Home Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material
Article
Licensed
Unlicensed Requires Authentication

Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material

  • Noura Mossaed Saleh EMAIL logo , Hisham Fouad Aly , Eman Abdelrahman Mahmoud Ahmed and Refaat Mohamed Mahfouz
Published/Copyright: December 24, 2024

Abstract

The authors present here the decomposition of un-irradiated (pristine) as well as of gamma (γ) and electron beam (EB) irradiated samples of europium (III) acetate hydrate (EuAc.xH2O) in the temperature range of 25–900 °C in the air atmosphere. Two absorbed doses of 103 (γ-ray) and 102 kGy (EB) were examined. The profiles of the TG curves of the dehydration process display noticeable changes in induction periods and mass loss percentages by exposure to irradiation. The kinetics of the dehydration process were analyzed using both model-fitting and model-free approaches. The dehydration process was controlled by the phase boundary model (R2). The E a  −α plots indicate that the dehydration is not a complex process and follows one reaction mechanism. Powder X-ray diffraction displayed that europium acetate hydrate crystallizes in a monoclinic system (SG P2/m), and no phase transformation was detected by two sources of irradiation up to 103 (γ-ray) and 102 kGy (EB). Thermodynamic parameters of the dehydration process were calculated and assessed. A predicted thermogram (TG) of the isothermal dehydration of EuAc.xH2O was constructed from non-isothermal data and used to determine the reaction model and the kinetic parameters of the dehydration process.


Corresponding author: Noura Mossaed Saleh, Chemistry Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt, E-mail:

Acknowledgments

This work is part of Noura Saleh’s Ph.D. thesis. The authors thank Assiut University for the official technical and financial support. The authors also would like to thank the crew team of radiation units at the Egyptian Atomic Energy Authority for facilitating the irradiation experiments.

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The researchers extend appreciation to the Postgraduate Studies & Research Sector, Assiut University for funding this work as a research number: AUN2025F.Sci.H0004.

  7. Data availability: Not applicable.

References

1. Mahfouz, R.; Al-Khamis, K. M.; Siddiqui, M.; Al-Hokbany, N.; Warad, I.; Al-Andis, N. Kinetic Studies of Isothermal Decomposition of Unirradiated and γ-irradiated Gallium Acetylacetonate: New Route for Synthesis of Gallium Oxide Nanoparticles. Prog. React. Kinet. Mech. 2012, 37 (3), 249–262; https://doi.org/10.3184/146867812x13377012276288.Search in Google Scholar

2. Mahfouz, R.; Ahmed, G.-W.; Alshammari, M. Application of the Model-free Approach to the Study of Non-isothermal Decomposition of Un-Irradiated and γ-Irradiated Hydrated Gadolinium Acetylacetonate. Radiat. Eff. Defects Solids 2014, 169 (6), 490–498; https://doi.org/10.1080/10420150.2013.877909.Search in Google Scholar

3. Mahfouz, R.; Monshi, M.; Abd El-Salam, N. Kinetics of the Thermal Decomposition of γ-Irradiated Gadolinium Acetate. Thermochim. Acta 2002, 383 (1-2), 95–101; https://doi.org/10.1016/s0040-6031(01)00682-7.Search in Google Scholar

4. Monshi, M.; Abd El-Salam, N.; Mahfouz, R. Gamma Irradiation Effects on the Thermal Decomposition Induction Period in Uranyl Acetate. Thermochim. Acta 1999, 327 (1-2), 139–143; https://doi.org/10.1016/s0040-6031(98)00598-x.Search in Google Scholar

5. Saleh, N. M.; Mahmoud, G. A.; Dahy, A. A.; Soliman, S. A.-F.; Mahfouz, R. M. Kinetics of Nonisothermal Dehydration of Unirradiated and γ-ray Irradiated Neodymium (III) Acetate Hydrate. Radiochim. Acta 2019, 107 (2), 165–178; https://doi.org/10.1515/ract-2018-2998.Search in Google Scholar

