Hierarchical macro/mesoporous γ-Al2O3 as column matrix for development of low specific activity 99Mo/99mTc generator via 100Mo (γ, n)99Mo reaction
Abstract
99mTc, the daughter product of 99Mo, is a γ-emitting radionuclide with essential diagnostic applications in nuclear medicine. In this paper, an accelerator-based method (100Mo (γ, n)99Mo) for production of 99Mo and 99mTc has been explored. Approximately 68.3 MBq of 99Mo was successfully produced by the irradiation of 100Mo metallic target for 40 h using electron beam with energy of 50 MeV and current of 0.2 μA at electron linear accelerator (Institute of Modern Physics, Chinese Academy of Sciences, IMPCAS). Different types of 99Mo/99mTc generators were prepared using hierarchical macro/mesoporous γ-Al2O3 (HMMA) as column adsorbent, and their performances were evaluated for over one week. 99Mo/99mTc generator with a column (3 mL, 4.2 × 0.95 cm) packed with 0.6 g HMMA exhibited excellent eluting performance. 99mTc could be collected within 4.0 mL of saline solution with high purity, and the elution efficiency could reach >85 %. Furthermore, 99Mo breakthrough in the eluates was negligible (<2 × 10−3 %) and concentration of impurity (<10 ppm) was acceptable. Finally, the enriched 100Mo was eluted from the spent 99Mo/99mTc generator using 1.0 mol/L ammonium hydroxide, and then reduced by high-temperature hydrogen reduction process with a total recovery of 95.3 %. This work demonstrated that the preparation of 99Mo via 100Mo (γ, n)99Mo reaction and isolating 99mTc using HMMA column chromatography have a potential in application.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 12005272). The authors are grateful to theElectron Accelerator Center,Institute of Modern Physics, Chinese Academy of Science for providing the electron beam. We also would like to thank Multidisciplinary Integrated Physics Experiment Platform, IMPCAS for the ICP-OES, XRD, SEM-EDS measurement.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Ruiqin Gao: Conceptualization, Methodology, Investigation, Data Curation, Writing-Original Draft. Jieru Wang: Methodology, Investigation, Data Curation, Writing-Review & Editing. Wei Tian: Resources, Writing-Review. Qinggang Huang: Data Curation, Writing-Review. Mu Lin: Writing-Review. Xiaolei Wu: Resources, Writing-Review. Zhi Qin: Supervision, Project administration. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Competing interests: All other authors state no conflict of interest.
-
Research funding: This research was financially supported by National Natural Science Foundation of China (Nos. 12005272).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Cheng, D. F.; Wang, Y.; Liu, X. R.; Pretorius, P. H.; Liang, M. M.; Rusckowski, M.; Hnatowich, D. J. Comparison of 18F PET and 99mTc SPECT Imaging in Phantoms and in Tumored Mice. Bioconjugate Chem. 2020, 21 (8), 1565–1570. https://doi.org/10.1021/bc1001467.Search in Google Scholar PubMed PubMed Central
2. van der Walt, T. N.; Coetzee, P. P. The Isolation of 99Mo from Fission Material for Use in the 99Mo/99mTc Generator for Medical Use. Radiochim. Acta 2004, 92 (6), 251–257. https://doi.org/10.1524/ract.92.4.251.35589.Search in Google Scholar
