Home Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice
Article
Licensed
Unlicensed Requires Authentication

Design of a novel complex 99mTc-Nilutamide as a tracer for prostate cancer disorder detection in mice

  • M.H. Sanad ORCID logo EMAIL logo , Safaa B. Challan ORCID logo EMAIL logo , H.M. Essam , Fatma Y. Abdou and A.B. Farag
Published/Copyright: December 3, 2024

Abstract

Male prostate cancer (PCa) is considered among the most fatal illnesses. Despite the recent decrease in prostate cancer incidence attributed to advancements in early detection and therapy, these reductions have not effectively mitigated the elevated fatality rate linked to this disease. The drug Nilutamide was effectively radiolabeled with technetium-99m, producing a radiochemical yield of 96 ± 0.14 % under optimal conditions. In our study, two cohorts of mice were utilized, namely the control group and the group with prostate cancer. Various biochemical parameters, including PSA levels in serum, were assessed, revealing a significantly elevated value in the group with prostate cancer, indicating potential tumor development. Furthermore, the activities of antioxidant enzymes (CAT, SOD) were notably lower in the group with prostate cancer compared to the healthy control group, while the oxidative activity reflected by MDA levels, the final product of lipid peroxidation, was higher in the prostate cancer group than in the healthy control group. The biodistribution analysis showed rapid localization of 99mTc-Nilutamide in prostate cancer tissue after 2 h post-injection, with a substantial value of 11.4 ± 1.1 % I. D/g tissue. Consequently, it was deduced that radiolabeled 99mTc-Nilutamide can serve as an effective imaging tool for prostate cancer.


Corresponding authors: M.H. Sanad, Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt, E-mail: ; and Safaa B. Challan, Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt; and Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority, Box 13759, Cairo, Egypt, E-mail:
.

  1. Research ethics: All experimental procedures were conducted at the Labeled Compounds Department within the Hot Laboratories Center of the Egyptian Atomic Energy Authority. Research Ethics of animal treatment was approved by the Animal Care Committee of the National Centre for Radiation Research and Technology (NCRRT)-Egyptian Atomic Energy Authority, Cairo, Egypt (Permit Number:60A/23).

  2. Informed consent: None.

  3. Author contributions: M. H. Sanad: He developed the research idea, conceptualization, methodology, biodistribution, validation, investigation, labeling, and writing-original draft. Safaa B. Challan: she has shared in developing the research idea, conceptualization, methodology, biodistribution, validation, investigation, labeling, and writing-original draft. H. M. Essam: She has Participated in developing the research idea, resources, labeling, resources and methodology, and biodistribution. Fatma, Y. Abdou: she has shared in methodology, validation, investigation biodistribution specially the biodistribution of prostate cancer. model. A. B. Farag: He has shared in all parts of the work.

  4. Use of Large Language Models, AI and Machine Learning Tools: None.

  5. Conflict of interest: The authors declare that there are no competing interests and that all authors have consented to publication. The authors say the reported study is unique and has never been published before.

  6. Research funding: No funding was received to conduct this study.

  7. Data availability: Not applicable.

References

1. Morgentaler, A. Testosterone and Prostate Cancer: an Historical Perspective on a Modern Myth. Eur. Urol. 2006, 50 (5), 935–939; https://doi.org/10.1016/j.eururo.2006.06.034.Search in Google Scholar PubMed

2. Ramsay, A. K.; Leung, H. Y. Signalling Pathways in Prostate Carcinogenesis: Potentials for Molecular-Targeted Therapy. Clin. Sci. 2009, 117 (6), 209–228; https://doi.org/10.1042/cs20080391.Search in Google Scholar PubMed

3. Andriole, G. L.; Crawford, E. D.; Grubb, R. L.3rd; Buys, S. S.; Chia, D.; Church, T. R.; Fouad, M. N.; Gelmann, E. P.; Kvale, P. A.; Reding, D. J.; Weissfeld, J. L.; Yokochi, L. A.; O’Brien, B.; Clapp, J. D.; Rathmell, J. M.; Riley, T. L.; Hayes, R. B.; Kramer, B. S.; Izmirlian, G.; Miller, A. B.; Pinsky, P. F.; Prorok, P. C.; Gohagan, J. K.; Berg, C. D. Mortality Results from a Randomized Prostate-Cancer Screening Trial. N. Engl. J. Med. 2009, 360 (13), 1310–1319; https://doi.org/10.1056/nejmoa0810696.Search in Google Scholar PubMed PubMed Central

4. Schroder, F. H.; Hugosson, J.; Roobol, M. J.; Tammela, T. L.; Ciatto, S.; Nelen, V; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; Denis, L. J.; Recker, F.; Berenguer, A.; Määttänen, L.; Bangma, C. H.; Aus, G.; Villers, A.; Rebillard, X.; van der Kwast, T.; Blijenberg, B. G.; Moss, S. M.; de Koning, H. J.; Auvinen, A. Screening and Prostate-Cancer Mortality in a randomizedEuropean Study. N. Engl. J. Med. 2009, 360 (13), 1320–1328; https://doi.org/10.1056/nejmoa0810084.Search in Google Scholar

