Startseite Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Utilities of ionic liquid extraction with astatine ions and its extraction mechanism

  • Akihiko Yokoyama ORCID logo EMAIL logo , Kohei Kawasaki , Yuta Nagai , Hisanori Tazuru , Yusuke Shimizu , Kohya Ganaha , Kohshin Washiyama , Ichiro Nishinaka , Yang Wang , Xiaojie Yin , Nozomi Sato , Akihiro Nambu , Yudai Shigekawa ORCID logo und Hiromitsu Haba
Veröffentlicht/Copyright: 28. Februar 2025

Abstract

Present study is the first attempt on the application of ionic liquid (IL) for the extraction of 211At with the 7.21-h-half-life in targeted alpha-particle therapy. We produced the nuclide to investigate utilities of several ionic liquids, namely, [C4mim][Tf2N], [C6mim][Tf2N], [C8mim][Tf2N], [C8mim][PF6], and [C8mim][BF4] in solvent extraction and back extraction for the practical application of a 211Rn/211At generator. Astatine extraction with ionic liquids was investigated in detail in this study, and the extraction mechanism was elucidated for the first time.


Corresponding author: Akihiko Yokoyama, College and Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan, E-mail:

Funding source: JSPS KAKENHI

Award Identifier / Grant number: 17K05807

Acknowledgments

The authors thank the staff of the Japan Atomic Energy Agency tandem accelerator for the operation in producing the 211Rn nuclide. The At nuclides were provided by the Supply Platform of Short-lived Radioisotopes, supported by a JSPS Grant-in-Aid for Scientific Research in Innovative Areas (grant number 16H06278) and also provided by Fukushima Medical University through Network-type Joint Usage/Research Center for Radiation Disaster Medical Science.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest

  6. Research funding: This work was mainly supported by JSPS KAKENHI (grant number 17K05807).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. McDevitt, M. R.; Sgouros, G.; Finn, R. D.; Humm, J. L.; Jurcic, J. G.; Larson, S. M.; Scheinberg, D. A. Radioimmunotherapy with Alpha-Emitting Nuclides. Eur. J. Nucl. Med. 1998, 25 (9), 1341–1351; https://doi.org/10.1007/s002590050306.Suche in Google Scholar PubMed

2. Guérard, F.; Gestin, J. F.; Brechbiel, M. W. Production of [211At]-Astatinated Radiopharmaceuticals and Applications in Targeted α-particle Therapy. Cancer Biother. Radiopharm. 2013, 28, 1–20; https://doi.org/10.1089/cbr.2012.1292.Suche in Google Scholar PubMed PubMed Central

3. Wilbur, D. S. Enigmatic Astatine. Nat. Chem. 2013, 5, 246; https://doi.org/10.1038/nchem.1580.Suche in Google Scholar PubMed

4. Zalutsky, M. R.; Pruszyński, M. Astatine-211: Production and Availability. Curr. Radiopharm. 2011, 4, 177–185; https://doi.org/10.2174/1874471011104030177.Suche in Google Scholar PubMed PubMed Central

5. Guérard, F.; Maingueneau, C.; Liu, L.; Eychenne, R.; Gestin, J. F.; Montavon, G.; Galland, N. Advances in the Chemistry of Astatine and Implications for the Development of Radiopharmaceuticals. Acc. Chem. Res. 2021, 54, 3264–3275; https://doi.org/10.1021/acs.accounts.1c00327.Suche in Google Scholar PubMed

6. Kugler, H. K.; Keller, C. Gmelin Handbook of Inorganic Chemistry: Astatine, 8th ed.; Springer: Berlin, 1985.Suche in Google Scholar

7. Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. Astatine Standard Redox Potentials and Speciation in Acidic Medium. J. Phys. Chem. A 2009, 114 (1), 576–582; https://doi.org/10.1021/jp9077008.Suche in Google Scholar PubMed

8. Champion, J.; Sabatié-Gogova, A.; Bassal, F.; Ayed, T.; Alliot, C.; Galland, N.; Montavon, G. Investigation of Astatine (III) Hydrolyzed Species: Experiments and Relativistic Calculations. J. Phys. Chem. A 2013, 117 (9), 1983–1990; https://doi.org/10.1021/jp3099413.Suche in Google Scholar PubMed

