Abstract
The complexity of mineral processing investigations is rapidly increasing the demand for precise composition and phase distribution analysis in complicated ore assemblages. Here, we present a systematic mineralogical approach to assess the chemical composition of geological ores (namely: S-7, S-8, S-12, S-13, S-15, S-17 and S-18) by key characterization techniques including: X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) and Fourier transform infrared spectroscopy (FTIR). The XRD analyses reveal that the ores are comprised of different minerals including: quartz, microcline, albite, kaolinite, muscovite, barite, fluorite, calcite and hydroxyapatite. The microstructural, morphological and surface topography are determined by SEM using secondary electron (SE) imaging while backscattered electron (BSE) imaging effectively differentiates the various regions within the ore samples according to their compositional difference. Both qualitative and quantitative elemental analyses are provided by EDX spectra. A total of 25 elements were detected, including rare-earth elements as well. Moreover, the functional groups which are the finger prints of the minerals present in the ores were investigated by FTIR spectroscopy. The IR absorption bands are well assigned and interpreted. The experimental results from XRD, SEM-EDX and FTIR are well associated with one another and successfully classify the ore samples on the basis of their lithologies.
Acknowledgment
The authors acknowledge the contributions of Mr. Hidayat Ullah and Mr. Syed Zahid Hussain, PINSTECH for FTIR and XRD data collection.
-
Research ethics: No experiments on human subject, human material, human tissues, or human data were conducted in this study.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: A. Z. and M. W. conceived the idea and designed the project. T.A carried out the SEM-EDX characterization. A.Z analyzed the XRD, SEM-EDX and FTIR data and interpreted the results. R. N. Q performed the principal component analysis. A.Z. wrote the paper and conducted the whole study.
-
Use of Large Language Models, AI and Machine Learning Tools: There is no use of Large Language Models, AI and Machine Learning Tools during the manuscript preparation.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors declare that no funds and grants were received during the preparation of this manuscript.
-
Data availability: The data can be obtained on request from the corresponding author.
References
1. Rötzer, N.; Schmidt, M. Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified? Resources 2018, 7, 88. https://doi.org/10.3390/resources7040088.Suche in Google Scholar
2. Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and its Application in Geo-and Material Sciences. Minerals 2020, 10 (11), 1004. https://doi.org/10.3390/min10111004.Suche in Google Scholar
3. Eisa, M. Y.; Al Dabbas, M.; Abdulla, F. H. Quantitative Identification of Phosphate Using X-Ray Diffraction and Fourier Transform Infrared (FTIR) Spectroscopy. Int. J. Curr. Microbiol. App. Sci 2015, 4, 270–283. https://www.ijcmas.com/vol-4-1/Mohammed%20Y.%20Eisa,%20et%20al.pdf.Suche in Google Scholar
4. Perkins, D. Mineralogy, 3rd ed.; Prentice Hall: Upper Saddle River, New Jersey, USA, 2011.Suche in Google Scholar
5. Ehlers, G. E.; Blatt, H. Petrology, Igneous Sedimentary and Metamorphic; CBS Publishers and Distribution.4596/1-A: New Delhi, India, 1997.Suche in Google Scholar
6. Howie, R.; Zussman, J.; Deer, W. An Introduction to the Rock-Forming Minerals; Longman: London, UK, 1992.Suche in Google Scholar