5. Lu-Yao, G. L.; Albertsen, P. C.; Moore, D. F.; Shih, W.; Lin, Y.; DiPaola, R. S.; Barry, M.J.; Zietman, A.; O’Leary, M.; Walker-Corkery, E.; Yao, S. Outcomes of Localized Prostate Cancer Following Conservative Management. JAMA 2009, 302 (11), 1202–1209; https://doi.org/10.1001/jama.2009.1348.Search in Google Scholar PubMed PubMed Central

6. Mongiat-Artus, P.; Peyromaure, M.; Richaud, P.; Droz, J. P.; RainfrayM, Jeandel C.; Rebillard, X.; Moreau, J. L.; Davin, J. L.; Salomon, L.; Soulié, M. [Recommendations for the Treatment of Prostatecancer in the Elderly Man: A Study by the Oncology Committee Ofthe French Association of Urology]. Prog. Urol. 2009, 19 (11), 810–817; https://doi.org/10.1016/j.purol.2009.02.008.Search in Google Scholar PubMed

7. Yang, X.; Guan, A. Application of Fluorine-Containing Non-steroidal Anti-androgen Compounds in Treating Prostate Cancer. J. Fluorine Chem. 2014, 161, 1–10; https://doi.org/10.1016/j.jfluchem.2014.02.001.Search in Google Scholar

8. Denis, L. Endocrine Therapy of Prostate Cancer. Cancer Treatment and Research. In Antiandrogens in Prostate Cancer: A Key to Tailored Endocrine Treatment; Chatelain, C., Denis, L., Pommier, R., Eds.; New York, NY: Springer, 2012; 153, pp 194–210.Search in Google Scholar

9. DeVita, V. T.; Lawrence, T. S.; Rosenberg, S. A. Prostate and Other Genitourinary Cancers. In Prostate and Other Genitourinary Cancers: Cancer: Principles & Practice of Oncology; DeVita, V. T., Lawrence, T. S., Rosenberg, S. A., Eds., 10th ed.; Wolters Kluwer Health: Philadelphia, PA, 2016; pp 1006–1041.Search in Google Scholar

10. Singh, S. M.; Gauthier, S.; Labrie, F. Androgen Receptor Antagonists (Antiandrogens): Structure-Activity Relationships. Curr. Med. Chem. 2000, 7 (2), 211–247; https://doi.org/10.2174/0929867003375371.Search in Google Scholar PubMed

11. Van Loon, J.; Offerman, C.; Bosmans, G.; Wanders, R.; Dekker, A.; Borger, J.; Oellers, M.; Dingemans, A.-M.; van Baardwijk, A.; Teule, J.; Snoep, G.; Hochstenbag, M.; Houben, R.; Lambin, P.; Ruysscher, D. D. 18 FDG-PET Based Radiation Planning of the Mediastinal Lymph Nodes in Limited Disease Small Cell Lung Cancer Changes Radiotherapy Fields: a Planning Study. Radiother Oncol. 2008, 87 (1), 49–54.10.1016/j.radonc.2008.02.019Search in Google Scholar PubMed

12. Lee, H. Y.; Chung, J. K.; Jeong, J. M.; Lee, D. S.; Kim, D. G.; Jung, H. W.; Lee, M. C. Comparision of FDG-PET Findings of Brain Metastasis Feom Non-small-cell Lung Cancer and Small-Cell Lung Cancer. Ann. Nucl.Med. 2008, 22 (4), 281–286; https://doi.org/10.1007/s12149-007-0104-1.Search in Google Scholar PubMed

13. Decker, R. H.; Wilson, L. D. Advances in Radiotherapy for Lung Cancer. Semin. Respir. Crit. Care Med. 2008, 29 (3), 285–290; https://doi.org/10.1055/s-2008-1076748.Search in Google Scholar PubMed

14. Hofman, M. S.; Beauregard, J. M.; Barber, T. W.; Neels, O. C.; Eu, P.; Hicks, R. J. 68Ga PET/CT Ventilation-Perfusion Imaging for Pulmonary Embolism: A Pilot Study with Comparision to Conventional Scintigraphy. J.Nucl. Med. 2011, 52 (10), 1513–1519; https://doi.org/10.2967/jnumed.111.093344.Search in Google Scholar PubMed

15. Akkas, B. E.; Gokcora, N.; Atasever, T.; Yetkin, I. The Use of Technecium-99m Hexamethylpropylene Amine Oxime Lung Scintigraphy in the Detection of Subclinical Lung Injury in Patient with Noninsulin-dependent Dianetes Mellitus. J. Nucl. Med. Commun. 2011, 32 (12), 1179–1184; https://doi.org/10.1097/mnm.0b013e32834be2af.Search in Google Scholar PubMed

