Abstract
In preparation of gas-phase chemical experiments with moscovium (Mc, element 115), we studied the chemical behavior of the short-lived bismuth radioisotope 211Bi in helium, argon, and oxygen atmosphere. For that purpose, we performed off-line isothermal gas chromatography experiments at room temperature. Using different carrier gases, the short-lived volatile 219Rn precursor, provided from an 227Ac-source, was transported through the Recoil Transfer Chamber (RTC) at the gas-filled separator TASCA and into the mini-Cryo-Online Multi detector for Physics and Chemistry of Transactinides (miniCOMPACT) chromatography and detection setup. Internal chromatograms were recorded as a function of various parameters including carrier gas type and flow rate, thus characterizing the novel miniCOMPACT detector array. This aids to optimize the conditions for experiments with superheavy elements. The bismuth progeny of 219Rn deposited on the SiO2 surface of the miniCOMPACT via diffusion-controlled deposition. Bismuth showed the expected high reactivity towards the SiO2 surface of the miniCOMPACT. Experiments in argon and oxygen atmosphere showed no measurable differences in the deposition distribution of the activity. The intermediate 36-min 211Pb, a member of the 227Ac decay chain feeding the studied bismuth isotope, was taken into account. To extract thermodynamical data from the results, namely the lower limit of the value of the adsorption enthalpy (−ΔHads) of Bi on SiO2, we performed Monte Carlo simulations, adapted to account for the precursor effect, and compared the experimental results to their output. Simulations were also performed for bismuth’s heavier homologue, moscovium, using a theoretically predicted value for −ΔHads of this element on SiO2. These suggest moscovium to adsorb in the first part of the miniCOMPACT detector array, in line with recent observations.
Funding source: Deutschlandstipendium scholarship
Funding source: 470 German BMBF
Award Identifier / Grant number: 05P21UMFN2
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: D. Dietzel acknowledges the use of ChatGPT by OpenAI for structuring the initial draft and spell checking.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: D. Dietzel acknowledges the Deutschlandstipendium scholarship. We acknowledge funding from the German BMBF (contract Nr. 05P21UMFN2).
-
Data availability: The data and the simulation code will be made available upon request, provided that such a request is accompanied by a valid and justifiable reason for accessing the data.
References
1. Schädel, M.; Shaughnessy, D., Eds. The Chemistry of Superheavy Elements; 2nd ed.; Springer: Berlin, 2014.10.1007/978-3-642-37466-1Search in Google Scholar
2. Schwerdtfeger, P.; Smits, O. R.; Pyykkö, P. The Periodic Table and the Physics that Drives it. Nat. Rev. Chem. 2020, 4 (7), 359–380; https://doi.org/10.1038/s41570-020-0195-y.Search in Google Scholar PubMed
3. Smits, O. R.; Düllmann, Ch. E.; Indelicato, P.; Nazarewicz, W.; Schwerdtfeger, P. The Quest for Superheavy Elements and the Limit of the Periodic Table. Nat. Rev. Phys. 2024, 6, 86–98; https://doi.org/10.1038/s42254-023-00668-y.Search in Google Scholar
4. Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88 (3), 563–594; https://doi.org/10.1021/cr00085a006.Search in Google Scholar
5. Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Annu. Rev. Phys. Chem. 2012, 63, 45–64; https://doi.org/10.1146/annurev-physchem-032511-143755.Search in Google Scholar PubMed