3. Boyd, R. E. Technetium-99m Generators-The Available Options. Int. J. Appl. Radiat. Isot. 1982, 33, 801–809. https://doi.org/10.1016/0020-708X(82)90121-1.Search in Google Scholar
4. Le, V. S. 99mTc Generator Development: Up-To-Date 99mTc Recovery Technologies for Increasing the Effectiveness of 99Mo Utilisation. Sci. Technol. Nucl. Install. 2014, 2014, 1–41. https://doi.org/10.1155/2014/345252.Search in Google Scholar
5. Münze, R.; Hladik, O.; Bernhard, G.; Boessert, W.; Schwarzbach, R. Large Scale Production of Fission 99Mo by Using Fuel Elements of a Research Reactor as Starting Material. Int. J. Appl. Radiat. Isot. 1984, 35 (8), 749–754. https://doi.org/10.1016/0020-708X(84)90081-4.Search in Google Scholar
6. International Atomic Energy Agency Minimization of HEU in Civilian Nuclear Applications. 2006. https://www.iaea.org/newscenter/statements/minimization-heu-civilian-nuclear-applications.Search in Google Scholar
7. Nuclear Energy Agency The Security of Supply of Medical Radioisotopes-Demand and Capacity Projections for 99Mo/99mTc for the 2023–2027 Period; OECD, 2023. https://www.oecd-nea.org/jcms/pl_87477/the-security-of-supply-of-medical-radioisotopes-demand-and-capacity-projections-for-99mo/99mtc-for-the-2023-2027-period.Search in Google Scholar
8. Lee, S. K.; Beyer, G. J.; Lee, J. S. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target. Nucl. Eng. Technol. 2016, 48, 613–623. https://doi.org/10.1016/j.net.2016.04.006.Search in Google Scholar
9. Mushtaq, A.; Iqbal, M.; Bokhari, I. H.; Mahmood, T. Low Enriched Uranium Foil Plate Target for the Production of Fission Molybdenum-99 in Pakistan Research Reactor-1. Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. At. 2009, 267 (7), 1109–1114. https://doi.org/10.1016/j.nimb.2009.01.138.Search in Google Scholar
10. Villiers, W. Z. The Management of Radioactive Waste from FIssion 99Mo Production. Int. Top Meet. Nucl. Hazard Waste Manag. Atlanta, USA. 1994, 2190–2192.Search in Google Scholar
11. Schaffer, P.; Bénard, F.; Bernstein, A.; Buckley, K.; Celler, A.; Cockburn, N.; Corsaut, J.; Dodd, M.; Economou, C.; Eriksson, T.; Frontera, M.; Hanemaayer, V.; Hook, B.; Klug, J.; Kovacs, M.; Prato, F. S.; McDiarmid, S.; Ruth, T. J.; Shanks, C.; Valliant, J. F.; Zeisler, S.; Zetterberg, U.; Zavodszky, P. A. Direct Production of 99mTc via 100Mo(p, 2n) on Small Medical Cyclotrons. Phy. Proc. 2015, 66, 383–395. https://doi.org/10.1016/j.phpro.2015.05.048.Search in Google Scholar
12. Naik, H.; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Joshi, P. V.; Nimje, V. T.; Mittal, K. C.; Goswami, A.; Venugopal, V.; Kailas, S. An Alternative Route for the Preparation of the Medical Isotope 99Mo from the 238U(γ, F) and 100Mo(γ, N) Reactions. J. Radioanal. Nucl. Chem. 2012, 295 (1), 807–816. https://doi.org/10.1007/s10967-012-1958-9.Search in Google Scholar
13. Avagyan, R.; Avetisyan, A.; Kerobyan, I.; Dallakyan, R. Photo-Production of 99Mo/99mTc with Electron Linear Accelerator Beam. Nucl. Med. Biol. 2014, 41 (8), 705–709. https://doi.org/10.1016/j.nucmedbio.2014.04.132.Search in Google Scholar PubMed
14. Gao, X.; Zhang, P.; Li, J.; Mao, W.; Guo, Z.; Li, J.; Zhang, Y.; Chen, J.; Sheng, L.; Lin, M. Production of 99Mo via Photoneutron Reaction Using a 50 MeV Electron Linear Accelerator. J. Radioanal. Nucl. Chem. 2023, 332 (8), 3037–3045. https://doi.org/10.1007/s10967-023-09003-2.Search in Google Scholar
