/000457587Search in Google Scholar PubMed
49. Pacifici G, Franchi M, Giuliani L, Rane A. Development of the glucuronyltransferase and sulphotransferase towards 2-naphthol in human fetus. Dev Pharmacol Ther 1989;14(2):108–14.10.1159/000480927Search in Google Scholar
50. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007;104(32):13056–61.10.1073/pnas.0703739104Search in Google Scholar PubMed PubMed Central
51. Anderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, et al. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen 2012;53(5):334–42.10.1002/em.21692Search in Google Scholar PubMed PubMed Central
52. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 2010;24(7):2273–80.10.1096/fj.09-140533Search in Google Scholar PubMed PubMed Central
53. Yang B, Li S-Z, Ma L, Liu H-L, Liu J, Shao J-J. Expression and mechanism of action of miR-196a in epithelial ovarian cancer. Asian Pac J Trop Med 2016;9(11):1105–10.10.1016/j.apjtm.2016.09.002Search in Google Scholar PubMed
54. Dhimolea E, Wadia PR, Murray TJ, Settles ML, Treitman JD, Sonnenschein C, et al. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One 2014;9(7):e99800.10.1371/journal.pone.0099800Search in Google Scholar PubMed PubMed Central
55. Strakovsky RS, Wang H, Engeseth NJ, Flaws JA, Helferich WG, Pan Y-X, et al. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol Appl Pharmacol 2015;284(2):101–12.10.1016/j.taap.2015.02.021Search in Google Scholar PubMed PubMed Central
56. Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, et al. Acute aflatoxin B1-induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017;4:408–14.10.1016/j.toxrep.2017.07.006Search in Google Scholar PubMed PubMed Central
57. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008;7(1):45–56.10.1016/j.cmet.2007.10.013Search in Google Scholar PubMed
58. Kuhajda FP, Ronnett GV. Modulation of carnitine palmitoyltransferase-1 for the treatment of obesity. Curr Opin Invest Drugs (London, England: 2000) 2007;8(4):312–7.Search in Google Scholar
59. Junge KM, Leppert B, Jahreis S, Wissenbach DK, Feltens R, Grützmann K, et al. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics 2018;10(1):58.10.1186/s13148-018-0478-zSearch in Google Scholar PubMed PubMed Central
60. Bauer T, Trump S, Ishaque N, Thürmann L, Gu L, Bauer M, et al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 2016;12(3):861.10.15252/msb.20156520Search in Google Scholar PubMed PubMed Central
61. Kamei Y, Suganami T, Kohda T, Ishino F, Yasuda K, Miura S, et al. Peg1/Mest in obese adipose tissue is expressed from the paternal allele in an isoform-specific manner. FEBS Lett 2007;581(1):91–6.10.1016/j.febslet.2006.12.002Search in Google Scholar PubMed
62. Soubry A, Murphy S, Wang F, Huang Z, Vidal A, Fuemmeler B, et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 2015;39(4):650.10.1038/ijo.2013.193Search in Google Scholar PubMed PubMed Central
63. Karbiener M, Glantschnig C, Pisani DF, Laurencikiene J, Dahlman I, Herzig S, et al. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. Int J Obes 2015;39(12):1733.10.1038/ijo.2015.121Search in Google Scholar PubMed PubMed Central
64. Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab 2005;288(1):E117–24.10.1152/ajpendo.00244.2004Search in Google Scholar PubMed
65. Kadota Y, Kawakami T, Suzuki S, Sato M. Involvement of mesoderm-specific transcript in cell growth of 3T3-L1 preadipocytes. J Health Sci 2009;55(5):814–9.10.1248/jhs.55.814Search in Google Scholar
66. Mao Z, Xia W, Huo W, Zheng T, Bassig BA, Chang H, et al. Pancreatic impairment and Igf2 hypermethylation induced by developmental exposure to bisphenol A can be counteracted by maternal folate supplementation. J Appl Toxicol 2017;37(7):825–35.10.1002/jat.3430Search in Google Scholar PubMed
67. Devedjian J-C, George M, Casellas A, Pujol A, Visa J, Pelegrín M, et al. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes. J Clin Invest 2000;105(6):731–40.10.1172/JCI5656Search in Google Scholar PubMed PubMed Central
68. Serradas P, Goya L, Lacorne M, Gangnerau MN, Ramos S, Álvarez C, et al. Insulin-like growth factor 2 production is impaired in fetal GK rats. Diabetologia 2000;43:A131.Search in Google Scholar