6. Fricke, B.; Greiner, W.; Waber, J. T. The Continuation of the Periodic Table up to Z = 172. The Chemistry of Superheavy Elements. Theoret. Chim. Acta 1971, 21 (3), 235–260; https://doi.org/10.1007/BF01172015.Search in Google Scholar
7. Pyykkö, P. A Suggested Periodic Table up to Z ≤ 172, Based on Dirac-Fock Calculations on Atoms and Ions. Phys. Chem. Chem. Phys. 2011, 13 (1), 161–168; https://doi.org/10.1039/c0cp01575j.Search in Google Scholar PubMed
8. Fricke, B.; McMinn, J. Chemical and Physical Properties of Superheavy Elements. Naturwissenschaften 1976, 63 (4), 162–170; https://doi.org/10.1007/BF00624214.Search in Google Scholar
9. Pershina, V.; Iliaš, M.; Yakushev, A. Reactivity of the Superheavy Element 115, Mc, and its Lighter Homologue, Bi, with Respect to Gold and Hydroxylated Quartz Surfaces from Periodic Relativistic DFT Calculations: A Comparison with Element 113, Nh. Inorg. Chem. 2021, 60 (13), 9796–9804; https://doi.org/10.1021/acs.inorgchem.1c01076.Search in Google Scholar PubMed
10. Trombach, L.; Ehlert, S.; Grimme, S.; Schwerdtfeger, P.; Mewes, J.-M. Exploring the Chemical Nature of Super-heavy Main-Group Elements by Means of Efficient Plane-Wave Density-Functional Theory. Phys. Chem. Chem. Phys. 2019, 21 (33), 18048–18058; https://doi.org/10.1039/c9cp02455g.Search in Google Scholar PubMed
11. Yakushev, A.; Lens, L.; Düllmann, Ch. E.; Khuyagbaatar, J.; Jäger, E.; Krier, J.; Runke, J.; Albers, H. M.; Asai, M.; Block, M.; Despotopulos, J.; Di Nitto, A.; Eberhardt, K.; Forsberg, U.; Golubev, P.; Götz, M.; Götz, S.; Haba, H.; Harkness-Brennan, L.; Herzberg, R.-D.; Heßberger, F. P.; Hinde, D.; Hübner, A.; Judson, D.; Kindler, B.; Komori, Y.; Konki, J.; Kratz, J. V.; Kurz, N.; Laatiaoui, M.; Lahiri, S.; Lommel, B.; Maiti, M.; Mistry, A. K.; Mokry, C.; Moody, K. J.; Nagame, Y.; Omtvedt, J. P.; Papadakis, P.; Pershina, V.; Rudolph, D.; Samiento, L. G.; Sato, T. K.; Schädel, M.; Scharrer, P.; Schausten, B.; Shaughnessy, D. A.; Steiner, J.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N.; Tsukada, K.; Uusitalo, J.; Voss, K.-O.; Ward, A.; Wegrzecki, M.; Wiehl, N.; Williams, E.; Yakusheva, V. On the Adsorption and Reactivity of Element 114, Flerovium. Front. Chem. 2022, 10, 976635; https://doi.org/10.3389/fchem.2022.976635.Search in Google Scholar PubMed PubMed Central
12. Pershina, V. A Relativistic Periodic DFT Study on Interaction of Superheavy Elements 112 (Cn) and 114 (Fl) and Their Homologs Hg and Pb, Respectively, with a Quartz Surface. Phys. Chem. Chem. Phys. 2016, 18 (26), 17750–17756; https://doi.org/10.1039/C6CP02253G.Search in Google Scholar PubMed
13. Pershina, V. A Theoretical Study on the Adsorption Behavior of Element 113 and its Homologue Tl on a Quartz Surface: Relativistic Periodic DFT Calculations. J. Phys. Chem. C 2016, 120 (36), 20232–20238; https://doi.org/10.1021/acs.jpcc.6b07834.Search in Google Scholar
14. Türler, A.; Pershina, V. Advances in the Production and Chemistry of the Heaviest Elements. Chem. Rev. 2013, 113 (2), 1237–1312; https://doi.org/10.1021/cr3002438.Search in Google Scholar PubMed