9. Liu, L; Maurice, R.; Galland, N.; Moisy, P.; Champion, J.; Montavon, G. Pourbaix Diagram of Astatine Revisited: Experimental Investigations. Inorg. Chem. 2022, 61, 13462–13470; https://doi.org/10.1021/acs.inorgchem.2c01918.Suche in Google Scholar PubMed

10. Nishinaka, I.; Hashimoto, K.; Suzuki, H. Thin Layer Chromatography for Astatine and Iodine in Solutions Prepared by Dry Distillation. J. Radioanal. Nucl. Chem. 2018, 318 (2), 897–905; https://doi.org/10.1007/s10967-018-6088-6.Suche in Google Scholar

11. Nishinaka, I.; Hashimoto, K.; Suzuki, H. Speciation of Astatine Reacted with Oxidizing and Reducing Reagents by Thin Layer Chromatography: Formation of Volatile Astatine. J. Radioanal. Nucl. Chem. 2019, 322, 2003–2009; https://doi.org/10.1007/s10967-019-06900-3.Suche in Google Scholar

12. Tereshatov, E. E.; Burns, J. D.; Schultz, S. J.; Green, B. D.; Picayo, G. A.; McCann, L. A; McIntosh, L. A.; Tabacaru, G. C.; Abbott, A.; Berko, M.; Engelthaler, E.; Hagel, K.; Hankins, T.; Harvey, B.; Hoekstra, L.; Lofton, K.; Regener, S.; Rider, R.; Sorensen, M.; Tabacaru, A.; Thomas, D.; Tobar, J.; Tobin, Z.; Yennello, S. J. Ion Exchange Behavior of Astatine and Bismuth. New J. Chem. 2023, 47, 12037–12047; https://doi.org/10.1039/d3nj01316b.Suche in Google Scholar

13. Ghalei, M.; Khoshouei, P. M.; Vandenborre, J.; Guerard, F.; Blain, G.; Zarei, M.; Haddad, F.; Fattahi, M. How Radiolysis Impacts Astatine Speciation? Radiat. Phys. Chem. 2022, 198, 110224.10.1016/j.radphyschem.2022.110224Suche in Google Scholar

14. Wei, G. T.; Yang, Z.; Chen, C. J. Room Temperature Ionic Liquid as a Novel Medium for Liquid/liquid Extraction of Metal Ions. Analy. Chim. Acta 2003, 488, 183–192; https://doi.org/10.1016/s0003-2670(03)00660-3.Suche in Google Scholar

15. Visser, A.; Swatloski, R. P.; Reichert, W.; Griffin, S.; Rogers, R. Traditional Extractants in Nontraditional Solvents: Group 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2000, 39, 3956–3604.10.1021/ie000426mSuche in Google Scholar

16. Yuan, L.; Peng, J.; Xu, L.; Zhai, M.; Li, J.; Wei, G. Radiation Effects on Hydrophobic Ionic Liquid [C4mim] [NTf2] during Extraction of Strontium Ions. J. Phys. Chem. B 2009, 113 (26), 8948–8952; https://doi.org/10.1021/jp9016079.Suche in Google Scholar PubMed

17. Hirayama, N. Ionic Liquids as Extraction Media for Metal Ions. J. Ion. Exch. 2011, 22 (3), 73–80; https://doi.org/10.5182/jaie.22.73.Suche in Google Scholar

18. Hirayama, N. Chelate Extraction of Metals into Ionic Liquids. Solvent Extr. Res Dev. 2011, 18, 1–14; https://doi.org/10.15261/serdj.18.1.Suche in Google Scholar

19. Tereshatov, E. E.; Burns, J. D.; Haar, A. L. V.; Schultz, S. J.; McIntosh, L. A.; Tabacaru, G. C.; McCann, L. A.; Avila, G.; Hannaman, A.; Hood, A.; Lofton, K. N.; McCarthy, M. A.; Sorensen, M.; Yennello, S. J. Behavior of Astatine and Bismuth in Non-conventional Solvents: Extraction into Imidazolium-Based Ionic Liquid and Methyl Anthranilate with Active Pharmaceuticals Binary Mixtures from Nitric Acid Media. Sep. Purif. Technol. 2023, 326, 124715 1–9.10.1016/j.seppur.2023.124715Suche in Google Scholar

20. Maeda, E.; Yokoyama, A.; Taniguchi, T.; Washiyama, K. K.; Nishinaka, I. Extraction of Astatine Isotopes for Development of Radiopharmaceuticals Using a 211Rn–211At Generator. J. Radioanal. Nucl. Chem. 2015, 303, 1465–1468; https://doi.org/10.1007/s10967-014-3586-z.Suche in Google Scholar