69. Calderari S, Gangnerau M-N, Thibault M, Meile M-J, Kassis N, Alvarez C, et al. Defective IGF2 and IGF1R protein production in embryonic pancreas precedes beta cell mass anomaly in the Goto–Kakizaki rat model of type 2 diabetes. Diabetologia 2007;50(7):1463–71.10.1007/s00125-007-0676-2Search in Google Scholar PubMed
70. Liu S, Mauvais-Jarvis F. Minireview: estrogenic protection of β-cell failure in metabolic diseases. Endocrinology 2009;151(3):859–64.10.1210/en.2009-1107Search in Google Scholar PubMed PubMed Central
71. Faulk C, Kim JH, Jones TR, McEachin RC, Nahar MS, Dolinoy DC, et al. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ Epigenet 2015;1(1):dvv006.10.1093/eep/dvv006Search in Google Scholar PubMed PubMed Central
72. Faulk C, Kim JH, Anderson OS, Nahar MS, Jones TR, Sartor MA, et al. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A. Epigenetics 2016;11(7):489–500.10.1080/15592294.2016.1183856Search in Google Scholar PubMed PubMed Central
73. Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 2015;124:54–60.10.1016/j.chemosphere.2014.10.071Search in Google Scholar PubMed PubMed Central
74. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Hormones Cancer 2010;1(3):146–55.10.1007/s12672-010-0015-9Search in Google Scholar PubMed PubMed Central
75. Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 2013;154(5):1873–84.10.1210/en.2012-2129Search in Google Scholar PubMed PubMed Central
76. De Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, Di Carlo C, et al. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics 2015;8(1):56.10.1186/s12920-015-0131-zSearch in Google Scholar PubMed PubMed Central
77. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010;29(4):401–6.10.1016/j.reprotox.2010.04.004Search in Google Scholar PubMed PubMed Central
78. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol 2012;5(2):47–58.10.2478/v10102-012-0009-2Search in Google Scholar PubMed PubMed Central
79. Dooyema CA, Neri A, Lo Y-C, Durant J, Dargan PI, Swarthout T, et al. Outbreak of fatal childhood lead poisoning related to artisanal gold mining in northwestern Nigeria, 2010. Environ Health Perspect 2012;120(4):601.10.1289/ehp.1103965Search in Google Scholar PubMed PubMed Central
80. Stein J, Schettler T, Wallinga D, Valenti M. In harm’s way: toxic threats to child development. J Dev Behav Pediatr 2002;23:S13–22.10.1097/00004703-200202001-00004Search in Google Scholar PubMed
81. Goyer RA. Transplacental transport of lead. Environ Health Perspect 1990;89:101.10.1289/ehp.9089101Search in Google Scholar PubMed PubMed Central
82. Nigg JT, Nikolas M, Mark Knottnerus G, Cavanagh K, Friderici K. Confirmation and extension of association of blood lead with attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom domains at population-typical exposure levels. J Child Psychol Psychiatry 2010;51(1):58–65.10.1111/j.1469-7610.2009.02135.xSearch in Google Scholar PubMed PubMed Central
83. Surkan PJ, Zhang A, Trachtenberg F, Daniel DB, McKinlay S, Bellinger DC. Neuropsychological function in children with blood lead levels <10 μg/dL. Neurotoxicology 2007;28(6):1170–7.10.1016/j.neuro.2007.07.007Search in Google Scholar PubMed PubMed Central
84. Mazumdar M, Bellinger DC, Gregas M, Abanilla K, Bacic J, Needleman HL. Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ Health 2011;10(1):24.10.1186/1476-069X-10-24Search in Google Scholar PubMed PubMed Central
85. Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2010;2(2):245–69.10.2217/epi.10.2Search in Google Scholar PubMed
86. Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 2012;13(10):R89.10.1186/gb-2012-13-10-r89Search in Google Scholar PubMed PubMed Central
87. Rebollo R, Mager DL. Methylated DNA immunoprecipitation analysis of mammalian endogenous retroviruses. In: Transposons and Retrotransposons. New York, NY: Humana Press, 2016:377–85.10.1007/978-1-4939-3372-3_23Search in Google Scholar PubMed
88. Ostertag EM, Kazazian Jr HH. Biology of mammalian L1 retrotransposons. Annu Rev Genet 2001;35(1):501–38.10.1146/annurev.genet.35.102401.091032Search in Google Scholar PubMed
89. Zhang Y, Maksakova IA, Gagnier L, Van De Lagemaat LN, Mager DL. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 2008;4(2):e1000007.10.1371/journal.pgen.1000007Search in Google Scholar PubMed PubMed Central