15. Yakushev, A.; Khuyagbaatar, J.; Düllmann, Ch. E.; Block, M.; Cantermir, R. A.; Cox, D. M.; Dietzel, D.; Giacoppo, F.; Hrabar, Y.; Iliaš, M.; Jäger, E.; Krier, J.; Krupp, D.; Kurz, N.; Lens, L.; Löchner, S.; Mokry, C.; Mošat, P.; Pershina, V.; Raeder, S.; Rudolph, D.; Runke, J.; Sarmiento, L. G.; Schausten, B.; Scherer, U.; Thörle-Pospiech, P.; Trautmann, N.; Wegrzecki, M.; Wieczorek, P. Manifestation of Relativistic Effects in the Chemical Properties of Nihonium and Moscovium Revealed by Gas Chromatography Studies. Front. Chem. 2024, (12), 1474820; https://doi.org/10.3389/fchem.2024.1474820.Search in Google Scholar PubMed PubMed Central
16. Zvára, I. The Inorganic Radiochemistry of Heavy Elements: Methods for Studying Gaseous Compounds; Springer: New York, NY, 2008.10.1007/978-1-4020-6602-3Search in Google Scholar
17. Nagame, Y.; Kratz, J. V.; Schädel, M. Chemical Studies of Elements with Z ≥ 104 in Liquid Phase. Nucl. Phys. A 2015, 944, 614–639; https://doi.org/10.1016/j.nuclphysa.2015.07.013.Search in Google Scholar
18. Schädel, M.; Brüchle, W.; Dressler, R.; Eichler, B.; Gäggeler, H. W.; Günther, R.; Gregorich, K. E.; Hoffman, D. C.; Hübener, S.; Jost, D. T.; Kratz, J. V.; Paulus, W.; Schumann, D.; Timokhin, S.; Trautmann, N.; Türler, A.; Wirth, G.; Yakushev, A. Chemical Properties of Element 106 (Seaborgium). Nature 1997, 388 (6637), 55–57; https://doi.org/10.1038/40375.Search in Google Scholar
19. Schädel, M.; Brüchle, W.; Schausten, B.; Schimpf, E.; Jäger, E.; Wirth, G.; Günther, R.; Kratz, J. V.; Paulus, W.; Seibert, A.; Thörle, P.; Trautmann, N.; Zauner, S.; Schumann, D.; Andrassy, M.; Misiak, R.; Gregorich, Κ. Ε.; Hoffman, D. C.; Lee, D. M.; Sylwester, E. R.; Nagame, Y.; Oura, Y. First Aqueous Chemistry with Seaborgium (Element 106). Radiochim. Acta 1997, 77 (3), 149–160; https://doi.org/10.1524/ract.1997.77.3.149.Search in Google Scholar
20. Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Laube, A.; Lebedev, V. Y.; Malyshev, O. N.; Oganessian, Y. T.; Petrushkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V. Chemical Characterization of Element 112. Nature 2007, 447 (7140), 72–75; https://doi.org/10.1038/nature05761.Search in Google Scholar PubMed
21. Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, A. V.; Itkis, M. G.; Haenssler, F.; Laube, A.; Lebedev, V. Y.; Malyshev, O. N.; Oganessian, Y. T.; Petrushkin, O. V.; Piguet, D.; Popeko, A. G.; Rasmussen, P.; Shishkin, S. V.; Serov, A. A.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V. Thermochemical and Physical Properties of Element 112. Angew. Chem., Int. Ed. 2008, 47 (17), 3262–3266; https://doi.org/10.1002/anie.200705019.Search in Google Scholar PubMed
22. Soverna, S. Attempt to Chemically Characterize Element 112. Thesis, 2004.Search in Google Scholar
23. Eichler, R.; Aksenov, N. V.; Albin, Y. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, V. A.; Henderson, G. S.; Al, E. Indication for a Volatile Element 114. Radiochim. Acta 2010, 98 (3); https://doi.org/10.1524/ract.2010.1705.Search in Google Scholar
24. Yakushev, A.; Gates, J. M.; Türler, A.; Schädel, M.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brüchle, W.; Dvorak, J.; Eberhardt, K.; Essel, H. G.; Even, J.; Forsberg, U.; Gorshkov, A.; Graeger, R.; Gregorich, K. E.; Hartmann, W.; Herzberg, R.-D.; Hessberger, F. P.; Hild, D.; Hübner, A.; Jäger, E.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Niewisch, L. J.; Nitsche, H.; Omtvedt, J. P.; Parr, E.; Qin, Z.; Rudolph, D.; Runke, J.; Schausten, B.; Schimpf, E.; Semchenkov, A.; Steiner, J.; Thörle-Pospiech, P.; Uusitalo, J.; Wegrzecki, M.; Wiehl, N. Superheavy Element Flerovium (Element 114) Is a Volatile Metal. Inorg. Chem. 2014, 53 (3), 1624–1629; https://doi.org/10.1021/ic4026766.Search in Google Scholar PubMed