7. Wilson, M. J. Rock-Forming Minerals: Clay Minerals. In Sheet Silicates; Geological Society of London: London, UK, Vol. 3C, 2013.Suche in Google Scholar
8. Schulze, D. G. An Introduction to Soil Mineralogy. In Soil Mineralogy with Environmental Applications, Vol. 7; Wiley: London, 2002; pp. 1–35. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssabookser7.c1.10.2136/sssabookser7.c1Suche in Google Scholar
9. Bowie, S. H. U. The Mode of Occurrence and Distribution of Uranium Deposits. Philos. Trans. Royal Soc. London. Ser. A. Math. Phys. Sci. 1979, 291, 289–300. https://doi.org/10.1098/rsta.1979.0027.Suche in Google Scholar
10. Barthel, F.; Tulsidas, H. Thorium: Geology, Occurrence, Deposits and Resources (IAEA-CN--216), 2014.Suche in Google Scholar
11. Bruneton, P.; Cuney, M. Geology of Uranium Deposits. In Uranium For Nuclear Power; Woodhead Publishing: Cambridge, UK, 2016; pp 11–52. https://www.sciencedirect.com/science/article/abs/pii/B9780081003077000028.10.1016/B978-0-08-100307-7.00002-8Suche in Google Scholar
12. Schaffer, M. B. Abundant Thorium as an Alternative Nuclear Fuel: Important Waste Disposal and Weapon Proliferation Advantages. Energy Policy 2013, 60, 4–12; https://doi.org/10.1016/j.enpol.2013.04.062.Suche in Google Scholar
13. Keegan, E.; Richter, S.; Kelly, I.; Wong, H.; Gadd, P.; Kuehn, H.; Alonso-Munoz, A. The Provenance of Australian Uranium Ore Concentrates by Elemental and Isotopic Analysis. Appl. Geochem. 2008, 23, 765–777; https://doi.org/10.1016/j.apgeochem.2007.12.004.Suche in Google Scholar
14. Khanramaki, F.; Keshtkar, A. R. Optimization of Thorium Solvent Extraction Process from Feed Solution with Cyanex 272 by Response Surface Methodology (RSM). Sci. Rep. 2024, 14, 15131; https://doi.org/10.1038/s41598-024-66091-0. https://www.nature.com/articles/s41598-024-66091-0.Suche in Google Scholar PubMed PubMed Central
15. Balaram, V.; Sawant, S. Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals 2022, 12, 394. https://doi.org/10.3390/min12040394.Suche in Google Scholar
16. Gilligan, R.; Nikoloski, A. N. The Extraction of Uranium from Brannerite–A Literature Review. Miner. Eng. 2015, 71, 34–48; https://doi.org/10.1016/j.mineng.2014.10.007. https://www.sciencedirect.com/science/article/abs/pii/S0892687514003471?via%3Dihub.Suche in Google Scholar
17. Wilde, A. Towards a Model for Albitite-Type Uranium. Minerals 2013, 3, 36–48. https://doi.org/10.3390/min3010036.Suche in Google Scholar
18. Peters, D.; Pettke, T. Evaluation of Major to Ultra Trace Element Bulk Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by LA-ICP-MS. Geostand. Geoanal. Res. 2017, 41, 5–28. https://doi.org/10.1111/ggr.12125.Suche in Google Scholar
19. Asim, M.; Wasim, M.; Mohammad, B. Development of Methodologies for the Analysis of Uranium Ores by K0-Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Atomic Emission Spectrometry. J. Radioanal. Nucl. Chem. 2017, 311, 1963–1969; https://doi.org/10.1007/s10967-017-5180-7.Suche in Google Scholar
20. Udayakumar, S.; Mohd Noor, A. F.; Sheikh Abdul Hamid, S. A. R.; Rama Putra, T. A.; Anderson, C. G. Chemical and Mineralogical Characterization of Malaysian Monazite Concentrate. Min. Metal. Explor. 2020, 37, 415–431; https://doi.org/10.1007/s42461-019-00173-w.Suche in Google Scholar
21. Tsui, T.-F. Mineralogical Characterization of Uranium Ore to Evaluate In-Situ Leaching Prospects. Soc. Petrol. Eng. J. 1984, 24, 563–574. https://doi.org/10.2118/11045-PA.Suche in Google Scholar
