Startseite Technik A systematic review on the application of machine learning in carbon dioxide absorption in amine-related solvents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A systematic review on the application of machine learning in carbon dioxide absorption in amine-related solvents

  • Jun Hui Law , Farihahusnah Hussin , Muhammed Basheer Jasser und Mohamed Kheireddine Aroua EMAIL logo
Veröffentlicht/Copyright: 29. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Amine absorption has been regarded as an efficient solution in reducing the atmospheric carbon dioxide (CO2) concentration. Machine learning (ML) models are applied in the CO2 capture field to predict the CO2 solubility in amine solvents. Although there are other similar reviews, this systematic review presents a more comprehensive review on the ML models and their training algorithms applied to predict CO2 solubility in amine-related solvents in the past 10 years. A total of 55 articles are collected from Scopus, ScienceDirect and Web of Science following Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Neural network is the most frequently applied model while committee machine intelligence system is the most accurate model. However, relatively the same optimisation algorithm was applied for each type of ML models. Genetic algorithm has been applied in most of the discussed ML models, yet limited studies were found. The advantages and limitations of each ML models are discussed. The findings of this review could provide a database of the data points for future research, as well as provide information to future researchers for studying ML application in amine absorption, including but not limited to implementation of different optimisation algorithms, structure optimisation and larger scale applications.


Corresponding author: Mohamed Kheireddine Aroua, Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; and School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK, E-mail:

Funding source: PGR Ph.D. Studentship Scheme

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Jun Hui Law – Writing: Original Draft, Resources, Conceptualization. Farihahusnah Hussin – Writing: Review & Editing. Muhammed Basheer Jasser – Supervision. Mohamed Kheireddine Aroua – Supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The work is supported by Sunway University under the PGR Ph.D. Studentship Scheme.

  7. Data availability: The data collected from literature is included in the supporting information.

References

Abooali, D., Soleimani, R., and Rezaei-Yazdi, A. (2020). Modeling CO2 absorption in aqueous solutions of DEA, MDEA, and DEA + MDEA based on intelligent methods. Sep. Sci. Technol. 55: 697–707, https://doi.org/10.1080/01496395.2019.1575415.Suche in Google Scholar

Afkhamipour, M. and Mofarahi, M. (2018). A modeling-optimization framework for assessment of CO2 absorption capacity by novel amine solutions: 1DMA2P, 1DEA2P, DEEA, and DEAB. J. Cleaner Prod. 171: 234–249, https://doi.org/10.1016/j.jclepro.2017.09.285.Suche in Google Scholar

Babamohammadi, S., Shamiri, A., Nejad Ghaffar Borhani, T., Shafeeyan, M.S., Aroua, M.K., and Yusoff, R. (2018). Solubility of CO2 in aqueous solutions of glycerol and monoethanolamine. J. Mol. Liq. 249: 40–52, https://doi.org/10.1016/j.molliq.2017.10.151.Suche in Google Scholar

Baghban, A., Bahadori, A., Mohammadi, A.H., and Behbahaninia, A. (2017). Prediction of CO2 loading capacities of aqueous solutions of absorbents using different computational schemes. Int. J. Greenh. Gas Control 57: 143–161, https://doi.org/10.1016/j.ijggc.2016.12.010.Suche in Google Scholar

Balchandani, S.C. and Dey, A. (2022). Prediction of CO2 solubility in potential blends of ionic liquids with Alkanolamines using statistical non-rigorous and ANN based modeling: a comprehensive simulation study for post combustion CO2 capture. Int. Commun. Heat Mass Transfer 132, https://doi.org/10.1016/j.icheatmasstransfer.2021.105866.Suche in Google Scholar

Balchandani, S.C., Singh, R., and Mandal, B. (2023). Experimental and COSMO-RS analysis of CO2 solubility in novel aqueous blends of 1-butyl-3-methyl-imidazolium tetrafluoroborate activated by 2-aminoethyl piperazine and bis(3-aminopropyl) amine for post combustion carbon capture. J. Environ. Chem. Eng. 11, https://doi.org/10.1016/j.jece.2022.109099.Suche in Google Scholar

Bastani, D., Hamzehie, M.E., Davardoost, F., Mazinani, S., and Poorbashiri, A. (2013). Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network. Fluid Phase Equil. 354: 6–11, https://doi.org/10.1016/j.fluid.2013.05.017.Suche in Google Scholar

Benamor, A. and Aroua, M.K. (2005). Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model. Fluid Phase Equil. 231: 150–162, https://doi.org/10.1016/j.fluid.2005.02.005.Suche in Google Scholar

Bequette, B.W. (1998). Process dynamics: modeling, analysis, and simulation. Prentice Hall PTR, Upper Saddle River, NJ.Suche in Google Scholar