25. Yakushev, A.; Eichler, R. Gas-Phase Chemistry of Element 114, Flerovium. EPJ Web Conf. 2016, 131, 7003; https://doi.org/10.1051/epjconf/201613107003.Search in Google Scholar
26. Dmitriev, S. N.; Aksenov, N. V.; Albin, Y. V.; Bozhikov, G. A.; Chelnokov, M. L.; Chepygin, V. I.; Eichler, R.; Isaev, A. V.; Katrasev, D. E.; Lebedev, V. Y.; Malyshev, O. N.; Petrushkin, O. V.; Porobanuk, L. S.; Ryabinin, M. A.; Sabel’nikov, A. V.; Sokol, E. A.; Svirikhin, A. V.; Starodub, G. Y.; Usoltsev, I.; Vostokin, G. K.; Yeremin, A. V. Pioneering Experiments on the Chemical Properties of Element 113. Mendeleev Commun. 2014, 24 (5), 253–256; https://doi.org/10.1016/j.mencom.2014.09.001.Search in Google Scholar
27. Yakushev, A.; Lens, L.; Düllmann, Ch. E.; Block, M.; Brand, H.; Calverley, T.; Dasgupta, M.; Di Nitto, A.; Götz, M.; Götz, S.; Haba, H.; Harkness-Brennan, L.; Herzberg, R.-D.; Heßberger, F. P.; Hinde, D.; Hübner, A.; Jäger, E.; Judson, D.; Khuyagbaatar, J.; Kindler, B.; Komori, Y.; Konki, J.; Kratz, J. V.; Krier, J.; Kurz, N.; Laatiaoui, M.; Lommel, B.; Lorenz, C.; Maiti, M.; Mistry, A. K.; Mokry, C.; Nagame, Y.; Papadakis, P.; Såmark-Roth, A.; Rudolph, D.; Runke, J.; Sarmiento, L. G.; Sato, T. K.; Schädel, M.; Scharrer, P.; Schausten, B.; Steiner, J.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N.; Uusitalo, J.; Ward, A.; Wegrzecki, M.; Yakusheva, V. First Study on Nihonium (Nh, Element 113) Chemistry at TASCA. Front. Chem. 2021, 9, 753738; https://doi.org/10.3389/fchem.2021.753738.Search in Google Scholar PubMed PubMed Central
28. Türler, A.; Eichler, R.; Yakushev, A. Chemical Studies of Elements with Z ≥ 104 in Gas Phase. Nucl. Phys. A 2015, 944, 640–689; https://doi.org/10.1016/j.nuclphysa.2015.09.012.Search in Google Scholar
29. Aksenov, N. V.; Steinegger, P.; Abdullin, F. S.; Albin, Y. V.; Bozhikov, G. A.; Chepigin, V. I.; Eichler, R.; Lebedev, V. Y.; Madumarov, A. S.; Malyshev, O. N.; Petrushkin, O. V.; Polyakov, A. N.; Popov, Y. A.; Sabel’nikov, A. V.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Starodub, G. Y.; Tsyganov, Y. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.; Yeremin, A. V.; Dmitriev, S. N. On the Volatility of Nihonium (Nh, Z = 113). Eur. Phys. J. A 2017, 53; https://doi.org/10.1140/epja/i2017-12348-8.Search in Google Scholar
30. Rudolph, D.; Sarmiento, L. G.; Forsberg, U. Nuclear Structure Notes on Element 115 Decay Chains. In Nuclear Structure Notes on Element 115 Decay Chains; AIP Publishing LLC, 2015; p. 30015.10.1063/1.4932259Search in Google Scholar
31. Oganessian, Y. T.; Utyonkov, V. K. Super-heavy Element Research. Rep. Prog. Phys. 2015, 78 (3), 36301; https://doi.org/10.1088/0034-4885/78/3/036301.Search in Google Scholar PubMed
32. Oganessian, Y. T.; Utyonkov, V. K.; Kovrizhnykh, N. D.; Abdullin, F. S.; Dmitriev, S. N.; Ibadullayev, D.; Itkis, M. G.; Kuznetsov, D. A.; Petrushkin, O. V.; Podshibiakin, A. V.; Polyakov, A. N.; Popeko, A. G.; Sagaidak, R. N.; Schlattauer, L.; Shirokovski, I. V.; Shubin, V. D.; Shumeiko, M. V.; Solovyev, D. I.; Tsyganov, Y. S.; Voinov, A. A.; Subbotin, V. G.; Bodrov, A. Y.; Sabel’nikov, A. V.; Khalkin, A. V.; Zlokazov, V. B.; Rykaczewski, K. P.; King, T. T.; Roberto, J. B.; Brewer, N. T.; Grzywacz, R. K.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B. First Experiment at the Super Heavy Element Factory: High Cross Section of 288Mc in the 243Am+48Ca Reaction and Identification of the New Isotope 264Lr. Phys. Rev. C 2022, 106 (3), L031301; https://doi.org/10.1103/PhysRevC.106.L031301.Search in Google Scholar