90. Montrose L, Faulk C, Francis J, Dolinoy D. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons. Environ Mol Mutagen 2017;58(8):540–50.10.1002/em.22119Search in Google Scholar PubMed PubMed Central
91. Markowski DN, Thies HW, Gottlieb A, Wenk H, Wischnewsky M, Bullerdiek J. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr 2013;8(5):449.10.1007/s12263-013-0354-6Search in Google Scholar PubMed PubMed Central
92. Luca G, Haba-Rubio J, Dauvilliers Y, Lammers GJ, Overeem S, Donjacour CE, et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J Sleep Res 2013;22(5):482–95.10.1111/jsr.12044Search in Google Scholar PubMed
93. Nye MD, King KE, Darrah TH, Maguire R, Jima DD, Huang Z, et al. Maternal blood lead concentrations, DNA methylation of MEG3 DMR regulating the DLK1/MEG3 imprinted domain and early growth in a multiethnic cohort. Environ Epigenetics 2016;2(1):dvv009.10.1093/eep/dvv009Search in Google Scholar PubMed PubMed Central
94. Engström K, Rydbeck F, Kippler M, Wojdacz TK, Arifeen S, Vahter M, et al. Prenatal lead exposure is associated with decreased cord blood DNA methylation of the glycoprotein VI gene involved in platelet activation and thrombus formation. Environ Epigenet 2015;1(1):1–9 [dvv007].10.1093/eep/dvv007Search in Google Scholar PubMed PubMed Central
95. Berndt M, Metharom P, Andrews R. Primary haemostasis: newer insights. Haemophilia 2014;20:15–22.10.1111/hae.12427Search in Google Scholar PubMed
96. Loyau S, Dumont B, Ollivier V, Boulaftali Y, Feldman L, Ajzenberg N, et al. Platelet glycoprotein VI dimerization, an active process inducing receptor competence, is an indicator of platelet reactivity. Arter Thromb Vasc Biol 2012;32(3):778–5.10.1161/ATVBAHA.111.241067Search in Google Scholar PubMed
97. Bigalke B, Lindemann S, Ehlers R, Seizer P, Daub K, Langer H, et al. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur Heart J 2006;27(18):2165–9.10.1093/eurheartj/ehl192Search in Google Scholar PubMed
98. Bigalke B, Geisler T, Stellos K, Langer H, Daub K, Kremmer E, et al. Platelet collagen receptor glycoprotein VI as a possible novel indicator for the acute coronary syndrome. Am Heart J 2008;156(1):193–200.10.1016/j.ahj.2008.02.010Search in Google Scholar PubMed
99. Bigalke B, Stellos K, Geisler T, Lindemann S, May AE, Gawaz M. Glycoprotein VI as a prognostic biomarker for cardiovascular death in patients with symptomatic coronary artery disease. Clin Res Cardiol 2010;99(4):227–33.10.1007/s00392-009-0109-ySearch in Google Scholar PubMed
100. Pilsner JR, Hu H, Ettinger A, Sánchez BN, Wright RO, Cantonwine D, et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 2009;117(9):1466.10.1289/ehp.0800497Search in Google Scholar PubMed PubMed Central
101. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta: Rev Cancer 2007;1775(1):138–62.10.1016/j.bbcan.2006.08.007Search in Google Scholar PubMed
102. Sen A, Cingolani P, Senut M-C, Land S, Mercado-Garcia A, Tellez-Rojo MM, et al. Lead exposure induces changes in 5-hydroxymethylcytosine clusters in CpG islands in human embryonic stem cells and umbilical cord blood. Epigenetics 2015;10(7):607–21.10.1080/15592294.2015.1050172Search in Google Scholar PubMed PubMed Central
103. Sen A, Heredia N, Senut M-C, Hess M, Land S, Qu W, et al. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots. Epigenomics 2015;7(3):379–93.10.2217/epi.15.2Search in Google Scholar PubMed PubMed Central
104. Yamamoto H, Kokame K, Okuda T, Nakajo Y, Yanamoto H, Miyata T. NDRG4 protein-deficient mice exhibit spatial learning deficits and vulnerabilities to cerebral ischemia. J Biol Chem 2011;286(29):26158–65.10.1074/jbc.M111.256446Search in Google Scholar PubMed PubMed Central
105. Araki T, Milbrandt J. Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 2000;20(1):187–95.10.1523/JNEUROSCI.20-01-00187.2000Search in Google Scholar
106. Lin K-P, Chen S-Y, Lai L-C, Huang Y-L, Chen J-H, Chen T-F, et al. Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer’s disease. PLoS One 2011;6(6):e20573.10.1371/journal.pone.0020573Search in Google Scholar PubMed PubMed Central