Borhani, T.N., Nabavi, S.A., Hanak, D.P., and Manovic, V. (2021). Thermodynamic models applied to CO2 absorption modelling. Rev. Chem. Eng. 37: 931–957, https://doi.org/10.1515/revce-2019-0058.Suche in Google Scholar

Breiman, L. (1996). Bagging predictors. Mach. Learn. 24: 123–140, https://doi.org/10.1007/bf00058655.Suche in Google Scholar

Breiman, L. (2001). Random forests. Mach. Learn. 45: 5–32, https://doi.org/10.1023/a:1010933404324.10.1023/A:1010933404324Suche in Google Scholar

Broomhead, D.S. and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Syst. 2.Suche in Google Scholar

Broyden, C.G. (1973). Quasi-Newton, or modification methods. In: Byrne, G.D. and Hall, C.A. (Eds.), Numerical solution of systems of nonlinear algebraic equations. Academic Press, New York.Suche in Google Scholar

Brust, C.A., Sickert, S., Simon, M., Rodner, E., and Denzler, J. (2016). Evaluation of QuickProp for learning deep neural networks. Crit. Rev.Suche in Google Scholar

Buckingham, J., Reina, T.R., and Duyar, M.S. (2022). Recent advances in carbon dioxide capture for process intensification. Carbon Capture Sci. Technol. 2, https://doi.org/10.1016/j.ccst.2022.100031.Suche in Google Scholar

Chen, G., Luo, X., Zhang, H., Fu, K., Liang, Z., Rongwong, W., Tontiwachwuthikul, P., and Idem, R. (2015). Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions. Int. J. Greenh. Gas Control 39: 174–184, https://doi.org/10.1016/j.ijggc.2015.05.005.Suche in Google Scholar

Chen, H., Zeng, M., Zhang, H., Chen, B., Guan, L., and Li, M. (2022). Prediction of carbon dioxide solubility in polymers based on adaptive particle swarm optimization and least squares support vector machine. ChemistrySelect 7: e202104447, https://doi.org/10.1002/slct.202104447.Suche in Google Scholar

Christmann, A. and Steinwart, I. (2008). Support vector machines. Springer, New York.Suche in Google Scholar

COP21 (2015) The Paris Agreement. United Nat. Clim. Change, [Online], https://unfccc.int/process-and-meetings/the-paris-agreement (Accessed 2023).Suche in Google Scholar

COP26 (2021). COP26: together for our planet. United Nat. Clim. Change, [Online], https://www.un.org/en/climatechange/cop26 (Accessed 2023).Suche in Google Scholar

COP27 (2022) Five key takeaways from COP27. United Nat. Clim. Change, [Online], https://unfccc.int/process-and-meetings/conferences/sharm-el-sheikh-climate-change-conference-november-2022/five-key-takeaways-from-cop27 (Accessed 2023).Suche in Google Scholar

Dashti, A., Harami, H.R., and Rezakazemi, M. (2018). Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int. J. Hydrogen Energy 43: 6614–6624, https://doi.org/10.1016/j.ijhydene.2018.02.046.Suche in Google Scholar

Dashti, A., Raji, M., Razmi, A., Rezaei, N., Zendehboudi, S., and Asghari, M. (2019). Efficient hybrid modeling of CO2 absorption in aqueous solution of piperazine: applications to energy and environment. Chem. Eng. Res. Des. 144: 405–417, https://doi.org/10.1016/j.cherd.2019.01.019.Suche in Google Scholar

Dashti, A., Raji, M., Alivand, M.S., and Mohammadi, A.H. (2020). Estimation of CO2 equilibrium absorption in aqueous solutions of commonly used amines using different computational schemes. Fuel 264, https://doi.org/10.1016/j.fuel.2019.116616.Suche in Google Scholar

Dey, A., Dash, S.K., and Mandal, B. (2018). Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine. Fluid Phase Equil. 463: 91–105, https://doi.org/10.1016/j.fluid.2018.01.030.Suche in Google Scholar

Dey, A., Dash, S.K., Balchandani, S.C., and Mandal, B. (2019). Investigation on the inclusion of 1-(2-aminoethyl) piperazine as a promoter on the equilibrium CO2 solubility of aqueous 2-amino-2-methyl-1-propanol. J. Mol. Liq. 289, https://doi.org/10.1016/j.molliq.2019.111036.Suche in Google Scholar

Dey, A., Dash, S.K., and Mandal, B. (2020a). Elucidating the performance of (N-(3-aminopropyl)-1, 3-propanediamine) activated (1- dimethylamino-2-propanol) as a novel amine formulation for post combustion carbon dioxide capture. Fuel 277, https://doi.org/10.1016/j.fuel.2020.118209.Suche in Google Scholar

