Home Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions
Article
Licensed
Unlicensed Requires Authentication

Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions

  • Hyeonjin Eun ORCID logo , Peter Gyula Szabo ORCID logo , Darlyn Rehhorn , Seungwoo Lee ORCID logo , Yongheum Jo ORCID logo , Marcus Altmaier , Jinyoung Lee ORCID logo , Xavier Gaona ORCID logo EMAIL logo and Jong-Il Yun ORCID logo EMAIL logo
Published/Copyright: December 19, 2024

Abstract

The uptake of Eu, Th, U, and Pu by Korean granite and biotite gneiss was investigated in a series of batch experiments. Experiments were conducted under well-defined redox conditions, i.e., oxidizing (air), mildly reducing (Ar-atmosphere and buffered with hydroquinone, pe + pH ≈ 8–9), and strongly reducing (Ar-atmosphere and buffered with Na2S2O4, pe + pH ≈ 0.5–3). Radionuclide concentration, pH and Eh were systematically monitored up to t ≤ 113 days after the addition of the radionuclide. The natural content of Eu, Th and U in pristine granite and biotite gneiss materials was quantified by means of alkaline fusion. Eu exhibited moderate sorption on biotite gneiss displaying higher distribution ratios (Rd) compared to granite. This observation was possibly explained by the affinity of Ln(III)/An(III) towards biotite mineral absent in the investigated granite material. Strong sorption was observed for Th, U, and Pu in reducing systems where the predominance of the +IV oxidation state is expected. For these three systems, the strength of the uptake follows the order Rd(Pu(IV)) > Rd(U(IV)) > Rd(Th(IV)), consistent with the hydrolysis strength of the corresponding aquo-ions. A significantly weaker sorption was observed for U and Pu under oxidizing conditions, although Rd values are manifestly higher for Pu than U. Thermodynamic calculations for the oxidizing conditions predicted the predominance of U(VI) and Pu(V)/Pu(IV), explaining observed differences in retention under oxidizing conditions. These results contribute to a quantitative description and a better understanding of the retention of redox-sensitive radionuclides in crystalline host rocks. Emphasis is placed on the importance of utilizing both redox-stable probes (e.g., Eu, Th) and redox-sensitive actinides (e.g., U, Pu), as well as well-defined redox conditions for accurate predictions of radionuclide retention.


Corresponding authors: Xavier Gaona, Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76344, Germany, E-mail: ; and Jong-Il Yun, Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail:
Hyeonjin Eun and Peter Gyula Szabo contributed equally and should be regarded as co-first authors.

Acknowledgements

Max Bachert and Jonas Rentmeister (both KIT-INE) are kindly acknowledged for the SF-ICP-MS and TIC measurements.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was funded by Hyundai Engineering and Construction Co. Ltd, the Institute for Korea Spent Nuclear Fuel (iKSNF) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy (MOTIE) (No. 1415176399, iKSNF_2021040101003C, and RS-2023-00236697).

  7. Data availability: The raw data can be obtained on request from the corresponding authors.

References

1. Ewing, R. C. Less Geology in the Geological Disposal of Nuclear Waste. Science 1999, 286, 415–417; https://doi.org/10.1126/science.286.5439.415.Search in Google Scholar

2. SKB. R&D-Programme 2004 – Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, Including Social Science Research. SKB Report TR-04-21, 2004.Search in Google Scholar

3. Cho, W.-J.; Kwon, S.; Park, J.-H.. KURT a Small-Scale Underground Research Laboratory for the Research on a High-Level Waste Disposal. Ann. Nucl. Energy 2008, 35, 132–140; https://doi.org/10.1016/j.anucene.2007.05.011.Search in Google Scholar

4. Tsuruta, T.; Tagami, M.; Amano, K.; Matsuoka, T.; Kurihara, A.; Yamada, Y.; Koike, K. Geological Investigations for Geological Model of Deep Underground Geoenvironment at the Mizunami Underground Research Laboratory (MIU). J. Geol. Soc. Jpn. 2013, 119, 59–74; https://doi.org/10.5575/geosoc.2012.0075.Search in Google Scholar