16. Faintuch, B. L.; Teodoro, R.; Duatti, A.; Muramoto, E.; Smith, S. F. C. J.; Smith, C. J. Radiolabeled Bombesin Analogs for Prostate Cancer Diagnosis: Preclinical Studies. Nucl. Med. Biol. 2008, 35, 401–411; https://doi.org/10.1016/j.nucmedbio.2008.02.005.Search in Google Scholar PubMed

17. Amin, A. M.; El-Ghany, E. A.; Moustafa, D. Iodine-125 Nilutamide as Novel Radio-Therapeutic Ligand for Androgen Receptor in Prostate Cancer. Arab J. Nucl. Sci. Appl. 2009, 42 (3), 13–22.Search in Google Scholar

18. Afshar-Oromieh, A.; Zechmann, C. M.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H. G.; Holland-Letz, T.; Hadaschik, B. A.; Giesel, F. L.; Debus, J. Jurgen Debus, Uwe Haberkorn: Comparison of PET Imaging with a 68Ga-labelled PSMA Ligand and 18F-Choline-Based PET/CT for the Diagnosis of Recurrent Prostate Cancer. Eur. J. Nucl. Med. Mol. Imag. 2014, 41, 11–20; https://doi.org/10.1007/s00259-013-2525-5.Search in Google Scholar PubMed PubMed Central

19. KalevinKairemo, T. J.; Joensuu, T. Lu-1770PSMA Treatment for Metastatic Prostate Cancer: Case Examples of Major Responses. Clin. Transl. Imag. 2018, 6, 223–237; https://doi.org/10.1007/s40336-018-0274-y.Search in Google Scholar

20. Alshemeili, M. Prostate Cancer-specific Positron Emission Tomography with Different Radiotracers. Egyptain J. Nucl. Med. 2020, 21 (2), 1–17.10.21608/egyjnm.2020.140410Search in Google Scholar

21. Boarder, M. R.; Newby, D.; Navti, P. Pharmacology for Pharmacy and the Health Sciences: A Patient-Centred Approach, Vol. 632; Oxford University Press: Oxford, 2010. ISBN 978-0-19-955982-4.Search in Google Scholar

22. DeVita, V. T.; Lawrence, T. S., Rosenberg, S. A.; Eds. Prostate and Other Genitourinary Cancers. In Cancer: Principles & Practice of Oncology 2016, 10th ed.; DeVita, V. T.; Lawrence, T. S.; & Rosenberg, S. A.; Eds., Wolters Kluwer Health: Philadelphia, PA, 2016; pp 1006–1041.Search in Google Scholar

23. Chang, C.; Yang, Y. C.; Kuo, Y. C.; Kuo, Y. H.; Chen, C. M.; Lee, T. H. Prostate Cancer: Basic Mechanisms and Therapeutic Approaches. World Sci. 2005, 11; https://doi.org/10.1021/np0401056.Search in Google Scholar PubMed

24. Singh, S. M.; Gauthier, S.; Labrie, F. Androgen Receptor Antagonists (Antiandrogens): Structure-Activity Relationships. Curr. Med. Chem. 2000, 7 (2), 211–247; https://doi.org/10.2174/0929867003375371.Search in Google Scholar PubMed

25. Jacobson, O.; Bechor, Y.; Icar, A.; Novak, N.; Birman, A.; Marom, H.; Fadeeva, L.; Golan, E.; Leibovitch, I.; Gutman, M.; Even-Sapir, E.; Chisin, R.; Gozin, M.; Mishani, E. Prostate Cancer PET Bioprobes: Synthesis of [18F]-Radiolabeled Hydroxyflutamide Derivatives. BioorMed Chem 2005, 13 (22), 6195–6205.10.1016/j.bmc.2005.06.033Search in Google Scholar PubMed

26. Guo, Q.-L.; Ding, L.; Wu, Z.-iu Effect of Baicalein on Experimental Prostatic Hyperplasia in Rats and Mice. Biol. Pharm. Bull. 2004, 27 (3), 333–337; https://doi.org/10.1248/bpb.27.333.Search in Google Scholar PubMed

27. Challan, S. B.; Khater, S. I.; Rashad, A. M. Preparation, Molecular Modeling and In-Vivo Evaluation of 99mTc-Oseltamivir as a Tumor Diagnostic Agent. Int. J. Radiat. Res. 2022, 20 (3), 635–642.Search in Google Scholar