Dey, A., Mandal, B., and Dash, S.K. (2020b). Analysis of equilibrium CO2 solubility in aqueous APDA and its potential blends with AMP/MDEA for postcombustion CO2 capture. Int. J. Energy Res. 44: 12395–12415, https://doi.org/10.1002/er.5404.Suche in Google Scholar

Dziejarski, B., Krzyżyńska, R., and Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: a survey of technical assessment. Fuel 342, https://doi.org/10.1016/j.fuel.2023.127776.Suche in Google Scholar

Fernandes, D., Conway, W., Burns, R., Lawrance, G., Maeder, M., and Puxty, G. (2012). Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide. J. Chem. Thermodyn. 54: 183–191, https://doi.org/10.1016/j.jct.2012.03.030.Suche in Google Scholar

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Inf. Comput. 121: 256–285, https://doi.org/10.1006/inco.1995.1136.Suche in Google Scholar

Freund, Y. and Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55: 119–139, https://doi.org/10.1006/jcss.1997.1504.Suche in Google Scholar

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. Ann. Stat. 29: 1189–1232, https://doi.org/10.1214/aos/1013203451.Suche in Google Scholar

Fu, L., Ren, Z., Si, W., Ma, Q., Huang, W., Liao, K., Huang, Z., Wang, Y., Li, J., and Xu, P. (2022). Research progress on CO2 capture and utilization technology. J. CO2 Util 66, https://doi.org/10.1016/j.jcou.2022.102260.Suche in Google Scholar

Garcia, J.A., Villen-Guzman, M., Rodriguez-Maroto, J.M., and Paz-Garcia, J.M. (2022). Technical analysis of CO2 capture pathways and technologies. J. Environ. Chem. Eng. 10, https://doi.org/10.1016/j.jece.2022.108470.Suche in Google Scholar

Ghiasi, M.M. and Mohammadi, A.H. (2014). Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions. J. Nat. Gas Sci. Eng. 18: 39–46, https://doi.org/10.1016/j.jngse.2014.01.005.Suche in Google Scholar

Ghiasi, M.M., Arabloo, M., Mohammadi, A.H., and Barghi, T. (2016). Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions. Int. J. Greenh. Gas Control 49: 47–54, https://doi.org/10.1016/j.ijggc.2016.02.015.Suche in Google Scholar

Ghiasi, M.M., Hajinezhad, A., Yousefi, H., and Mohammadi, A.H. (2017). CO2 loading capacity of DEA aqueous solutions: modeling and assessment of experimental data. Int. J. Greenh. Gas Control 56: 289–301, https://doi.org/10.1016/j.ijggc.2016.11.029.Suche in Google Scholar

Ghiasi, M.M., Abedi-Farizhendi, S., and Mohammadi, A.H. (2019). Modeling equilibrium systems of amine-Based CO2 capture by implementing machine learning approaches. Environ. Prog. Sustain. Energy 38, https://doi.org/10.1002/ep.13160.Suche in Google Scholar

Golzar, K., Modarress, H., and Amjad-Iranagh, S. (2016). Evaluation of density, viscosity, surface tension and CO2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. Int. J. Greenh. Gas Control 53: 187–197, https://doi.org/10.1016/j.ijggc.2016.08.008.Suche in Google Scholar

Gupta, S. and Li, L. (2022). The potential of machine learning for enhancing CO2 sequestration, storage, transportation, and utilization-based processes: a brief perspective. JOM 74: 414–428, https://doi.org/10.1007/s11837-021-05079-x.Suche in Google Scholar

Haghtalab, A. and Gholami, V. (2019). Carbon dioxide solubility in the aqueous mixtures of diisopropanolamine + l-arginine and diethanolamine +l-arginine at high pressures. J. Mol. Liq. 288, https://doi.org/10.1016/j.molliq.2019.111064.Suche in Google Scholar

Hamzehie, M.E. and Najibi, H. (2016a). Carbon dioxide absorption in aqueous solution of potassium glycinate + 2-amino-2-methyl-1-propanol as new absorbents. RSC Adv. 6: 62612–62623, https://doi.org/10.1039/C6RA09600J.Suche in Google Scholar

Hamzehie, M.E. and Najibi, H. (2016b). Experimental and theoretical study of carbon dioxide solubility in aqueous solution of potassium glycinate blended with piperazine as new absorbents. J. CO2 Util. 16: 64–77, https://doi.org/10.1016/j.jcou.2016.06.003.Suche in Google Scholar