22. Mayer, K.; Wallenius, M.; Varga, Z. Nuclear Forensic Science: Correlating Measurable Material Parameters to the History of Nuclear Material. Chem. Rev. 2013, 113 (2), 884–900. https://doi.org/10.1021/cr300273f.Suche in Google Scholar PubMed
23. Stanley, F. E.; Stalcup, A.; Spitz, H. A Brief Introduction to Analytical Methods in Nuclear Forensics. J. Radioanal. Nucl. Chem. 2013, 295, 1385–1393; https://doi.org/10.1007/s10967-012-1927-3.Suche in Google Scholar
24. Suschny, O.; Dybczynski, R.; Tugsavul, A. Quality Control in Low-Level Radionuclide Analysis. Results of Recent Intercomparisons and Programme for 1979/80 of the International Atomic Energy Agency. Environ. Int. 1980, 3, 377–383; https://doi.org/10.1016/0160-4120(80)90060-4.Suche in Google Scholar
25. Pszonicki, L.; Hanna, A. N.; Suschny, O. Report on Intercomparisons S-14, S-15, and S-16 of the Determination of Uranium and Thorium in Thorium Ores (No. IAEA-RL--101); International Atomic Energy Agency: Cambridge, UK, 1983. https://inis.iaea.org/search/search.aspx?orig_q=RN:14805072.Suche in Google Scholar
26. Pszonicki, L.; Hanna, A. N.; Suschny, O. Report on Intercomparisons IAEA/S-17, S-18, and S-19 of the Determinaton of Uranium in Uranium Phosphate Ores (No. IAEA-RL--114); International Atomic Energy Agency: Vienna, Austria, 1984. https://inis.iaea.org/search/search.aspx?orig_q=RN:16001455.Suche in Google Scholar
27. Mibei, G. Introduction to Types and Classification of Rocks. Geotherm. Develop. Company 2014, 2, 1374011.Suche in Google Scholar
28. Tang, M.; Chen, K.; Rudnick, R. L. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science 2016, 351 (6271), 372–375; https://doi.org/10.1126/science.aad5513.Suche in Google Scholar PubMed
29. Yang, T.; Gao, J.; Gu, Z.; Dagva, B.; Tserenpil, B. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications. ScientificWorldJournal 2013, 2013, 791918. https://doi.org/10.1155/2013/791918.Suche in Google Scholar PubMed PubMed Central
30. Sturm, P.; Greiser, S.; Gluth, G.; Jäger, C.; Brouwers, H. Degree of Reaction and Phase Content of Silica-Based One-Part Geopolymers Investigated Using Chemical and NMR Spectroscopic Methods. J. Mater. Sci. 2015, 50, 6768–6778. https://doi.org/10.1007/s10853-015-9232-5.Suche in Google Scholar
31. Tian, L.; Fu, K.-b.; Chen, S.; Yao, J.; Bian, L. Comparison of Microscopic Adsorption Characteristics of Zn (II), Pb (II), and Cu (II) on Kaolinite. Sci. Rep. 2022, 12 (1), 15936; https://doi.org/10.1038/s41598-022-20238-z.Suche in Google Scholar PubMed PubMed Central
32. Hemra, K.; Aungkavattana, P. Effect of Cordierite Addition on Compressive Strength and Thermal Stability of Metakaolin Based Geopolymer. Adv. Powder Technol. 2016, 27 (3), 1021–1026. https://doi.org/10.1016/j.apt.2016.04.019.Suche in Google Scholar
33. Sugimoto, K.; Dinnebier, R. E.; Schlecht, T. Chlorartinite, A Volcanic Exhalation Product Also Found in Industrial Magnesia Screed. J. Appl. Crystallogr. 2006, 39 (5), 739–744. https://doi.org/10.1107/S0021889806032109.Suche in Google Scholar
34. Costa, E.; Delmastro, A.; Gregorio, L. D.; Ronchetti, S.; Tomalino, M. U. XRPD and SEM-EDS Identification of a Mineralogical Standards Kit Forming a 19th Century Collection for Educational Analysis. J. Miner. Mat. Char. Eng. 2016, 4 (1), 73–86; https://doi.org/10.4236/jmmce.2016.41008.Suche in Google Scholar
35. Wang, C.; Zhou, L.; Zhang, S.; Wang, L.; Wei, C.; Song, W.; Xu, L.; Zhou, W. Morphology of Barite Synthesized by In-Situ Mixing of Na2SO4 and BaCl2 Solutions at 200° C. Crystals 2021, 11 (8), 962. https://doi.org/10.3390/cryst11080962.Suche in Google Scholar