5. Wang, J.; Chen, L.; Su, R.; Zhao, X. The Beishan Underground Research Laboratory for Geological Disposal of High-Level Radioactive Waste in China. J. Rock Mech. Geotech. Eng. 2018, 10, 411–435; https://doi.org/10.1016/j.jrmge.2018.03.002.Search in Google Scholar

6. Vieno, T.; Nordman, H. Safety Assessment of Spent Fuel Disposal in Hästholmen, Kivetty, Olkiluoto and Romuvaara TILA-99. Posiva Report 99-07, 1999.Search in Google Scholar

7. Hagues, A. W.; Williams, M. M. R.; Eaton, M. D. A Probabilistic Study of the Effect of Retardation Factor Uncertainty Using a Compartment Model for Radionuclide Release into the Biosphere. Ann. Nucl. Energy 2010, 37, 1197–1207; https://doi.org/10.1016/j.anucene.2010.05.003.Search in Google Scholar

8. Kwon, S.; Cho, W. J. Rock Mechanics Studies at the KAERI Underground Research Tunnel for High-Level Radioactive Waste Disposal. Tunn. Undergr. Space 2007, 17, 43–55.Search in Google Scholar

9. Lee, J.-H.; Jung, H.; Cheong, J.-Y.; Park, J.-W.; Yun, S.-T. Evaluation of Groundwater Quality in Crystalline Bedrock Site for Disposal of Radioactive Waste. J. Nucl. Fuel Cycle Waste Technol. 2014, 12, 275–286; https://doi.org/10.7733/jnfcwt.2014.12.4.275.Search in Google Scholar

10. Cheon, D.-S.; Jin, K.; Synn, J. H.; Kihm, Y. H.; Jeon, S. Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics. Tunn. Undergr. Space 2024, 34, 28–53.Search in Google Scholar

11. Hedin, A.; Olsson, O. Crystalline Rock as a Repository for Swedish Spent Nuclear Fuel. Elements 2016, 12, 247–252; https://doi.org/10.2113/gselements.12.4.247.Search in Google Scholar

12. Nguyen, T. S. Progressive Damage of a Canadian Granite in Laboratory Compression Tests and Underground Excavations. Minerals 2021, 11, 10; https://doi.org/10.3390/min11010010.Search in Google Scholar

13. Pradhan, R. M.; Singh, A.; Ojha, A. K.; Biswal, T. K. Structural Controls on Bedrock Weathering in Crystalline Basement Terranes and its Implications on Groundwater Resources. Sci. Rep. 2022, 12, 11815; https://doi.org/10.1038/s41598-022-15889-x.Search in Google Scholar PubMed PubMed Central

14. Geckeis, H.; Lützenkirchen, J.; Polly, R.; Rabung, T.; Schmidt, M. Mineral–water Interface Reactions of Actinides. Chem. Rev. 2013, 113, 1016–1062; https://doi.org/10.1021/cr300370h.Search in Google Scholar PubMed

15. Stuckless, J. S.; Nkomo, I. T. Uranium-Lead Isotope Systematics in Uraniferous Alkali-Rich Granites From the Granite Mountains, Wyoming; Implications for Uranium Source Rocks. Econ. Geol. 1978, 73, 427–441; https://doi.org/10.2113/gsecongeo.73.3.427.Search in Google Scholar

16. Tieh, T. T.; Ledger, E. B.; Rowe, M. W. Release of Uranium from Granitic Rocks During In Situ Weathering and Initial Erosion (Central Texas). Chem. Geol. 1980, 29, 227–248; https://doi.org/10.1016/0009-2541(80)90022-4.Search in Google Scholar

17. Terekhov, E. N.; Shcherbakova, T. F. Genesis of Positive Eu Anomalies in Acid Rocks From the Eastern Baltic Shield. Geochem. Int. 2006, 44, 439–455; https://doi.org/10.1134/s0016702906050028.Search in Google Scholar

18. Ranjan, S.; Upadhyay, D.; Abhinay, K.; Srikantappa, C. Paleoarchean and Neoarchean Tonalite–Trondhjemite–Granodiorite (TTG) and Granite Magmatism in the Western Dharwar Craton, Southern India: Implications for Archean Continental Growth and Geodynamics. Precambrian Res. 2020, 340, 105630; https://doi.org/10.1016/j.precamres.2020.105630.Search in Google Scholar