Hamzehie, M.E. and Najibi, H. (2016c). Prediction of acid gas solubility in amine, ionic liquid and amino acid salt solutions using artificial neural network and evaluating with new experimental measurements. J. Nat. Gas Sci. Eng. 29: 252–263, https://doi.org/10.1016/j.jngse.2016.01.014.Suche in Google Scholar

Hamzehie, M.E., Mazinani, S., Davardoost, F., Mokhtare, A., Najibi, H., Van der Bruggen, B., and Darvishmanesh, S. (2014). Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions. J. Nat. Gas Sci. Eng. 21: 19–25, https://doi.org/10.1016/j.jngse.2014.07.022.Suche in Google Scholar

Hamzehie, M.E., Fattahi, M., Najibi, H., Van der Bruggen, B., and Mazinani, S. (2015). Application of artificial neural networks for estimation of solubility of acid gases (H2S and CO2) in 32 commonly ionic liquid and amine solutions. J. Nat. Gas Sci. Eng. 24: 106–114, https://doi.org/10.1016/j.jngse.2015.03.014.Suche in Google Scholar

Hanafiah, A.S., Maulud, A.S., Shahid, M.Z., Suleman, H., and Buang, A. (2021). Raman calibration models for chemical species determination in CO2-loaded aqueous MEA solutions using PLS and ANN techniques. ChemEngineering 5: 87, https://doi.org/10.3390/chemengineering5040087.Suche in Google Scholar

Hasanzadeh, A., Ghaemi, A., and Shahhosseini, S. (2023). Neural network modeling for development of high-pressure measurement of carbon dioxide solubility in the aqueous AEEA+sulfolane. J. Chem. Pet. Eng. 57: 179–197, https://doi.org/10.22059/jchpe.2023.345296.1397.Suche in Google Scholar

Haykin, S. (1998). Neural networks: a comprehensive foundation. Prentice Hall PTR, Delhi, India.Suche in Google Scholar

Hemmati-Sarapardeh, A., Amar, M.N., Soltanian, M.R., Dai, Z., and Zhang, X. (2020). Modeling CO2 solubility in water at high pressure and temperature conditions. Energy Fuels 34: 4761–4776, https://doi.org/10.1021/acs.energyfuels.0c00114.Suche in Google Scholar

Hong, W.Y. (2022). A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 3, https://doi.org/10.1016/j.ccst.2022.100044.Suche in Google Scholar

Hussin, F., Md Rahim, S.A.N., Hatta, N.S.M., Aroua, M.K., and Mazari, S.A. (2023). A systematic review of machine learning approaches in carbon capture applications. J. CO2 Util. 71, https://doi.org/10.1016/j.jcou.2023.102474.Suche in Google Scholar

IEA (2023). CO2 emissions in 2022. International Energy Agency, France.Suche in Google Scholar

Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 23: 665–685, https://doi.org/10.1109/21.256541.Suche in Google Scholar

Joksas, D., Freitas, P., Chai, Z., Ng, W.H., Buckwell, M., Li, C., Zhang, W.D., Xia, Q., Kenyon, A.J., and Mehonic, A. (2020). Committee machines–a universal method to deal with non-idealities in memristor-based neural networks. Nat. Commun. 11: 4273, https://doi.org/10.1038/s41467-020-18098-0.Suche in Google Scholar PubMed PubMed Central

Khalilzadeh, A., Fattahi, M., and Baghban, A. (2019). Modeling of carbon dioxide capture from gas stream emissions using amino acid salts blended with amine solutions. Pet. Sci. Technol. 37: 1868–1874, https://doi.org/10.1080/10916466.2017.1302474.Suche in Google Scholar

Koza, J. (1994). Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4: 87–112, https://doi.org/10.1007/BF00175355.Suche in Google Scholar

Lai, Y., Abdelbasset, W.K., Olegovich Bokov, D., and Salah Al-Shati, A. (2022). Development of ANFIS technique for estimation of CO2 solubility in amino acids and study on impact of input parameters. Arabian J. Chem. 15, https://doi.org/10.1016/j.arabjc.2022.104284.Suche in Google Scholar

Lazzús, J.A. (2014). Hybrid swarm optimization for vapor–liquid equilibrium modeling. J. Mol. Liq. 196: 167–177, https://doi.org/10.1016/j.molliq.2014.03.031.Suche in Google Scholar

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, https://doi.org/10.1090/qam/10666.Suche in Google Scholar

Li, C., Liu, H., Xiao, M., Luo, X., Gao, H., and Liang, Z. (2017). Thermodynamics and ANN models for predication of the equilibrium CO2 solubility in aqueous 3-dimethylamino-1-propanol solution. Int. J. Greenh. Gas Control 63: 77–85, https://doi.org/10.1016/j.ijggc.2017.05.007.Suche in Google Scholar