36. Pandurangappa, C.; Lakshminarasappa, B.; Nagabhushana, B. Synthesis and Characterization of CaF2 Nanocrystals. J. Alloys Compd. 2010, 489 (2), 592–595. https://doi.org/10.1016/j.jallcom.2009.09.118.Suche in Google Scholar
37. Jiang, J.; Tauer, K.; Qiu, Y.-H.; Zhong, Y.-X.; Gao, M.-R.; Antonietti, M.; Yu, S.-H. Thermosensitive Polymer Controlled Morphogenesis and Phase Discrimination of Calcium Carbonate. Chem. Commun. 2017, 53 (48), 6464–6467; https://doi.org/10.1039/c7cc02684f.Suche in Google Scholar PubMed
38. Bilakanti, V.; Boosa, V.; Velisoju, V. K.; Gutta, N.; Medak, S.; Akula, V. Role of Surface Basic Sites in Sonogashira Coupling Reaction over Ca5(PO4)3OH Supported Pd Catalyst: Investigation by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. J. Phys. Chem. C 2017, 121 (40), 22191–22198. https://doi.org/10.1021/acs.jpcc.7b07620.Suche in Google Scholar
39. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: New York, NY, 2017.10.1007/978-1-4939-6676-9Suche in Google Scholar
40. Madejová, J. FTIR Techniques in Clay Mineral Studies. Vib. Spectrosc. 2003, 31 (1), 1–10. https://doi.org/10.1016/S0924-2031(02)00065-6.Suche in Google Scholar
41. Varga, Z.; Öztürk, B.; Meppen, M.; Mayer, K.; Wallenius, M.; Apostolidis, C. Characterization and Classification of Uranium Ore Concentrates (Yellow Cakes) Using Infrared Spectrometry. Radiochim. Acta 2011, 99 (12), 807–813. https://doi.org/10.1524/ract.2011.1886.Suche in Google Scholar
42. Liu, W.; Wang, X.; Liu, W.; Wei, D.; Wang, B.; Shen, Y. Synergistic Adsorption of N–Dodecyl Ethylenediamine along with Polyethylene Glycol (PEG) on Quartz. Int. J. Electrochem. Sci. 2015, 10 (11), 9310–9323. https://doi.org/10.1016/S1452-3981(23)11179-5.Suche in Google Scholar
43. Wang, W.; Cong, J.; Deng, J.; Weng, X.; Lin, Y.; Huang, Y.; Peng, T. Developing Effective Separation of Feldspar and Quartz while Recycling Tailwater by HF Pretreatment. Minerals 2018, 8 (4), 149. https://doi.org/10.3390/min8040149.Suche in Google Scholar
44. Zhang, W.; Zhang, S.; Wang, J.; Dong, J.; Cheng, B.; Xu, L.; Shan, A. A Novel Adsorbent Albite Modified with Cetylpyridinium Chloride for Efficient Removal of Zearalenone. Toxins 2019, 11 (11), 674. https://doi.org/10.3390/toxins11110674.Suche in Google Scholar PubMed PubMed Central
45. Jovanovski, G.; Makreski, P. Minerals from Macedonia. XXX. Complementary Use of Vibrational Spectroscopy and X-Ray Powder Diffraction for Spectra-Structural Study of Some Cyclo-Phyllo-And Tectosilicate Minerals. A Review. Maced. J. Chemistry and Chemical Eng. 2016, 35 (2), 125. https://doi.org/10.20450/mjcce.2016.1047.Suche in Google Scholar
46. Tironi, A.; Trezza, M. A.; Irassar, E. F.; Scian, A. N. Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity. Proced. Mat. Sci. 2012, 1, 343–350. https://doi.org/10.1016/j.mspro.2012.06.046.Suche in Google Scholar
47. Cheng, F.; Cao, Q.; Guan, Y.; Cheng, H.; Wang, X.; Miller, J. D. FTIR Analysis of Water Structure and its Influence on the Flotation of Arcanite (K2SO4) and Epsomite (MgSO4· 7H2O). Int. J. Miner. Process. 2013, 122, 36–42. https://doi.org/10.1016/j.minpro.2013.04.007.Suche in Google Scholar
48. Sifontes, Á. B.; Cañizales, E.; Toro-Mendoza, J.; Ávila, E.; Hernández, P.; Delgado, B. A.; Gutiérrez, G. B.; Díaz, Y.; Cruz-Barrios, E. Obtaining Highly Crystalline Barium Sulphate Nanoparticles via Chemical Precipitation and Quenching in Absence of Polymer Stabilizers. J. Nanomater. 2015, 2015, 6. https://doi.org/10.1155/2015/510376.Suche in Google Scholar
49. Khunur, M. M.; Risdianto, A.; Mutrofin, S.; Prananto, Y. P. Synthesis of Fluorite (CaF2) Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bull. Chem. React. Eng. Catal. 2012, 7 (1), 71–77. https://doi.org/10.9767/bcrec.7.1.3171.71-77.Suche in Google Scholar