6. Vyazovkin, S.; Wight, C. A. Model-free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Thermochim. Acta 1999, 340, 53–68; https://doi.org/10.1016/s0040-6031(99)00253-1.Search in Google Scholar

7. Vyazovkin, S. Model-free Kinetics: Staying Free of Multiplying Entities without Necessity. J. Therm. Anal. Calorim. 2006, 83 (1), 45–51; https://doi.org/10.1007/s10973-005-7044-6.Search in Google Scholar

8. Khawam, A.; Flanagan, D. R. Solid-state Kinetic Models: Basics and Mathematical Fundamentals. J. Phy. Chem. B 2006, 110 (35), 17315–17328; https://doi.org/10.1021/jp062746a.Search in Google Scholar PubMed

9. Vyazovkin, S.; Dollimore, D Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids. J. Chem. Inf. Comput. Sci. 1996, 36 (1), 42–45; https://doi.org/10.1021/ci950062m.Search in Google Scholar

10. Farjas, J.; Roura, P. Isoconversional Analysis of Solid State Transformations: A Critical Review. Part I. Single Step Transformations with Constant Activation Energy. J. Therm. Anal. Calorim. 2011, 105 (3), 757–766; https://doi.org/10.1007/s10973-011-1446-4.Search in Google Scholar

11. Hussein, G. A. Rare Earth Metal Oxides: Formation, Characterization and Catalytic Activity Thermoanalytical and Applied Pyrolysis Review. J. Anal. Appl. Pyrolysis 1996, 37 (2), 111–149; https://doi.org/10.1016/0165-2370(96)00941-2.Search in Google Scholar

12. Spinks, J. W.; Woods, R. J. An Introduction to Radiation Chemistry, 3rd ed.; John Wiley & Sons: New York, 1990.Search in Google Scholar

13. L’vov, B. V. Thermal Decomposition of Solids and Melts: New Thermochemical Approach to the Mechanism, Kinetics and Methodology; Springer Science & Business Media: Russian Federation, 2007.Search in Google Scholar

14. Flynn, J. H; Wall, L. A. General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Stand. Sec. A, Phy. Chem. 1966, 70 (6), 487; https://doi.org/10.6028/jres.070a.043.Search in Google Scholar

15. Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38 (11), 1881–1886; https://doi.org/10.1246/bcsj.38.1881.Search in Google Scholar

16. Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29 (11), 1702–1706; https://doi.org/10.1021/ac60131a045.Search in Google Scholar

17. Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res Rep Chiba Inst Technol (Sci Technol) 1971, 16 (1971), 22–31.Search in Google Scholar

18. Agrawal, R. K. Analysis of Non-isothermal Reaction Kinetics: Part 1. Simple Reactions. Thermochim. Acta 1992, 203, 93–110; https://doi.org/10.1016/0040-6031(92)85187-z.Search in Google Scholar

19. Tang, W.; Liu, Y.; Zhang, H; Wang, C. New Approximate Formula for Arrhenius Temperature Integral. Thermochim. Acta 2003, 408 (1-2), 39–43; https://doi.org/10.1016/s0040-6031(03)00310-1.Search in Google Scholar

20. Wanjun, T.; Yuwen, L.; Hen, Z; Zhiyong, W.; Cunxin, W. New Temperature Integral Approximate Formula for Non-isothermal Kinetic Analysis. J. Therm. Anal. Calorim. 2003, 74 (1), 309–315; https://doi.org/10.1023/a:1026310710529.10.1023/A:1026310710529Search in Google Scholar

21. Chunxiu, G.; Yufang, S.; Donghua, C. Comparative Method to Evaluate Reliable Kinetic Triplets of Thermal Decomposition Reactions. J. Therm. Anal. Calorim. 2004, 76, 203–216; https://doi.org/10.1023/b:jtan.0000027819.43154.52.10.1023/B:JTAN.0000027819.43154.52Search in Google Scholar