Li, H. and Zhang, Z. (2018). Mining the intrinsic trends of CO2 solubility in blended solutions. J. CO2 Util. 26: 496–502, https://doi.org/10.1016/j.jcou.2018.06.008.Suche in Google Scholar

Li, M., Huang, X., Liu, H., Liu, B., Wu, Y., and Wang, L. (2015). Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means. RSC Adv. 5: 45520–45527, https://doi.org/10.1039/C5RA07129A.Suche in Google Scholar

Li, M., Lian, S., Wang, F., Zhou, Y., Chen, B., Guan, L., and Wu, Y. (2020). Neural network modeling based double-population chaotic accelerated particle swarm optimization and diffusion theory for solubility prediction. Chem. Eng. Res. Des. 155: 98–107, https://doi.org/10.1016/j.cherd.2020.01.003.Suche in Google Scholar

Li, T., Tantikhajorngosol, P., Yang, C., and Tontiwachwuthikul, P. (2021). Experimental investigations and developing multilayer neural network models for prediction of CO2 solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends. Greenh. Gas.:Sci. Technol. 11: 712–733, https://doi.org/10.1002/ghg.2075.Suche in Google Scholar

Li, T., Yang, C., Tantikhajorngosol, P., Sema, T., Shi, H., and Tontiwachwuthikul, P. (2022). Experimental investigations and the modeling approach for CO2 solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol. Environ. Sci. Pollut. Res. 29: 69402–69423, https://doi.org/10.1007/s11356-022-20411-x.Suche in Google Scholar PubMed

Liakos, K.G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018). Machine learning in agriculture: a review. Sensors 18: 2674, https://doi.org/10.3390/s18082674.Suche in Google Scholar PubMed PubMed Central

Liang, Z., Fu, K., Idem, R., and Tontiwachwuthikul, P. (2016). Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 24: 278–288, https://doi.org/10.1016/j.cjche.2015.06.013.Suche in Google Scholar

Liu, H., Chan, C., Tontiwachwuthikul, P., and Idem, R. (2019). Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. Fuel 249: 61–72, https://doi.org/10.1016/j.fuel.2019.02.088.Suche in Google Scholar

Liu, H., Puttipong, T., Chan, C., and Tontiwachwuthikul, P. (2021). Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: critical literature review and perspectives. Int. J. Greenh. Gas Control 108, https://doi.org/10.1016/j.ijggc.2021.103307.Suche in Google Scholar

Liu, H., Chan, V.K.H., Tantikhajorngosol, P., Li, T., Dong, S., Chan, C., and Tontiwachwuthikul, P. (2022). Novel machine learning model correlating CO2 equilibrium solubility in three tertiary amines. Ind. Eng. Chem. Res. 61: 14020–14032, https://doi.org/10.1021/acs.iecr.2c02006.Suche in Google Scholar

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431–441, https://doi.org/10.1137/0111030.Suche in Google Scholar

McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5: 115–133, https://doi.org/10.1007/bf02478259.Suche in Google Scholar

Meesattham, S., Charoensiritanasin, P., Ongwattanakul, S., Liang, Z., Tontiwachwuthikul, P., and Sema, T. (2020). Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks. Petroleum 6: 385–391, https://doi.org/10.1016/j.petlm.2018.09.005.Suche in Google Scholar

Menad, N.A., Hemmati-Sarapardeh, A., Varamesh, A., and Shamshirband, S. (2019). Predicting solubility of CO2 in brine by advanced machine learning systems: application to carbon capture and sequestration. J. CO2 Util 33: 83–95, https://doi.org/10.1016/j.jcou.2019.05.009.Suche in Google Scholar

Mengshan, L., Liang, L., Xingyuan, H., Hesheng, L., Bingsheng, C., Lixin, G., and Yan, W. (2017). Prediction of supercritical carbon dioxide solubility in polymers based on hybrid artificial intelligence method integrated with the diffusion theory. RSC Adv. 7: 49817–49827, https://doi.org/10.1039/C7RA09531G.Suche in Google Scholar

Mengyue, Z., Yubing, L., Hongwei, L., Zhigang, T., Xiao, X., Dong, G., and Weiyang, F. (2022). Experimental and thermodynamic study on new CO2 absorbents. Carbon Capture Sci. Technol. 3, https://doi.org/10.1016/j.ccst.2022.100040.Suche in Google Scholar

Mohamed Hatta, N.S., Aroua, M.K., Hussin, F., and Gew, L.T. (2022). A systematic review of amino acid-based adsorbents for CO2 capture. Energies 15: 3753, https://doi.org/10.3390/en15103753.Suche in Google Scholar