15. Minato, F.; Tsukada, K.; Sato, N.; Watanabe, S.; Saeki, H.; Kawabata, M.; Hashimoto, S.; Nagai, Y. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n, 2n)99Mo. J. Phys. Soc. Jpn. 2017, 86 (11). https://doi.org/10.7566/jpsj.86.114803.Search in Google Scholar
16. Scholten, B.; Lambrecht, R. M.; Cogneau, M.; Ruiz, H. V.; Qaim, S. M. Excitation Functions for the Cyclotron Production of 99mTc and 99Mo. Appl. Radiat. Isot. 1999, 51, 69–80. https://doi.org/10.1016/S0969-8043(98)00153-5.Search in Google Scholar
17. Qaim, S. M. Nuclear Data for Medical Radionuclides. J. Radioanal. Nucl. Chem. 2015, 305 (1), 233–245. https://doi.org/10.1007/s10967-014-3923-2.Search in Google Scholar
18. Qaim, S. M.; Sudár, S.; Scholten, B.; Koning, A. J.; Coenen, H. H. Evaluation of Excitation Functions of 100Mo(p, d+pn)99Mo and 100Mo (p,2n)99mTc Reactions: Estimation of Long-Lived Tc-Impurity and its Implication on the Specific Activity of Cyclotron-Produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101–113. https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar PubMed
19. Bennett, R. G.; Christian, J. D.; Petti, D. A.; Terry, W. K.; Grover, S. B. A System of 99mTc Production Based on Distributed Electron Accelerators and Thermal Separation. Nucl. Technol. 2017, 126 (1), 102–121. https://doi.org/10.13182/nt99-a2961.Search in Google Scholar
20. Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E. Electron Accelerator-Based Production of Molybdenum-99: Bremsstrahlung and Photoneutron Generation from Molybdenum vs . Tungsten. Nucl. Instrum. Methods Phy. Res. Sec. B: Beam Interact. Mater. At. 2016, 366, 124–139. https://doi.org/10.1016/j.nimb.2015.10.057.Search in Google Scholar
21. Gopalakrishna, A.; Naik, H.; Suryanarayana, S. V.; Naik, Y.; Nimje, V. T.; Nayak, B. K.; Sarkar, S. K.; Padmanabhan, S.; Kothalkar, C.; Naskar, P.; Dey, A. C.; Goswami, A. Preparation of 99Mo from the 100Mo(γ, N) Reaction and Chemical Separation of 99mTc. J. Radioanal. Nucl. Chem. 2015, 308 (2), 431–438. https://doi.org/10.1007/s10967-015-4481-y.Search in Google Scholar
22. Chemerisov, S. J. C. D.; Gelis, A. V.; Tkac, P.; Bowers, D. L.; Makarashvili, V.; Bakel, A. J.; Harvey, J. T.; Dale, G. E.; Mihalcea, D.; Vandegrift, G. F. Activities for the Production of Mo-99 Using High Current Electron Linac at Argonne National Laboratory. In 10th International Topical Meeting on Nuclear Applications of Accelerators 2011; Curran Associates: Knoxville, Tennessee, USA, 2011; pp 364–371.Search in Google Scholar
23. Chakravarty, R.; Shukla, R.; Ram, R.; Tyagi, A. K.; Dash, A.; Venkatesh, M. Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications. Chromatographia 2010, 72 (9-10), 875–884. https://doi.org/10.1365/s10337-010-1754-z.Search in Google Scholar
24. Saptiama, I.; Lestari, E.; Sarmini, E.; Lubis, H.; Marlina, M.; Mutalib, A. Development of 99Mo/99mTc Generator System for Production of Medical Radionuclide 99mTc Using a Neutron-Activated 99Mo and Zirconium Based Material (ZBM) as its Adsorbent. Atom Indones. 2016, 42 (3). https://doi.org/10.17146/aij.2016.531.Search in Google Scholar