50. Al Hameed, Z.; Saleem, J.; Hussain, S. S.; Ghani, A. A.; Lal, H. Study of Indigenous Fluorspar as Metallurgical Flux. J. Eng. Appl. Sci. 2017, 36 (1), 1–7.Suche in Google Scholar
51. Bahl, S.; Lochab, S.; Pandey, A.; Kumar, V.; Aleynikov, V.; Molokanov, A.; Kumar, P. Characterization and Luminescence Studies of Eu Doped Barite Nanophosphor. J. Lumin. 2014, 149, 176–184. https://doi.org/10.1016/j.jlumin.2014.01.009.Suche in Google Scholar
52. Gupta, A.; Singh, P.; Shivakumara, C. Synthesis of BaSO4 Nanoparticles by Precipitation Method Using Sodium Hexa Metaphosphate as a Stabilizer. Solid State Commun. 2010, 150 (9–10), 386–388. https://doi.org/10.1016/j.ceramint.2020.10.257.Suche in Google Scholar
53. Jovanovski, G.; Makreski, P. Minerals from Macedonia. XXX. Complementary Use of Vibrationalspectroscopy and X-Ray Powder Diffraction for Spectra-Structural Study of Some Cyclo-Phyllo-and Tectosilicate Minerals. A review. Maced. J. Chemistry and Chemical Eng., 2016, 35 (2), 125–155. https://doi.org/10.20450/mjcce.2016.1047.Suche in Google Scholar
54. Gheisari, H.; Karamian, E.; Abdellahi, M. A Novel Hydroxyapatite–Hardystonite Nanocomposite Ceramic. Ceram. Int. 2015, 41 (4), 5967–5975. https://doi.org/10.1016/j.ceramint.2015.01.033.Suche in Google Scholar
55. Cai, G.-B.; Chen, S.-F.; Liu, L.; Jiang, J.; Yao, H.-B.; Xu, A.-W.; Yu, S.-H. 1, 3-Diamino-2-Hydroxypropane-N, N, N′, N′-tetraacetic Acid Stabilized Amorphous Calcium Carbonate: Nucleation, Transformation and Crystal Growth. CrystEngComm 2010, 12 (1), 234–241. https://doi.org/10.1039/B911426M.Suche in Google Scholar
56. Hajjia, S.; Turkia, T.; Boubakric, A.; Amora, M. B.; Mzoughid, N. Study of Cadmium Adsorption onto Calcite Using Full Factorial Experiment Design. Desalin. Water Treat. 2017, 83, 222–233; https://doi.org/10.5004/dwt.2017.21079.Suche in Google Scholar
57. Zhang, R.-r.; Yuan, P. Effect of Hydrothermal Coupling on Physical and Dynamic Mechanical Properties of Sandstone. Adv. Civil Eng. 2019, 2019, 1–14. https://doi.org/10.1155/2019/7318768.Suche in Google Scholar
58. Bowell, R. J.; Grogan, J.; Hutton-Ashkenny, M.; Brough, C.; Penman, K.; Sapsford, D. J. Geometallurgy of Uranium Deposits. Miner. Eng. 2011, 24 (12), 1305–1313. https://doi.org/10.1016/j.mineng.2011.05.005.Suche in Google Scholar
59. Liu, X.; Yuan, S.; Sieffert, Y.; Fityus, S.; Buzzi, O. Changes in Mineralogy, Microstructure, Compressive Strength and Intrinsic Permeability of Two Sedimentary Rocks Subjected to High-Temperature Heating. Rock Mech. Rock Eng. 2016, 49, 2985–2998; https://doi.org/10.1007/s00603-016-0950-z. https://link.springer.com/article/10.1007/s00603-016-0950-z.Suche in Google Scholar
60. Zhao, L.; Li, P. Relationship Between Chamosite Alteration and Fe-Plugging in Sandstone Pores During Acid In Situ Leaching of Uranium. Minerals 2021, 11 (5), 497; https://doi.org/10.3390/min11050497.Suche in Google Scholar
61. Haldar, S. K. Introduction to Mineralogy and Petrology; Elsevier: Amsterdam, Netherlands, 2020.10.1016/B978-0-12-820585-3.00004-1Suche in Google Scholar
62. Basu, A.; Bickford, M. E.; Deasy, R. Inferring Tectonic Provenance of Siliciclastic Rocks from Their Chemical Compositions: A Dissent. Sedimentary Geology 2016, 336 (26), 35. https://doi.org/10.1016/j.sedgeo.2015.11.013.Suche in Google Scholar
63. Harraz, H. Uranium Ore Deposits, 2013; https://doi.org/10.13140/RG.2.1.2870.8723.Suche in Google Scholar