Muchan, P., Saiwan, C., Narku-Tetteh, J., Idem, R., Supap, T., and Tontiwachwuthikul, P. (2017). Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chem. Eng. Sci. 170: 574–582, https://doi.org/10.1016/j.ces.2017.02.031.Suche in Google Scholar

Muhammad, L.J., Algehyne, E.A., and Usman, S.S. (2020). Predictive supervised machine learning models for Diabetes mellitus. SN Comput. Sci. 1: 240, https://doi.org/10.1007/s42979-020-00250-8.Suche in Google Scholar PubMed PubMed Central

Mukherjee, I. and Routroy, S. (2012). Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Syst. Appl. 39: 2397–2407, https://doi.org/10.1016/j.eswa.2011.08.087.Suche in Google Scholar

Mukherjee, S., Bandyopadhyay, S.S., and Samanta, A.N. (2018). Experimental measurements and modelling of CO2 solubility in aqueous mixtures of benzylamine and N-(2-aminoethyl) ethanolamine. Asia-Pac. J. Chem. Eng. 13: e2264, https://doi.org/10.1002/apj.2264.Suche in Google Scholar

Murshid, G., Garg, S., Ali, A., Maqsood, K., and See, T.L. (2020). An experimental and modeling approach to investigate CO2 solubility in blended aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol (AHPD) and piperazine (PZ). Clean. Eng. Technol. 1, https://doi.org/10.1016/j.clet.2020.100004.Suche in Google Scholar

Nait Amar, M., Ghriga, M.A., and Ouaer, H. (2021). On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems. J. Taiwan Inst. Chem. Eng. 118: 159–168, https://doi.org/10.1016/j.jtice.2021.01.007.Suche in Google Scholar

Ng, F., Jiang, R. and Chow, J.C.L. (2020). Predicting radiation treatment planning evaluation parameter using artificial intelligence and machine learning. IOP SciNotes, 1, 014003. https://doi.org/10.1088/2633-1357/ab805d.Suche in Google Scholar

Nguyen, D., Nguyen, C., Thuan, D.-B., Nguyen, H., Nguyen, A., and Tran, T. (2017). Joint network coding and machine learning for error-prone wireless broadcast. January 11, 2017: IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA.10.1109/CCWC.2017.7868415Suche in Google Scholar

Nilsson, N.J. (1965). Learning machines: foundations of trainable pattern-classifying systems. McGraw-Hill, New York.Suche in Google Scholar

Norouzbahari, S., Shahhosseini, S., and Ghaemi, A. (2015). Modeling of CO2 loading in aqueous solutions of piperazine: application of an enhanced artificial neural network algorithm. J. Nat. Gas Sci. Eng. 24: 18–25, https://doi.org/10.1016/j.jngse.2015.03.011.Suche in Google Scholar

Osman, A.I., Hefny, M., Abdel Maksoud, M.I.A., Elgarahy, A.M., and Rooney, D.W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environ. Chem. Lett. 19: 797–849, https://doi.org/10.1007/s10311-020-01133-3.Suche in Google Scholar

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al.. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, https://doi.org/10.1136/bmj.n71.Suche in Google Scholar PubMed PubMed Central

Pakzad, P., Mofarahi, M., Izadpanah, A.A., and Afkhamipour, M. (2020). Experimental data, thermodynamic and neural network modeling of CO2 absorption capacity for 2-amino-2-methyl-1-propanol (AMP) + methanol (MeOH) + H2O system. J. Nat. Gas Sci. Eng. 73, https://doi.org/10.1016/j.jngse.2019.103060.Suche in Google Scholar

Priya, A.K., Devarajan, B., Alagumalai, A., and Song, H. (2023). Artificial intelligence enabled carbon capture: a review. Sci. Total Environ. 886, https://doi.org/10.1016/j.scitotenv.2023.163913.Suche in Google Scholar PubMed

Rahimi, M., Moosavi, S.M., Smit, B., and Hatton, T.A. (2021). Toward smart carbon capture with machine learning. Cell Rep. Phys. Sci. 2, https://doi.org/10.1016/j.xcrp.2021.100396.Suche in Google Scholar

Raji, M., Dashti, A., Amani, P., and Mohammadi, A.H. (2019). Efficient estimation of CO2 solubility in aqueous salt solutions. J. Mol. Liq. 283: 804–815, https://doi.org/10.1016/j.molliq.2019.02.090.Suche in Google Scholar

Rauf, T., Bakhshi, P., Mirarab, M., and Shahbazi, K. (2020). Application of GA-optimized ANNs to predict the water content, CO2 and H2S absorption capacity of diethanolamine (DEA) in Khangiran gas sweetening plant. Theor. Found. Chem. Eng. 54: 995–1004, https://doi.org/10.1134/S0040579520050449.Suche in Google Scholar