19. Lee, S. G.; Lee, K. Y.; Cho, S. Y.; Yoon, Y. Y.; Kim, Y. Sorption Properties of 152Eu and 241Am in Geological Materials: Eu as an Analogue for Monitoring the Am Behaviour in Heterogeneous Geological Environments. Geosci. J. 2006, 10, 103–114; https://doi.org/10.1007/bf02910354.Search in Google Scholar

20. Hwang, J.; Moon, S.-H.; Ripley, E. M.; Kim, Y. H. Determining Uraniferous Host Rocks and Minerals as a Source of Dissolved Uranium in Granite Aquifers Near the Central Ogcheon Metamorphic Belt, Korea. Environ. Earth. Sci. 2014, 72, 4035–4046; https://doi.org/10.1007/s12665-014-3293-7.Search in Google Scholar

21. Hwang, J.; Moon, S.-H. Geochemical Evidence for K-Metasomatism Related to Uranium Enrichment in Daejeon Granitic Rocks Near the Central Ogcheon Metamorphic Belt. Korea. Geosci. J. 2018, 22, 1001–1013; https://doi.org/10.1007/s12303-018-0053-9.Search in Google Scholar

22. Hakanen, M.; Ervanne, H.; Puukko, E. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto: Radionuclide Migration Parameters for the Geosphere. Posiva Report 2012-41, 2014.Search in Google Scholar

23. Metz, V.; Geckeis, H.; González-Robles, E.; Loida, A.; Bube, C.; Kienzler, B. Radionuclide Behaviour in the Near-Field of a Geological Repository for Spent Nuclear Fuel. Radiochim. Acta 2012, 100, 699–713; https://doi.org/10.1524/ract.2012.1967.Search in Google Scholar

24. Altmaier, M.; Gaona, X.; Fanghänel, T. Recent Advances in Aqueous Actinide Chemistry and Thermodynamics. Chem. Rev. 2013, 113, 901–943; https://doi.org/10.1021/cr300379w.Search in Google Scholar PubMed

25. Çevirim-Papaioannou, N. Redox Chemistry, Solubility and Hydrolysis of Uranium in Dilute to Concentrated Salt Systems. Ph.D. Thesis; Karlsruhe Institute of Technology: Germany, 2018.Search in Google Scholar

26. Grenthe, I.; Gaona, X.; Plyasunov, A. V.; Rao, L.; Runde, W. H.; Grambow, B.; Konings, R. J. M.; Smith, A. L.; Moore, E. E. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; OECD/NEA Chemical Thermodynamics: Boulogne-Billancourt, France, Vol. 14, 2020.Search in Google Scholar

27. Neck, V.; Altmaier, M.; Fanghänel, T. Solubility of Plutonium Hydroxides/hydrous Oxides Under Reducing Conditions and in the Presence of Oxygen. Comptes Rendus Chim. 2007, 10, 959–977; https://doi.org/10.1016/j.crci.2007.02.011.Search in Google Scholar

28. Tasi, A.; Gaona, X.; Fellhauer, D.; Böttle, M.; Rothe, J.; Dardenne, K.; Schild, D.; Grivé, M.; Colàs, E.; Bruno, J.; Källström, K.; Altmaier, M.; Geckeis, H. Redox Behavior and Solubility of Plutonium Under Alkaline, Reducing Conditions. Radiochim. Acta 2018, 106, 259–279; https://doi.org/10.1515/ract-2017-2870.Search in Google Scholar

29. Demnitz, M.; Schymura, S.; Neumann, J.; Schmidt, M.; Schäfer, T.; Stumpf, T.; Müller, K. Mechanistic Understanding of Curium(III) Sorption on Natural K-Feldspar Surfaces. Sci. Total Environ. 2022, 843, 156920; https://doi.org/10.1016/j.scitotenv.2022.156920.Search in Google Scholar PubMed

30. Iida, Y.; Yamaguchi, T.; Tanaka, T.; Hemmi, K. Sorption Behavior of Thorium Onto Granite and its Constituent Minerals. J. Nucl. Sci. Technol. 2016, 53, 1573–1584; https://doi.org/10.1080/00223131.2016.1138901.Search in Google Scholar