33. Oganessian, Y. T.; Utyonkov, V. K.; Kovrizhnykh, N. D.; Abdullin, F. S.; Dmitriev, S. N.; Dzhioev, A. A.; Ibadullayev, D.; Itkis, M. G.; Karpov, A. V.; Kuznetsov, D. A.; Petrushkin, O. V.; Podshibiakin, A. V.; Polyakov, A. N.; Popeko, A. G.; Rogov, I. S.; Sagaidak, R. N.; Schlattauer, L.; Shubin, V. D.; Shumeiko, M. V.; Solovyev, D. I.; Tsyganov, Y. S.; Voinov, A. A.; Subbotin, V. G.; Bodrov, A. Y.; Sabel’nikov, A. V.; Khalkin, A. V.; Rykaczewski, K. P.; King, T. T.; Roberto, J. B.; Brewer, N. T.; Grzywacz, R. K.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B. New Isotope 286Mc Produced in the 243Am+48Ca Reaction. Phys. Rev. C 2022, 106 (6); https://doi.org/10.1103/PhysRevC.106.064306.Search in Google Scholar
34. Maugeri, E. A.; Neuhausen, J.; Eichler, R.; Dressler, R.; Rijpstra, K.; Cottenier, S.; Piguet, D.; Vögele, A.; Schumann, D. Adsorption of Volatile Polonium and Bismuth Species on Metals in Various Gas Atmospheres: Part I – Adsorption of Volatile Polonium and Bismuth on Gold. Radiochim. Acta 2016, 104 (11), 757–767; https://doi.org/10.1515/ract-2016-2573.Search in Google Scholar
35. Tiebel, G.; Eichler, R.; Steinegger, P. PSI LRC Annual Reports 2019. In In Situ Production of BiH3 in Cold Plasmas: Villigen, Switzerland, 2020; pp. 11–12. https://www.psi.ch/en/lrc/annual-reports (accessed 2024-10-01).Search in Google Scholar
36. Oxtoby, D. W.; Gillis, H. P.; Butler, L. J. Principles of Modern Chemistry, Vol. 8; Cengage Learning: Andover, 2016.Search in Google Scholar
37. Archer, D. G. Enthalpy of Fusion of Bismuth: A Certified Reference Material for Differential Scanning Calorimetry. J. Chem. Eng. Data 2004, 49 (5), 1364–1367; https://doi.org/10.1021/je049913p.Search in Google Scholar
38. Zhang, Y.; Evans, J. R. G.; Yang, S. Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. J. Chem. Eng. Data 2011, 56 (2), 328–337; https://doi.org/10.1021/je1011086.Search in Google Scholar
39. Steinegger, P.; Asai, M.; Dressler, R.; Eichler, R.; Kaneya, Y.; Mitsukai, A.; Nagame, Y.; Piguet, D.; Sato, T. K.; Schädel, M.; Takeda, S.; Toyoshima, A.; Tsukada, K.; Türler, A.; Vascon, A. Vacuum Chromatography of Tl on SiO2 at the Single-Atom Level. J. Phys. Chem. C 2016, 120 (13), 7122–7132; https://doi.org/10.1021/acs.jpcc.5b12033.Search in Google Scholar
40. Gäggeler, H. W.; Eichler, B.; Greulich, N.; Herrmann, G.; Trautmann, N. Vacuum-Thermochromatography of Carrier-free Species. Radiochim. Acta 1986, 40 (3), 137–144; https://doi.org/10.1524/ract.1986.40.3.137.Search in Google Scholar
41. Haenssler, F.; Eichler, R.; Gäggeler, H. W.; Dressler, R.; Piguet, D.; Schnippering, M. Thermochromatographic Investigation of 212Pb on Quartz; PSI LRC Annual Report 2004; Paul-Scherrer-Institut: Villigen, Switzerland, 2005.Search in Google Scholar
42. Fan, W.; Gäggeler, H. Thermochromatography of Carrier-free Lead in Quartz Columns with Hydrogen and Argon as Carrier Gases. Radiochim. Acta 1982, 31 (1–2), 95–98; https://doi.org/10.1524/ract.1982.31.12.95.Search in Google Scholar
43. B. Eichler. Исследование Распределения Некоторых Продуктов Ядерных Реакций Без Носителей Методом Термохроматографии В Потоке Водорода [Investigation of the Distribution of Certain Products of Nuclear Reactions without Carriers Using the Method of Thermochromatography in a Hydrogen Stream]. In Preprint JINR-P12-6662, Joint Institute for Nuclear Research, Dubna, USSR, 1972.Search in Google Scholar