22. Liqing, L.; Donghua, C. Application of Iso-Temperature Method of Multiple Rate to Kinetic Analysis. J. Therm. Anal. Calorim. 2004, 78 (1), 283–293; https://doi.org/10.1023/b:jtan.0000042175.27569.ee.10.1023/B:JTAN.0000042175.27569.eeSearch in Google Scholar

23. Vlaev, L.; Nedelchev, N.; Gyurova, K.; Zagorcheva, M. A Comparative Study of Non-isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate. J. Anal. Appl. Pyrolysis 2008, 81 (2), 253–262; https://doi.org/10.1016/j.jaap.2007.12.003.Search in Google Scholar

24. Senum, G.; Yang, R. Rational Approximations of the Integral of the Arrhenius Function. J. Therm. Anal. 1977, 11 (3), 445–447; https://doi.org/10.1007/bf01903696.Search in Google Scholar

25. Doyle, C. Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6 (24), 639–642; https://doi.org/10.1002/app.1962.070062406.Search in Google Scholar

26. Coats, A. W.; Redfern, J. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201 (4914), 68–69; https://doi.org/10.1038/201068a0.Search in Google Scholar

27. Shin, S.; Im, S. I.; Nho, N. S.; Lee, K. B. Kinetic Analysis Using Thermogravimetric Analysis for Nonisothermal Pyrolysis of Vacuum Residue. J. Therm. Anal. Calorim. 2016, 126, 933–941; https://doi.org/10.1007/s10973-016-5568-6.Search in Google Scholar

28. White, J. E.; Catallo, W. J.; Legendre, B. L. Biomass Pyrolysis Kinetics: a Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91 (1), 1–33; https://doi.org/10.1016/j.jaap.2011.01.004.Search in Google Scholar

29. Sun, J.; Huang, Y.; Gong, G.; Cao, H Thermal Degradation Kinetics of Poly (Methylphenylsiloxane) Containing Methacryloyl Groups. Polym. Degrad. Stab. 2006, 91 (2), 339–346; https://doi.org/10.1016/j.polymdegradstab.2005.04.037.Search in Google Scholar

30. Brown, M. E.; Galwey, A. K. The Significance of “Compensation Effects” Appearing in Data Published in “Computational Aspects of Kinetic Analysis”: ICTAC Project, 2000. Thermochim. Acta 2002, 387 (2), 173–183; https://doi.org/10.1016/s0040-6031(01)00841-3.Search in Google Scholar

31. Flynn, J. H; Wall, L. A. A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci. Part B: Polym. Let. 1966, 4 (5), 323–328; https://doi.org/10.1002/pol.1966.110040504.Search in Google Scholar

32. Gotor, F. J.; Criado, J. M.; Malek, J.; Koga, N. Kinetic Analysis of Solid-State Reactions: the Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments. J. Phy. Chem. A 2000, 104 (46), 10777–10782; https://doi.org/10.1021/jp0022205.Search in Google Scholar

33. Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520 (1-2), 1–19; https://doi.org/10.1016/j.tca.2011.03.034.Search in Google Scholar

34. Málek, J. The Kinetic Analysis of Non-isothermal Data. Thermochim. Acta 1992, 200, 257–269; https://doi.org/10.1016/0040-6031(92)85118-f.Search in Google Scholar

35. Sronsri, C.; Noisong, P.; Danvirutai, C. Solid State Reaction Mechanisms of the LiMnPO4 Formation Using Special Function and Thermodynamic Studies. Ind. Eng. Chem. Res. 2015, 54 (28), 7083–7093; https://doi.org/10.1021/acs.iecr.5b01246.Search in Google Scholar

36. Málek, J. A Computer Program for Kinetic Analysis of Non-isothermal Thermoanalytical Data. Thermochim. Acta 1989, 138 (2), 337–346; https://doi.org/10.1016/0040-6031(89)87270-3.Search in Google Scholar