25. Ma, C.; Wolterbeek, H. T.; Denkova, A. G.; Serra Crespo, P. A Cerium-Based Metal-Organic Framework as Adsorbent for the 99Mo/99mTc Generator. Sep. Purif. Technol. 2022, 295. https://doi.org/10.1016/j.seppur.2022.121218.Search in Google Scholar
26. Wu, Q.; Zhang, F.; Yang, J.; Li, Q.; Tu, B.; Zhao, D. Synthesis of Ordered Mesoporous Alumina with Large Pore Sizes and Hierarchical Structure. Microporous Mesoporous Mater. 2011, 143 (2–3), 406–412. https://doi.org/10.1016/j.micromeso.2011.03.033.Search in Google Scholar
27. Chakravarty, R.; Ram, R.; Mishra, R.; Sen, D.; Mazumder, S.; Pillai, M. R. A.; Dash, A. Mesoporous Alumina (MA) Based Double Column Approach for Development of a Clinical Scale 99Mo/99mTc Generator Using (n, γ)99Mo: An Enticing Application of Nanomaterial. Ind. Eng. Chem. Res. 2013, 52 (33), 11673–11684. https://doi.org/10.1021/ie401042n.Search in Google Scholar
28. Aydia, M. I.; Hiekal, A. S.; Essa, B. M.; Mahmoud, W. H.; El-Azony, K. M. Mesoporous Manganese Oxide/multiwalled Carbon Nanotubes as a Base Material for the 99mTc/99Mo Generator: Development, Characterization, and Implementation Study. Prog. Nucl. Energy 2024, 175. https://doi.org/10.1016/j.pnucene.2024.105334.Search in Google Scholar
29. Aydia, M. I.; Hiekal, A. S.; El-Azony, K. M.; Mohamed, T. Y.; Shahin, I. M. Preparation and Characterization of Poly Nano-Cerium Chloride for 99Mo Production Based on Neutron Activation Reactions. Appl. Radiat. Isot. 2020, 163, 109211. https://doi.org/10.1016/j.apradiso.2020.109211.Search in Google Scholar PubMed
30. El-Azony, K. M.; Aydia, M. I.; Hiekal, A. S.; Moustafa, I. M. I.; Mohamed, T. Y. The Use of a Poly Cerium Chloride Nanocomposite as a Prospective Material for the Preparation of a 99Mo/99mTc Generator. J. Radioanal. Nucl. Chem. 2023, 332 (11), 4597–4611. https://doi.org/10.1007/s10967-023-09172-0.Search in Google Scholar
31. Wang, J. R.; Gao, R. Q.; Huang, Q. G.; Yin, X. J.; Lin, M.; Cao, S. W.; Chen, D. S.; Fan, F. L.; Wu, X. L.; Qin, Z.; Guo, Z. J.; Bai, J.; Chu, J.; Tian, W.; Tan, C. M.; Li, B. L.; Cheng, N. W.; Jia, Z. M. Practicality of Hierarchically Macro/mesoporous γ-Al2O3 as a Promising Sorbent in the Preparation of Low Specific Activity 99Mo/99mTc Generator. Appl. Radiat. Isot. 2021, 178, 109986–109996. https://doi.org/10.1016/j.apradiso.2021.109986.Search in Google Scholar PubMed
32. Lin, M.; Tian, W.; Wang, J.; Gao, R.; Fan, F.; Qin, Z.; Cao, S.; Ran, Z. Optimization of Target System for the Production of 99Mo via 100Mo(γ, n)99Mo Reaction. Appl. Radiat. Isot. 2023, 202, 111059. https://doi.org/10.1016/j.apradiso.2023.111059.Search in Google Scholar PubMed
33. Gagnon, K.; Wilson, J. S.; Holt, C. M.; Abrams, D. N.; McEwan, A. J.; Mitlin, D.; McQuarrie, S. A. Cyclotron Production of 99mTc: Recycling of Enriched 100Mo Metal Targets. Appl. Radiat. Isot. 2012, 70 (8), 1685–1690. https://doi.org/10.1016/j.apradiso.2012.04.016.Search in Google Scholar PubMed
34. Sabel’nikov, A. V.; Maslov, O. D.; Molokanova, L. G.; Gustova, M. V.; Dmitriev, S. N. Preparation of 99Mo and 99mTc by 100Mo(γ, N) Photonuclear Reaction on an Electron Accelerator, MT-25 Microtron. Radiochemistry 2006, 48 (2), 191–194. https://doi.org/10.1134/s1066362206020172.Search in Google Scholar