44. National Nuclear Data Center NuDat Database. https://www.nndc.bnl.gov/nudat/(accessed 2024-10-01).Search in Google Scholar
45. Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, C. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A. The Recoil Transfer Chamber – an Interface to Connect the Physical Preseparator TASCA with Chemistry and Counting Setups. Nucl. Instrum. Methods Phys. Res. A 2011, 638 (1), 157–164; https://doi.org/10.1016/j.nima.2011.02.053.Search in Google Scholar
46. Lens, L.; Yakushev, A.; Düllmann, Ch. E.; Asai, M.; Ballof, J.; Block, M.; David, H. M.; Despotopulos, J.; Di Nitto, A.; Eberhardt, K.; Even, J.; Götz, M.; Götz, S.; Haba, H.; Harkness-Brennan, L.; Heßberger, F. P.; Herzberg, R. D.; Hoffmann, J.; Hübner, A.; Jäger, E.; Judson, D.; Khuyagbaatar, J.; Kindler, B.; Komori, Y.; Konki, J.; Kratz, J. V.; Krier, J.; Kurz, N.; Laatiaoui, M.; Lahiri, S.; Lommel, B.; Maiti, M.; Mistry, A. K.; Mokry, C.; Moody, K.; Nagame, Y.; Omtvedt, J. P.; Papadakis, P.; Pershina, V.; Runke, J.; Schädel, M.; Scharrer, P.; Sato, T.; Shaughnessy, D.; Schausten, B.; Thörle-Pospiech, P.; Trautmann, N.; Tsukada, K.; Uusitalo, J.; Ward, A.; Wegrzecki, M.; Wiehl, N.; Yakusheva, V. Online Chemical Adsorption Studies of Hg, Tl, and Pb on SiO2 and Au Surfaces in Preparation for Chemical Investigations on Cn, Nh, and Fl at TASCA. Radiochim. Acta 2018, 106 (12), 949–962; https://doi.org/10.1515/ract-2017-2914.Search in Google Scholar
47. Götz, S.; Raeder, S.; Block, M.; Düllmann, Ch. E.; Folden, C. M.; Glennon, K. J.; Götz, M.; Hübner, A.; Jäger, E.; Kaleja, O.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Lens, L.; Lommel, B.; Mistry, A. K.; Mokry, C.; Runke, J.; Såmark-Roth, A.; Tereshatov, E. E.; Thörle-Pospiech, P.; Volia, M. F.; Yakushev, A.; Yakusheva, V. Rapid Extraction of Short-Lived Isotopes from a Buffer Gas Cell for Use in Gas-Phase Chemistry Experiments, Part II: On-Line Studies with Short-Lived Accelerator-Produced Radionuclides. Nucl. Instrum. Methods Phys. Res., B 2021, 507, 27–35; https://doi.org/10.1016/j.nimb.2021.09.004.Search in Google Scholar
48. Węgrzecki, M.; Bar, J.; Budzyński, T.; Cież, M.; Grabiec, P.; Kozłowski, R.; Kulawik, J.; Panas, A.; Sarnecki, J.; Słysz, W.; Szmigiel, D.; Węgrzecka, I.; Wielunski, M.; Witek, K.; Yakushev, A.; Zaborowski, M. Design and Properties of Silicon Charged-Particle Detectors Developed at the Institute of Electron Technology (ITE) In Electron Technology Conference 2013; Szczepanski, P., Kisiel, R., Romaniuk, R. S., Eds.; SPIE, 2013, pp. 890212.10.1117/12.2031041Search in Google Scholar
49. Khuyagbaatar, J.; Brand, H.; Düllmann, Ch. E.; Heßberger, F. P.; Jäger, E.; Kindler, B.; Krier, J.; Kurz, N.; Lommel, B.; Nechiporenko, Y.; Novikov, Y. N.; Schausten, B.; Yakushev, A. Search for Fission from a Long-Lived Isomer in 250No and Evidence of a Second Isomer. Phys. Rev. C 2022, 106 (2), https://doi.org/10.1103/PhysRevC.106.024309.Search in Google Scholar
50. Hoffmann, J.; Kurz, N.; Loechner, S.; Minami, S.; Ott, W.; Rusanov, I.; Voltz, S.; Wieczorek, P. New TASCA Data Acquisition Hardware Development for the Search of Element 119 and 120. GSI Scientific Report 2011, 2012; p. 253.Search in Google Scholar
51. Kurz, N.; Hoffmann, J.; Minami, S.; Ott, W. The MBS Data Acquisition System for the Search of Element 120 at TASCA. GSI Scientific Report 2011, 2012; p. 252.Search in Google Scholar