37. Sronsri, C. Thermal Dehydration Kinetic Mechanism of Mn1. 8Co0. 1Mg0. 1P2O7· 2H2O Using Málek’s Equations and Thermodynamic Functions Determination. Trans. Nonferrous Metals Soc. China 2018, 28 (5), 1016–1026; https://doi.org/10.1016/s1003-6326(18)64739-9.Search in Google Scholar

38. Barnes, P. Comprehensive Chemical Kinetics, Vol. 22. In Reactions in the Solid State; Bamford, C. H.; Tipper, C. F. H., Eds.; Elsevier: Amsterdam, 1980; p. 340.Search in Google Scholar

39. Stankovic, B.; Jovanovic, J.; Adnadjevic, B. Application of the Suzuki–Fraser Function in Modelling the Non-isothermal Dehydroxylation Kinetics of Fullerol. React. Kinet. Mech. Catal. 2018, 123, 421–438; https://doi.org/10.1007/s11144-018-1380-6.Search in Google Scholar

40. Khedri, S.; Elyasi, S. Kinetic Analysis for Thermal Cracking of HDPE: A New Isoconversional Approach. Polym. Degrad. Stab. 2016, 129, 306–318; https://doi.org/10.1016/j.polymdegradstab.2016.05.011.Search in Google Scholar

41. Abu-Eittah, R.; Zaki, N.; Mohamed, M.; Kamel, L. Kinetics and Thermodynamic Parameters of the Thermal Decomposition of Bis (Imipraminium) Tetrachlorocuprate, Bis (Imipraminium) Tetrachloromercurate and Imipraminium Reineckate. J. Anal. Appl. Pyrolysis 2006, 77 (1), 1–11; https://doi.org/10.1016/j.jaap.2005.06.004.Search in Google Scholar

42. Vyazovkin, S. A Unified Approach to Kinetic Processing of Nonisothermal Data. Int. J. Chem. Kinet. 1996, 28 (2), 95–101; https://doi.org/10.1002/(sici)1097-4601(1996)28:2<95::aid-kin4>3.0.co;2-g.Search in Google Scholar

43. Rashwan, N. F.; Wahid, H; Dahy, A. A.; Mahfouz, R. M. Thermal Decomposition of Un-irradiated and γ-ray Irradiated Holmium Acetate Tetrahydrate. Part 1: Kinetics of Nonisothermal Dehydration of Un-irradiated and γ-ray Irradiated Ho (CH3COO)3⋅ 4H2O. Radiochim. Acta 2018, 106 (9), 775–785; https://doi.org/10.1515/ract-2017-2892.Search in Google Scholar

44. Brown, M. E.; Dollimore, D; Galwey, A. K. Reactions In the Solid State; Elsevier: Amesterdam,Oxford,New York, 1980.Search in Google Scholar

45. Eyring, H The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3 (2), 107–115; https://doi.org/10.1063/1.1749604.Search in Google Scholar

46. Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192 (1-2), 55–69; https://doi.org/10.1016/0921-4526(93)90108-i.Search in Google Scholar

47. Mahfouz, R.; Aly, A. A.; El-Meligy, A.; Zidan, A. Gamma Irradiation Effects on the Electric Conductivity Behaviour and IR Absorption Spectra of Some Haloacetato and Mixed Thiazoles-Haloacetato Transition Metal Complexes. Isotopenpraxis Isot. Environ. Health Stud. 1991, 27 (5), 245–247; https://doi.org/10.1080/10256019108622526.Search in Google Scholar

48. Patil, K.; Chandrashekhar, G.; George, M. V.; Rao, C. N. R. Infrared Spectra and Thermal Decompositions of Metal Acetates and Dicarboxylates. Can. J. Chem. 1968, 46 (2), 257–265; https://doi.org/10.1139/v68-040.Search in Google Scholar

49. Dienes, G.; Vineyard, G. Radiation Effects in Solids; Interscience Publ. Inc: New York, 1957.Search in Google Scholar

Received: 2024-06-10
Accepted: 2024-11-27
Published Online: 2024-12-24
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0317/html
Scroll to top button