21. Maeda, E.; Yokoyama, A.; Taniguchi, T.; Washiyama, K.; Nishinaka, I. Measurements of the Excitation Functions of Radon and Astatine Isotopes from 7Li-Induced Reactions with 209Bi for Development of a 211Rn–211At Generator. J. Radioanal. Nucl. Chem. 2020, 323, 921; https://doi.org/10.1007/s10967-019-06990-z.Suche in Google Scholar

22. Shin, Y.; Maruyama, S.; Kawasaki, K.; Aoi, K.; Washiyama, K.; Nishinaka, I.; Yano, S.; Haba, H.; Yokoyama, A. Solvent Extraction Following Oxidation of Astatine for the Use of a 211Rn-211At Generator. J. Radioanal. Nucl. Chem. 2024, 333, 403–409; https://doi.org/10.1007/s10967-023-09282-9.Suche in Google Scholar

23. Kanda, H.; Nakano, T.; Aoi, N.; Fukuda, M. H.; Yorita, T.; Suzuzki, T. Short-lived Radioisotope Supplying Platform in Japan. Nuclear Energy’s Value: Aligned with Community Expectations 39th Annual CNS Conference and 43rd CNS/CNA Student Conference, Canadian Nuclear Society: Canada, 2019; p. 175Megabytes.Suche in Google Scholar

24. Sato, N.; Yano, S.; Toyoshima, A.; Haba, H.; Komori, Y.; Shibata, S.; Watanabe, K.; Kaji, D.; Takahashi, K.; Matsumoto, M. Development of a Production Technology of 211At at the RIKEN AVF Cyclotron: (i) Production of 211At from the 209Bi(α, 2n)211At Reaction. RIKEN Accel. Prog. Rep. 2017, 50, 262.Suche in Google Scholar

25. Wang, Y.; Sato, N.; Komori, Y.; Yokokita, T.; Mori, D.; Usuda, S.; Haba, H. Present Status of 211At Production at the RIKEN AVF Cyclotron. RIKEN Accel. Prog. Rep. 2020, 53, 192.Suche in Google Scholar

26. Yin, X.; Sato, N.; Nambu, A.; Shigekawa, Y.; Haba, H. Progress of 211At Production at the RIKEN AVF Cyclotron. RIKEN Accel. Prog. Rep. 2023, 56, 151.Suche in Google Scholar

27. Taniguchi, T.; Maruyama, S.; Aoi, K.; Nagai, Y.; Washiyama, K.; Nishinaka, I.; Wang, Y.; Haba, H.; Yokoyama, A. Solvent Extraction of Astatine by DIPE and Attempt to Identify the Extracted Species by Thin Layer Chromatography. J. Radioanal. Nucl. Chem. 2024, 333, 3937–3945; https://doi.org/10.1007/s10967-024-09547-x.Suche in Google Scholar

28. Zona, C.; Bonardi, M. L.; Groppi, F.; Morzenti, S.; Canella, L.; Persico, E.; Menapace, E.; Alfrassi, Z. B.; Abbas, K.; Holzwarth, U.; Gilbson, N. Wet-chemistry Method for the Separation of No-Carrier-Added 211At/211gPo from 209Bi Target Irradiated by Alpha-Beam in Cyclotron. J. Radioanal. Nucl. Chem. 2008, 276 (3), 819–824; https://doi.org/10.1007/s10967-008-0638-2.Suche in Google Scholar

29. del Valle, J. C.; Blanco, F. G.; Catalán, J. Empirical Parameters for Solvent Acidity, Basicity, Dipolarity, and Bolarizability of the Ionic Liquids [BMIM][BF4] and [BMIM][PF6]. J. Phys. Chem. B 2015, 119 (13), 4683–4692.10.1021/jp511154hSuche in Google Scholar PubMed

30. The Japanese Association of Medical Sciences. Draft Manual for the Appropriate Use of Astatinated Sodium ([211At]NaAt) Injection for the Treatment of Differentiated Thyroid Cancer 1st Ed in Japanese. 2021. https://mhlw-grants.niph.go.jp/system/files/report_pdf/202099006A-buntan1_7.pdf.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0357).


Received: 2024-10-10
Accepted: 2025-02-09
Published Online: 2025-02-28
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0357/html
Button zum nach oben scrollen