107. Sen A, Heredia N, Senut M-C, Land S, Hollocher K, Lu X, et al. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci Rep 2015;5:14466.10.1038/srep14466Search in Google Scholar PubMed PubMed Central
108. Sánchez-Martín FJ, Lindquist DM, Landero-Figueroa J, Zhang X, Chen J, Cecil KM, et al. Sex-and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology 2015;46:92–100.10.1016/j.neuro.2014.12.004Search in Google Scholar PubMed PubMed Central
109. Auger CJ, Auger AP. Permanent and plastic epigenesis in neuroendocrine systems. Front Neuroendocrinol 2013;34(3):190–7.10.1016/j.yfrne.2013.05.003Search in Google Scholar PubMed
110. Chung WC, Auger AP. Gender differences in neurodevelopment and epigenetics. Pflügers Archiv Eur J Physiol 2013;465(5):573–84.10.1007/s00424-013-1258-4Search in Google Scholar PubMed PubMed Central
111. Menger Y, Bettscheider M, Murgatroyd C, Spengler D. Sex differences in brain epigenetics. Epigenomics 2010;2(6):807–21.10.2217/epi.10.60Search in Google Scholar PubMed
112. Schneider J, Anderson D, Sonnenahalli H, Vadigepalli R. Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicol Appl Pharmacol 2011;256(2):179–90.10.1016/j.taap.2011.08.008Search in Google Scholar PubMed PubMed Central
113. Schneider J, Mettil W, Anderson D. Differential effect of postnatal lead exposure on gene expression in the hippocampus and frontal cortex. J Mol Neurosci 2012;47(1):76–88.10.1007/s12031-011-9686-0Search in Google Scholar PubMed PubMed Central
114. Schneider JS, Anderson DW, Talsania K, Mettil W, Vadigepalli R. Effects of developmental lead exposure on the hippocampal transcriptome: influences of sex, developmental period, and lead exposure level. Toxicol Sci 2012;129(1):108–25.10.1093/toxsci/kfs189Search in Google Scholar PubMed PubMed Central
115. Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005;79(6):734–46.10.1002/jnr.20404Search in Google Scholar PubMed
116. Feng J, Fouse S, Fan G. Epigenetic regulation of neural gene expression and neuronal function. Pediat Res 2007; 61(5 Part 2):58R.10.1203/pdr.0b013e3180457635Search in Google Scholar PubMed
117. Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 2007;104(49):19416–21.10.1073/pnas.0707442104Search in Google Scholar PubMed PubMed Central
118. Nagarajan R, Hogart A, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006;1(4):172–82.10.4161/epi.1.4.3514Search in Google Scholar PubMed PubMed Central
119. Luo M, Xu Y, Cai R, Tang Y, Ge M-M, Liu Z-H, et al. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett 2014;225(1):78–85.10.1016/j.toxlet.2013.11.025Search in Google Scholar PubMed
120. Li Q, Kappil MA, Li A, Dassanayake PS, Darrah TH, Friedman AE, et al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 2015;10(9):793–802.10.1080/15592294.2015.1066960Search in Google Scholar PubMed PubMed Central
121. Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J 2007;21(2):415–26.10.1096/fj.06-6130comSearch in Google Scholar PubMed
122. Ventayol M, Viñas JL, Sola A, Jung M, Brüne B, Pi F, et al. miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia. Cell Death Dis 2014;5(2):e1048.10.1038/cddis.2014.2Search in Google Scholar PubMed PubMed Central
123. Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, et al. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 2014;14(1):40–52.10.1016/j.stem.2013.11.001Search in Google Scholar PubMed PubMed Central
124. Shi X-B, Tepper CG, deVere White RW. Cancerous miRNAs and their regulation. Cell Cycle 2008;7(11):1529–38.10.4161/cc.7.11.5977Search in Google Scholar PubMed
125. Pietrzykowski AZ, Spijker S. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala. Front Neurosci 2014;8:389.10.3389/fnins.2014.00389Search in Google Scholar PubMed PubMed Central
126. Roy A, Bellinger D, Hu H, Schwartz J, Ettinger AS, Wright RO, et al. Lead exposure and behavior among young children in Chennai, India. Environ Health Perspect 2009;117(10):1607.10.1289/ehp.0900625Search in Google Scholar PubMed PubMed Central
127. Wu J, Ying T, Shen Z, Wang H. Effect of low-level prenatal mercury exposure on neonate neurobehavioral development in China. Pediat Neurol 2014;51(1):93–9.10.1016/j.pediatrneurol.2014.03.018Search in Google Scholar PubMed
128. Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, et al. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ Res 2010;110(7):699–704.10.1016/j.envres.2010.07.001Search in Google Scholar PubMed