Roetzel, W., Luo, X., and Chen, D. (2020). Chapter 6 – optimal design of heat exchanger networks. In: Roetzel, W., Luo, X., and Chen, D. (Eds.), Design and operation of heat exchangers and their networks. Academic Press, India.10.1016/B978-0-12-817894-2.00006-6Suche in Google Scholar

Saeed, G. (2013). 16 – structural optimization for frequency constraints. In: Gandomi, A.H., Yang, X.-S., Talatahari, S., and Alavi, A.H. (Eds.), Metaheuristic applications in structures and infrastructures. Elsevier, Oxford.Suche in Google Scholar

Safdar, R., Omar, A.A., and Lal, B. (2018). Performance of aqueous tetrabutylammonium hydroxide, piperazine and their blends for carbon dioxide capture. J. Mol. Liq. 266: 522–528, https://doi.org/10.1016/j.molliq.2018.06.095.Suche in Google Scholar

Saghafi, H. and Arabloo, M. (2017). Modeling of CO2 solubility in MEA, DEA, TEA, and MDEA aqueous solutions using AdaBoost-decision tree and artificial neural network. Int. J. Greenh. Gas Control 58: 256–265, https://doi.org/10.1016/j.ijggc.2016.12.014.Suche in Google Scholar

Saghafi, H., Ghiasi, M.M., and Mohammadi, A.H. (2017). Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA+MDEA with random forest and leverage method. Int. J. Greenh. Gas Control 63: 329–337, https://doi.org/10.1016/j.ijggc.2017.03.028.Suche in Google Scholar

Sairi, N.A., Ghani, N.A., Aroua, M.K., Yusoff, R., and Alias, Y. (2015). Low pressure solubilities of CO2 in guanidinium trifluoromethanesulfonate–MDEA systems. Fluid Phase Equil. 385: 79–91, https://doi.org/10.1016/j.fluid.2014.11.009.Suche in Google Scholar

Shakerian, F., Kim, K.H., Szulejko, J.E., and Park, J.W. (2015). A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy 148: 10–22, https://doi.org/10.1016/j.apenergy.2015.03.026.Suche in Google Scholar

Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M.A., Shambour, M.K.Y., Alsalibi, A.I., and Gandomi, A.H. (2022). Machine learning in medical applications: a review of state-of-the-art methods. Comput. Biol. Med. 145, https://doi.org/10.1016/j.compbiomed.2022.105458.Suche in Google Scholar PubMed

Sherwani, F., Ibrahim, B.S.K.K., and Asad, M.M. (2021). Hybridized classification algorithms for data classification applications: a review. Egypt. Inform. J. 22: 185–192, https://doi.org/10.1016/j.eij.2020.07.004.Suche in Google Scholar

Silva, I.N.D., Spatti, D.H., Flauzino, R.A., Liboni, L.H.B., and Alves, S.F.D.R. (2016). Artificial neural networks. Springer, Cham.Suche in Google Scholar

Singh, P., Niederer, J.P.M., and Versteeg, G.F. (2009). Structure and activity relationships for amine-based CO2 absorbents-II. Chem. Eng. Res. Des. 87: 135–144, https://doi.org/10.1016/j.cherd.2008.07.014.Suche in Google Scholar

Singto, S., Supap, T., Idem, R., Tontiwachwuthikul, P., Tantayanon, S., Al-Marri, M.J., and Benamor, A. (2016). Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 167: 97–107, https://doi.org/10.1016/j.seppur.2016.05.002.Suche in Google Scholar

Soleimani, R., Abooali, D., and Shoushtari, N.A. (2018). Characterizing CO2 capture with aqueous solutions of LysK and the mixture of MAPA + DEEA using soft computing methods. Energy 164: 664–675, https://doi.org/10.1016/j.energy.2018.09.061.Suche in Google Scholar

Squires, M., Tao, X., Elangovan, S., Gururajan, R., Zhou, X., Acharya, U.R., and Li, Y. (2023). Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment. Brain Inform 10: 10, https://doi.org/10.1186/s40708-023-00188-6.Suche in Google Scholar PubMed PubMed Central

Sun, Z., Wang, G., Li, P., Wang, H., Zhang, M., and Liang, X. (2024). An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl. 237, https://doi.org/10.1016/j.eswa.2023.121549.Suche in Google Scholar

Sundaram, N. (1999). Training neural networks for pressure swing adsorption processes. Ind. Eng. Chem. Res. 38: 4449–4457, https://doi.org/10.1021/ie9901731.Suche in Google Scholar