64. Gültekin, A. H.; Örgün, Y.; Suner, F. Geology, Mineralogy and Fluid Inclusion Data of the Kizilcaören Fluorite–Barite–REE Deposit, Eskisehir, Turkey. J. Asian Earth Sci. 2003, 21 (4), 365–376; https://doi.org/10.1016/s1367-9120(02)00019-6.Suche in Google Scholar
65. Öztürk, H.; Altuncu, S.; Hanilçi, N.; Kasapçı, C.; Goodenough, K. M. Rare Earth Element-Bearing Fluorite Deposits of Turkey: An Overview. Ore Geol. Rev. 2019, 105, 423–444; https://doi.org/10.1016/j.oregeorev.2018.12.021.Suche in Google Scholar
66. Stumpfl, E. F.; Kirikoglu, M. S. Fluorite-barite-rare Earths Deposits at Kizilcaoren, Turkey. S. Mitt. Österr. Geol. Ges. 1985, 78, 193–200. https://opac.geologie.ac.at/ais312/dokumente/OG0078_193_A.pdf.Suche in Google Scholar
67. Bell, K. G. Uranium in Carbonate Rocks, 1963. https://pubs.usgs.gov/pp/0474a/report.pdf.10.3133/pp474ASuche in Google Scholar
68. Altschuler, Z. S.; Clarke, R. S.; Young, E. J. Geochemistry of Uranium in Apatite and Phosphorite; US Government Printing Office: Washington, D.C., USA, 1958.10.3133/pp314DSuche in Google Scholar
69. Engvik, A. K.; Putnis, A.; Fitz Gerald, J. D.; Austrheim, H.K. Albitization of Granitic Rocks: The Mechanism of Replacement of Oligoclase by Albite. The Canadian Mineralogist 2008, 46, 1401–1415; https://doi.org/10.3749/canmin.46.6.1401.Suche in Google Scholar
70. Petersson, J.; Stephens, M. B.; Mattsson, H.; Möller, C. Albitization and Quartz Dissolution in Paleoproterozoic Metagranite, Central Sweden-Implications for the Disposal of Spent Nuclear Fuel in a Deep Geological Repository. Lithos 2012, 148, 10–26. https://doi.org/10.1016/j.lithos.2012.06.001.Suche in Google Scholar
71. Engvik, A. K.; Ihlen, P. M.; Austrheim, H. K. Characterisation of Na-Metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geoscience Frontiers 2014, 5, 659–672. https://doi.org/10.1016/j.gsf.2014.03.008.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0335).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions
- Study on empirical formulae for (n,f) reaction cross sections of thorium isotopes between 1 and 20 MeV
- Radiolytic alterations to neptunium extraction and redox in 30 % tri-n-butyl phosphate
- Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
- Gamma irradiation synthesis and characterization of Poly(N-vinyl-2-pyrrolidone/acrylic acid) superabsorbent hydrogels for treatment of ink waste
- Application of XRD, SEM-EDX and FTIR techniques for mineral characterization of geological ores
- Elucidating the effect of CdO–Na2O exchange on structure, mechanical and radiation shielding improvements of B2O3–P2O5–Na2O glass
- Alpha emitters concentration of natural radionuclides and lung cancer cases in blood of smokers and non-smokers using passive detector
Artikel in diesem Heft
- Frontmatter
- Original Papers
- An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions
- Study on empirical formulae for (n,f) reaction cross sections of thorium isotopes between 1 and 20 MeV
- Radiolytic alterations to neptunium extraction and redox in 30 % tri-n-butyl phosphate
- Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
- Gamma irradiation synthesis and characterization of Poly(N-vinyl-2-pyrrolidone/acrylic acid) superabsorbent hydrogels for treatment of ink waste
- Application of XRD, SEM-EDX and FTIR techniques for mineral characterization of geological ores
- Elucidating the effect of CdO–Na2O exchange on structure, mechanical and radiation shielding improvements of B2O3–P2O5–Na2O glass
- Alpha emitters concentration of natural radionuclides and lung cancer cases in blood of smokers and non-smokers using passive detector