31. Kitamura, A.; Yamamoto, T.; Nishikawa, S.; Moriyama, H. Sorption Behavior of Am(III) Onto Granite. J. Radioanal. Nucl. Chem. 1999, 239, 449–453; https://doi.org/10.1007/bf02349049.Search in Google Scholar

32. Baik, M. H.; Hyun, S. P.; Hahn, P. S. Surface and Bulk Sorption of Uranium (VI) Onto Granite Rock. J. Radioanal. Nucl. Chem. 2003, 256, 11–18.10.1023/A:1023331521718Search in Google Scholar

33. Keum, D. K.; Choi, B. J.; Baik, M. H.; Hahn, P. S. Uranium (VI) Adsorption and Transport in Crushed Granite. Environ. Eng. Res. 2002, 7, 103–111.10.4491/eer.2002.7.2.103Search in Google Scholar

34. Nebelung, C.; Brendler, V. U (VI) Sorption on Granite: Prediction and Experiments. Radiochim. Acta 2010, 98, 2010.10.1524/ract.2010.1762Search in Google Scholar

35. Alonso, U.; Missana, T.; Geckeis, H.; García-Gutiérrez, M.; Turrero, M. J.; Möri, R.; Schäfer, T.; Patelli, A.; Rigato, V. Role of Inorganic Colloids Generated in a High-Level Deep Geological Repository in the Migration of Radionuclides: Open Questions. J. Iberian Geol. 2006, 32, 79–94.Search in Google Scholar

36. Fellhauer, D. Untersuchungen zur Löslichkeit und Redoxchemie von Plutonium und Neptunium. Ph.D. Thesis; Universität Heidelberg: Germany, 2013.Search in Google Scholar

37. Neill, T. S.; Morris, K.; Pearce, C. I.; Sherriff, N. K.; Burke, M. G.; Chater, P. A.; Janssen, A.; Natrajan, L.; Shaw, S. Stability, Composition, and Core-Shell Particle Structure of Uranium (IV)-Silicate Colloids. Environ. Sci. Technol. 2018, 52, 9118–9127; https://doi.org/10.1021/acs.est.8b01756.Search in Google Scholar PubMed

38. Szabo, P.; Tasi, A.; Gaona, X.; Maier, A.; Hedström, S.; Altmaier, M.; Geckeis, H. Uptake of Ni(II), Eu(III) and Pu(III/IV) by Hardened Cement Paste in the Presence of Proxy Ligands for the Degradation of Polyacrylonitrile. Front. Nucl. Eng. 2023, 2, 1117413; https://doi.org/10.3389/fnuen.2023.1117413.Search in Google Scholar

39. Tasi, A.; Gaona, X.; Rabung, T.; Fellhauer, D.; Rothe, J.; Dardenne, K.; Lützenkirchen, J.; Grivé, M.; Colàs, E.; Bruno, J.; Källström, K.; Altmaier, M.; Geckeis, H. Plutonium Retention in the Isosaccharinate–Cement System. Appl. Geochem. 2021, 126, 104862; https://doi.org/10.1016/j.apgeochem.2020.104862.Search in Google Scholar

40. Eun, H.; Lee, S.; Lee, J.; Jeong, M.-S.; Iqbal, S.; Yun, J.-I. Kinetic and Competitive Effects of Sorption on Multi-Element Migration Through Crushed Granite and Biotite Gneiss in Ca-HCO3-SO4 Type Groundwater. J. Environ. Radioact. 2024, 278, 107501; https://doi.org/10.1016/j.jenvrad.2024.107501.Search in Google Scholar PubMed

41. Neck, V.; Altmaier, M.; Seibert, A.; Yun, J.-I.; Marquardt, C. M.; Fanghänel, T. Solubility and Redox Reactions of Pu(IV) Hydrous Oxide: Evidence for the Formation of PuO2+x(s, Hyd). Radiochim. Acta 2007, 95, 193–207; https://doi.org/10.1524/ract.2007.95.4.193.Search in Google Scholar

42. Tasi, A.; Gaona, X.; Fellhauer, D.; Böttle, M.; Rothe, J.; Dardenne, K.; Polly, R.; Grivé, M.; Colàs, E.; Bruno, J.; Källström, K.; Altmaier, M.; Geckeis, H. Thermodynamic Description of the Plutonium-α-D-Isosaccharinic Acid System I: Solubility, Complexation and Redox Behavior. Appl. Geochem. 2018, 98, 247–264; https://doi.org/10.1016/j.apgeochem.2018.04.014.Search in Google Scholar