52. Even, J.; Yakushev, A.; Düllmann, Ch. E.; Dvorak, J.; Eichler, R.; Gothe, O.; Hartmann, W.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Lommel, B.; Niewisch, L.; Nitsche, H.; Pysmenetska, I.; Schädel, M.; Schausten, B.; Türler, A.; Wiehl, N.; Wittwer, D. In-situ Formation, Thermal Decomposition, and Adsorption Studies of Transition Metal Carbonyl Complexes with Short-Lived Radioisotopes. Radiochim. Acta 2014, 102 (12), 1093–1110; https://doi.org/10.1515/ract-2013-2198.Search in Google Scholar
53. Eichler, R.; Schädel, M. Adsorption of Radon on Metal Surfaces: A Model Study for Chemical Investigations of Elements 112 and 114. J. Phys. Chem. B 2002, 106 (21), 5413–5420; https://doi.org/10.1021/jp015553q.Search in Google Scholar
54. Soverna, S.; Dressler, R.; Düllmann, C. E.; Eichler, B.; Eichler, R.; Gäggeler, H. W.; Haenssler, F.; Niklaus, J.-P.; Piguet, D.; Qin, Z.; Türler, A.; Yakushev, A. B. Thermochromatographic Studies of Mercury and Radon on Transition Metal Surfaces. Radiochim. Acta 2005, 93 (1), 1–8; https://doi.org/10.1524/ract.93.1.1.58298.Search in Google Scholar
55. Zvára, I. Simulation of Thermochromatographic Processes by the Monte Carlo Method. Radiochim. Acta 1985, 38 (2), 95–102; https://doi.org/10.1524/ract.1985.38.2.95.Search in Google Scholar
56. Ziegler, J. F.; Biersack, J.; Ziegler, M. D. SRIM – the Stopping and Range of Ions in Matter; SRIM: Chester, Maryland, 2015.Search in Google Scholar
57. Dietzel, D.; Yakushev, A.; Düllmann, Ch. E. An Extended Monte Carlo Simulation Code for Modeling Gas Chromatography Experiments with Superheavy Elements and Their Homologs. J. Radioanal. Nucl. Chem. 2024, (333), 3487–3496; https://doi.org/10.1007/s10967-023-09290-9.Search in Google Scholar
58. Gilliland, E. R. Diffusion Coefficients in Gaseous Systems. Ind. Eng. Chem. 1934, 26 (6), 681–685; https://doi.org/10.1021/ie50294a020.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Single-atom-at-a-time adsorption studies of 211Bi and its precursor 211Pb on SiO2 surfaces
- Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions
- A new targetry system for cyclotron production of pharmaceutical grade indium-111 radioisotope
- Hierarchical macro/mesoporous γ-Al2O3 as column matrix for development of low specific activity 99Mo/99mTc generator via 100Mo (γ, n)99Mo reaction
- Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice
- Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material
- Radiochromic liquid dosimeter based on p-arsanilic acid for gamma radiation monitoring
- Assessing carcinogenic radon levels in water from Er-Rachidia, Morocco using LR-115 nuclear track detectors
Articles in the same Issue
- Frontmatter
- Original Papers
- Single-atom-at-a-time adsorption studies of 211Bi and its precursor 211Pb on SiO2 surfaces
- Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions
- A new targetry system for cyclotron production of pharmaceutical grade indium-111 radioisotope
- Hierarchical macro/mesoporous γ-Al2O3 as column matrix for development of low specific activity 99Mo/99mTc generator via 100Mo (γ, n)99Mo reaction
- Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice
- Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material
- Radiochromic liquid dosimeter based on p-arsanilic acid for gamma radiation monitoring
- Assessing carcinogenic radon levels in water from Er-Rachidia, Morocco using LR-115 nuclear track detectors