35. Nawar, M. F.; El-Daoushy, A. F.; Ashry, A.; Turler, A. Developing a Chromatographic 99mTc Generator Based on Mesoporous Alumina for Industrial Radiotracer Applications: A Potential New Generation Sorbent for Using Low-Specific-Activity 99Mo. Molecules 2022, 27 (17), 5667. https://doi.org/10.3390/molecules27175667.Search in Google Scholar PubMed PubMed Central
36. Sarkar, S. K.; Saraswathy, P.; Arjun, G.; Ramamoorthy, N. High Radioactive Concentration of 99mTc from a Zirconium [99Mo]molybdate Gel Generator Using an Acidic Alumina Column for Purification and Concentration. Nucl. Med. Commun. 2004, 25 (6), 609–614. https://doi.org/10.1097/01.mnm.0000126511.19211.74.Search in Google Scholar PubMed
37. Zolle, I. Performance and Quality Control of the 99Mo/99mTc Generator. Technetium-99m Pharm. 2007, 77–93. https://doi.org/10.1007/978-3-540-33990-8_5.Search in Google Scholar
38. Chinese Pharmacopoeia Commission Chinese Pharmacopoeia. 2020. https://ydz.chp.org.cn/#/main.Search in Google Scholar
39. Nagai, Y.; Nakahara, Y.; Kawabata, M.; Hatsukawa, Y.; Hashimoto, K.; Saeki, H.; Motoishi, S.; Ohta, A.; Shiina, T.; Kawauchi, Y. Quality of 99mTcO4− from 99Mo Produced by 100Mo(n, 2n)99Mo. J. Phys. Soc. Jpn. 2017, 86 (5). https://doi.org/10.7566/jpsj.86.053202.Search in Google Scholar
40. Hasan, S.; Prelas, M. A. Molybdenum-99 Production Pathways and the Sorbents for 99Mo/99mTc Generator Systems Using (N,γ) 99Mo: a Review. SN Appl. Sci. 2020, 2 (11). https://doi.org/10.1007/s42452-020-03524-1.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Single-atom-at-a-time adsorption studies of 211Bi and its precursor 211Pb on SiO2 surfaces
- Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions
- A new targetry system for cyclotron production of pharmaceutical grade indium-111 radioisotope
- Hierarchical macro/mesoporous γ-Al2O3 as column matrix for development of low specific activity 99Mo/99mTc generator via 100Mo (γ, n)99Mo reaction
- Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice
- Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material
- Radiochromic liquid dosimeter based on p-arsanilic acid for gamma radiation monitoring
- Assessing carcinogenic radon levels in water from Er-Rachidia, Morocco using LR-115 nuclear track detectors
Articles in the same Issue
- Frontmatter
- Original Papers
- Single-atom-at-a-time adsorption studies of 211Bi and its precursor 211Pb on SiO2 surfaces
- Uptake of Eu, Th, U, and Pu by granite and biotite gneiss in Korean fresh groundwater under oxidizing and reducing conditions
- A new targetry system for cyclotron production of pharmaceutical grade indium-111 radioisotope
- Hierarchical macro/mesoporous γ-Al2O3 as column matrix for development of low specific activity 99Mo/99mTc generator via 100Mo (γ, n)99Mo reaction
- Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice
- Dehydration of un-irradiated and gamma and electron-beam irradiated europium acetate hydrate under non-isothermal conditions: kinetics of the dehydration process of un-irradiated material
- Radiochromic liquid dosimeter based on p-arsanilic acid for gamma radiation monitoring
- Assessing carcinogenic radon levels in water from Er-Rachidia, Morocco using LR-115 nuclear track detectors