129. Wasserman GA, Staghezza-Jaramillo B, Shrout P, Popovac D, Graziano J. The effect of lead exposure on behavior problems in preschool children. Am J Publ Health 1998;88(3):481–6.10.2105/AJPH.88.3.481Search in Google Scholar
130. Van Dyk J, Bouwman H, Barnhoorn I, Bornman M. DDT contamination from indoor residual spraying for malaria control. Sci Total Environ 2010;408(13):2745–52.10.1016/j.scitotenv.2010.03.002Search in Google Scholar PubMed
131. Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 2013;11(1):228.10.1186/1741-7015-11-228Search in Google Scholar PubMed PubMed Central
132. Skinner MK, Maamar MB, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018;11(1):8.10.1186/s13072-018-0178-0Search in Google Scholar PubMed PubMed Central
133. Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, et al. Effects of age, sex, and persistent organic pollutants on DNA methylation in children. Environ Mol Mutagen 2014;55(3):209–22.10.1002/em.21845Search in Google Scholar PubMed PubMed Central
134. Wilhelm CS, Kelsey KT, Butler R, Plaza S, Gagne L, Zens MS, et al. Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res 2010;16(5):1682–9.10.1158/1078-0432.CCR-09-2983Search in Google Scholar PubMed PubMed Central
135. El-Maarri O, Walier M, Behne F, van Üüm J, Singer H, Diaz-Lacava A, et al. Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS One 2011;6(1):e16252.10.1371/journal.pone.0016252Search in Google Scholar PubMed PubMed Central
136. Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 2011;6(5):623–9.10.4161/epi.6.5.15335Search in Google Scholar PubMed PubMed Central
137. Burris HH, Rifas-Shiman SL, Baccarelli A, Boeke CE, Kleinman K, Wen X, et al. Associations of LINE-1 (“Global”) DNA methylation with preterm birth in a prospective cohort study. J Dev Origins Health Dis 2011: Cambridge: Cambridge University Press; 2011:S62.10.1017/S2040174412000104Search in Google Scholar PubMed PubMed Central
138. Singer H, Walier M, Nüsgen N, Meesters C, Schreiner F, Woelfle J, et al. Methylation of L1Hs promoters is lower on the inactive X, has a tendency of being higher on autosomes in smaller genomes and shows inter-individual variability at some loci. Human Mol Gene 2011;21(1):219–35.10.1093/hmg/ddr456Search in Google Scholar PubMed PubMed Central
139. Kappil MA, Li Q, Li A, Dassanayake PS, Xia Y, Nanes JA, et al. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development. Environ Epigenet 2016;2(1):dvv013.10.1093/eep/dvv013Search in Google Scholar PubMed PubMed Central
140. Zhang L, Long X. Association of BRCA1 promoter methylation with sporadic breast cancers: evidence from 40 studies. Sci Rep 2015;5:17869.10.1038/srep17869Search in Google Scholar PubMed PubMed Central
141. Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, Gupta SD, et al. Promoter hypermethylation of TMS1, BRCA1, ERα and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 2007;81(4):280–7.10.1016/j.lfs.2007.05.012Search in Google Scholar PubMed
142. Wolff M. Half-lives of organochlorines (OCs) in humans. Arch Environ Contamin Toxicol 1999;36(4):504.10.1007/PL00006624Search in Google Scholar PubMed
143. Yu X, Zhao B, Su Y, Zhang Y, Chen J, Wu W, et al. Association of prenatal organochlorine pesticide-dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation. Life Sci 2018;200:81–6.10.1016/j.lfs.2018.03.030Search in Google Scholar PubMed
144. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Human Reprod 2011;26(9):2558–69.10.1093/humrep/der192Search in Google Scholar PubMed PubMed Central
145. Jenkins TG, Carrell DT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl 2011;13(1):76.10.1038/aja.2010.61Search in Google Scholar PubMed PubMed Central
146. Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK.Epigenetic transgenerational inheritance of altered sperm histone retention sites. Sci Rep 2018;8(1):5308.10.1038/s41598-018-23612-ySearch in Google Scholar
147. Yan W. Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol Cell Endocrinol 2014;398(1–2):24–30.10.1016/j.mce.2014.09.008Search in Google Scholar
148. Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016;416(1):18–25.10.1016/j.ydbio.2016.06.007Search in Google Scholar
149. Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol 2015;218(1):71–9.10.1242/jeb.106971Search in Google Scholar
150. Valinluck V, Tsai H-H, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004;32(14):4100–8.10.1093/nar/gkh739Search in Google Scholar
151. Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 2007;67(3):946–50.10.1158/0008-5472.CAN-06-3123Search in Google Scholar
152. Florl AR, Löwer R, Schmitz-Dräger B, Schulz W. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 1999;80(9):1312.10.1038/sj.bjc.6690524Search in Google Scholar
153. Colot V, Rossignol JL. Eukaryotic DNA methylation as an evolutionary device. Bioessays 1999;21(5):402–11.10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-BSearch in Google Scholar
154. Domínguez-Bendala J, McWhir J. Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgen Res 2004;13(1):69–74.10.1023/B:TRAG.0000017176.77847.80Search in Google Scholar
155. Maloisel L, Rossignol J-L. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 1998;12(9):1381–9.10.1101/gad.12.9.1381Search in Google Scholar
156. Hahn MA, Szabo PE, Pfeifer GP. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 2014;104(5):314–23.10.1016/j.ygeno.2014.08.015Search in Google Scholar PubMed PubMed Central
157. Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 2011;25(7):679–84.10.1101/gad.2036011Search in Google Scholar PubMed PubMed Central
158. Abdel-Maksoud FM, Leasor KR, Butzen K, Braden TD, Akingbemi BT. Prenatal exposures of male rats to the environmental chemicals bisphenol A and Di(2-ethylhexyl) phthalate impact the sexual differentiation process. Endocrinology 2015;156(12):4672–83.10.1210/en.2015-1077Search in Google Scholar PubMed
159. Kochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BP, Sartor MA, Dolinoy DC. Longitudinal effects of developmental bisphenol A exposure on epigenome-wide DNA hydroxymethylation at imprinted loci in mouse blood. Environ Health Perspect 2018;126(7):077006.10.1289/EHP3441Search in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb
- Cadmium toxicity: effects on human reproduction and fertility
- An overview on role of some trace elements in human reproductive health, sperm function and fertilization process
- Distract, delay, disrupt: examples of manufactured doubt from five industries
- A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye
- The effect of occupational exposure to petrol on pulmonary function parameters: a review and meta-analysis
- Using human epidemiological analyses to support the assessment of the impacts of coal mining on health
- Arsenic exposure with reference to neurological impairment: an overview
- Current management of household hazardous waste (HHW) in the Asian region
- Integrating DMAIC approach of Lean Six Sigma and theory of constraints toward quality improvement in healthcare
- Mini Reviews
- Assessment of water, sanitation and hygiene in HCFs: which tool to follow?
- Can your work affect your kidney’s health?
- A review on characteristics of food waste and their use in butanol production
Articles in the same Issue
- Frontmatter
- Reviews
- Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb
- Cadmium toxicity: effects on human reproduction and fertility
- An overview on role of some trace elements in human reproductive health, sperm function and fertilization process
- Distract, delay, disrupt: examples of manufactured doubt from five industries
- A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye
- The effect of occupational exposure to petrol on pulmonary function parameters: a review and meta-analysis
- Using human epidemiological analyses to support the assessment of the impacts of coal mining on health
- Arsenic exposure with reference to neurological impairment: an overview
- Current management of household hazardous waste (HHW) in the Asian region
- Integrating DMAIC approach of Lean Six Sigma and theory of constraints toward quality improvement in healthcare
- Mini Reviews
- Assessment of water, sanitation and hygiene in HCFs: which tool to follow?
- Can your work affect your kidney’s health?
- A review on characteristics of food waste and their use in butanol production