43. Yalçıntaş, E.; Gaona, X.; Scheinost, A. C.; Kobayashi, T.; Altmaier, M.; Geckeis, H. Redox Chemistry of Tc(VII)/Tc(IV) in Dilute to Concentrated NaCl and MgCl2 Solutions. Radiochim. Acta 2015, 103, 57–72; https://doi.org/10.1515/ract-2014-2272.Search in Google Scholar

44. Altmaier, M.; Gaona, X.; Fellhauer, D.; Buckau, G. Intercomparison of Redox Determination Methods on Designed and Near-Natural Aqueous Systems. KIT-SR 7572, 2010.Search in Google Scholar

45. Tan, S. H.; Horlick, G. Matrix-Effect Observations in Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 1987, 2, 745–763; https://doi.org/10.1039/ja9870200745.Search in Google Scholar

46. Ahlrichs, R.; Furche, F.; Grimme, S. Comment on “Assessment of Exchange Correlation Functionals” [AJ Cohen, NC Handy, Chem. Phys. Lett., 316 (2000) 160–166]; . Chem. Phys. Lett. 2000, 325, 317–321. https://doi.org/10.1016/s0009-2614(00)00654-0.Search in Google Scholar

47. Bruno, J.; González-Siso, M. R.; Duro, L.; Gaona, X.; Altmaier, M. Key Master Variables Affecting the Mobility of Ni, Pu, Tc and U in the Near Field of the SFR Repository. In Main Experimental Findings and PA Implications of the PhD Thesis. SKB Report TR18-01, SKB, Solna, Sweden, 2018.Search in Google Scholar

48. Xie, Y.; Shao, D.; Lu, X.; Hayat, T.; Alharbi, N. S.; Chen, C.; Song, G.; Chen, D.; Sun, Y. Spectroscopic Investigation of Enhanced Adsorption of U(VI) and Eu(III) on Magnetic Attapulgite in Binary System. Ind. Eng. Chem. Res. 2018, 57, 7533–7543; https://doi.org/10.1021/acs.iecr.8b01803.Search in Google Scholar

49. Olin, M.; Puukko, E.; Puhakka, E.; Hakanen, M.; Lindberg, A.; Lehikoinen, J. Sorption of Biotite. In 4th Annual Workshop Proceedings of the Integrated Project “Fundamental Processes of Radionuclide Migration” (6th EC FP IP FUNMIG), 2009; pp. 335–343.Search in Google Scholar

50. Puukko, E.; Puhakka, E.; Lindberg, A.; Olin, M.; Hakanen, M.; Lehikoinen, J. Mineral-Specific Sorption of Cs, Ni, Eu and Am on Granodiorite and Mica Gneiss. In 1st Annual Workshop of Integrated Project “Fundamental Processes of Radionuclide Migration” (IP FUNMIG), 2006; pp. 80–85.Search in Google Scholar

51. Baik, M. H.; Cho, W. J.; Hahn, P. S. Effects of Speciation and Carbonate on the Sorption of Eu(III) Onto Granite. Environ. Eng. Res. 2004, 9, 160–167; https://doi.org/10.4491/eer.2004.9.4.160.Search in Google Scholar

52. Baik, M. H.; Hahn, P. S. An Experimental Study on the Sorption of U(VI) Onto Granite. Nucl. Eng. Technol. 2002, 34, 445–454.Search in Google Scholar

53. Baik, M. H.; Hyun, S. P.; Cho, W. J.; Hahn, P. S. Contribution of Minerals to the Sorption of U(VI) on Granite. Radiochim. Acta 2004, 92, 663–669; https://doi.org/10.1524/ract.92.9.663.54980.Search in Google Scholar

54. Kulmala, S.; Hakanen, M.; Lindberg, A. Sorption of Plutonium on Rocks in Groundwaters From Posiva Investigation Sites. Posiva Report 98-12, 1998.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0331).


Received: 2024-07-03
Accepted: 2024-12-05
Published Online: 2024-12-19
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0331/html
Scroll to top button