Suykens, J.A.K. and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Process. Lett. 9: 293–300, https://doi.org/10.1023/A:1018628609742.10.1023/A:1018628609742Suche in Google Scholar

Tatar, A., Barati-Harooni, A., Najafi-Marghmaleki, A., Mohebbi, A., Ghiasi, M.M., Mohammadi, A.H., and Hajinezhad, A. (2016a). Comparison of two soft computing approaches for predicting CO2 solubility in aqueous solution of piperazine. Int. J. Greenh. Gas Control 53: 85–97, https://doi.org/10.1016/j.ijggc.2016.07.037.Suche in Google Scholar

Tatar, A., Barati, A., Yarahmadi, A., Najafi, A., Lee, M., and Bahadori, A. (2016b). Prediction of carbon dioxide solubility in aqueous mixture of methyldiethanolamine and N-methylpyrrolidone using intelligent models. Int. J. Greenh. Gas Control 47: 122–136, https://doi.org/10.1016/j.ijggc.2016.01.048.Suche in Google Scholar

Tellagorla, R., Balchandani, S.C., Gumma, S., and Mandal, B. (2021). Equilibrium CO2 solubility of novel tris(2-aminoethyl) amine as a promoter to N-methyldiethanolamine and 2-amino-2-methyl-1-propanol. Sep. Purif. Technol. 279, https://doi.org/10.1016/j.seppur.2021.119705.Suche in Google Scholar

Valeh-e-Sheyda, P., Heidarian, P., and Rezvani, A. (2022). A novel molecular structure-based model for prediction of CO2 equilibrium absorption in blended imidazolium-based ionic liquids. J. Mol. Liq. 360, https://doi.org/10.1016/j.molliq.2022.119420.Suche in Google Scholar

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media, New York.Suche in Google Scholar

Vapnik, V.N. (1999). An overview of statistical learning theory. IEEE Trans. Neural Netw. 10: 988–999, https://doi.org/10.1109/72.788640.Suche in Google Scholar

Warsito, B., Santoso, R., and Suparti and Yasin, H. (2018) Cascade forward neural network for time series prediction. J. Phys.: Conf. Ser., Vol. 1025, https://doi.org/10.1088/1742-6596/1025/1/012097.Suche in Google Scholar

Yan, Y., Borhani, T.N., Subraveti, S.G., Pai, K.N., Prasad, V., Rajendran, A., Nkulikiyinka, P., Asibor, J.O., Zhang, Z., Shao, D., et al.. (2021). Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review. Energy Environ. Sci. 14: 6122–6157, https://doi.org/10.1039/D1EE02395K.Suche in Google Scholar

Yang, M., Xie, B., Dou, Y., and Xue, G. (2022). Cascade forward artificial neural network based behavioral predicting approach for the integrated satellite-terrestrial networks. Mob. Netw. Appl. 27: 1569–1577, https://doi.org/10.1007/s11036-021-01875-6.Suche in Google Scholar

Yang, X.S. and Karamanoglu, M. (2013). 1 – swarm intelligence and bio-inspired computation: an overview. In: Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., and Karamanoglu, M. (Eds.), Swarm intelligence and bio-inspired computation. Elsevier, Oxford.10.1016/B978-0-12-405163-8.00001-6Suche in Google Scholar

Yang, Z., Chen, B., Chen, H., and Li, H. (2023). A critical review on machine-learning-assisted screening and design of effective sorbents for carbon dioxide (CO2) capture. Front. Energy Res. 10, https://doi.org/10.3389/fenrg.2022.1043064.Suche in Google Scholar

Yarveicy, H., Ghiasi, M.M., and Mohammadi, A.H. (2018). Performance evaluation of the machine learning approaches in modeling of CO2 equilibrium absorption in Piperazine aqueous solution. J. Mol. Liq. 255: 375–383, https://doi.org/10.1016/j.molliq.2017.11.156.Suche in Google Scholar

Yarveicy, H., Saghafi, H., Ghiasi, M.M., and Mohammadi, A.H. (2019). Decision tree-based modeling of CO2 equilibrium absorption in different aqueous solutions of absorbents. Environ. Prog. Sustain. Energy 38: S441–S448, https://doi.org/10.1002/ep.13128.Suche in Google Scholar

Zhang, Z., Li, H., Chang, H., Pan, Z., and Luo, X. (2018). Machine learning predictive framework for CO2 thermodynamic properties in solution. J. CO2 Util. 26: 152–159, https://doi.org/10.1016/j.jcou.2018.04.025.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revce-2024-0047).


Received: 2024-06-25
Accepted: 2024-12-08
Published Online: 2025-01-29
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/revce-2024-0047/pdf
Button zum nach oben scrollen