28. Sanad, M. H.; Marzook, F.; Saleh, G. M.; Farag, A. B.; Talaat, H. M. Radiolabeling, Preparation, and Bioevaluation of 99mTc-Azathioprine as a Potential Targeting Agent for Solid Tumor Imaging. Radiochemistry 2019, 61 (4), 478–482‏; https://doi.org/10.1134/s106636221904012x.Search in Google Scholar

29. Ibrahim, I. T.; Abdelhalim, S. M.; Sanad, M. H.; Motaleb, M. A. Radioiodination of 3-Amino-2-Quinoxalinecarbonitrile 1, 4-Dioxide and its Biological Distribution in Erhlich Ascites Cancer Bearing Mice as a Preclinical Tumor Imaging Agent. Radiochemistry 2017, 59 (3), 301–306; https://doi.org/10.1134/s1066362217030146.Search in Google Scholar

30. Massoud, A.; Challan, S. B.; Maziad, N. Nabila Maziad : Characterization of Polyvinylpyrrolidone (PVP) with Technetium-99m and its Accumulation in Mice. Journal of Macromolecular Science, Part A. Pure Appl. Chem. 2021, 58 (6), 408–418. https://doi.org/10.1080/10601325.2021.1873070.Search in Google Scholar

31. Challan, S. B.; Marzook, F. A.; Massoud, A. Synthesis of Radioiodinated Carnosine for Hepatotoxicity Imaging Induced by Carbon Tetrachloride and its Biological Assessment in Rats. Radiochim. Acta 2020, 108, 397–408; https://doi.org/10.1515/ract-2019‏.10.1515/ract-2019-3162Search in Google Scholar

32. Challan, S. B.; Massoud, A. Radiolabeling of Graphene Oxide by Technetium-99m for Infection Imaging in Rats. J. Radioanal. Nucl. Chem. 2017, 314 (3), 2189–2199; https://doi.org/10.1007/s10967-017-5561-y.Search in Google Scholar

33. Camus, P.; Coudert, B.; Dathis, P.; Foucher, P.; Delchambre, J.; Dupront, A.; Jeannin, L. Louis Jeannin: Pharmacokinetics and Metabolism of Nilutamide in the Isolated Rat Lung. J. Pharmacol. Exp. Therapeut. 1991, 259 (3), 1247–1255.10.1016/S0022-3565(25)20520-1Search in Google Scholar

34. Claiborne, A. Catalase Activity. In CRC Handbook of Methods in Oxygen Radical Research; Greenwald, R. A., Ed.; CRC Press: Boca Raton, Vol. 8, 1985; pp. 283–184.Search in Google Scholar

35. Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358; https://doi.org/10.1016/0003-2697(79)90738-3.Search in Google Scholar PubMed

36. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275; https://doi.org/10.1016/s0021-9258(19)52451-6.Search in Google Scholar

37. Lateef, A.; Rehman, M. U.; Tahir, M.; Khan, R.; Khan, A. Q.; Qamar, W.; Sultana, S. Farnesol Protects against Intratracheally Instilled Cigarette Smoke Extract-Induced Histological Alterations and Oxidative Stress in the Prostate of Wistar Rats. Toxicol. Int. 2013, 20 (1), 35–42.10.4103/0971-6580.111563Search in Google Scholar PubMed PubMed Central

38. Sanad, M. H.; Challan, S. B.; Essam, H. M.; Massoud, A. Assessment of Radiolabeled L-Carnitine for Hepatotoxicity Imaging in Rats. Radiochemistry 2023, 65 (1), 101–113; https://doi.org/10.1134/s1066362223010150.Search in Google Scholar

39. Sanad, M. H.; Marzook, F. A.; Challan, S. B.; Essam, H. M.; Ayman, B. F. Radioiodination, and Biological Assessment of Olsalazine, as a Highly Selective Radiotracer for Ulcerative Colitis Imaging in Mice. Arab J. Nucl. Sci. Appl. 2023, 56, 10–120; https://doi.org/10.21608/ajnsa.2022.163538.1639.Search in Google Scholar

40. Alberto, R.; de la Torre, B.; García-Orea, M.; de Frutos, G. Coordination Chemistry of Technetium-99m Complexes with Antiandrogen Drugs: A Structural Insight. Appl. Radiat. Isot. 2018, 138, 14–20.Search in Google Scholar

41. Li, B.; Li, J.; Li, Y.; Zhang, J. Technetium-99m Radiopharmaceuticals for Prostate Cancer Imaging: Focusing on Antiandrogen Drugs. Curr. Radiopharm. 2018, 11 (3), 211–219.Search in Google Scholar

42. Müller, A.; Schibli, R.; Meier, C. Understanding the Oxidation State of Technetium-99m in Radiopharmaceuticals. Appl. Radiat. Isot. 2017, 127, 43–50.Search in Google Scholar

43. Liu, S.; Wang, X.; Zhang, L.; Li, J. Synthesis and Characterization of Technetium-99m Complexes with Antiandrogen Drugs for Prostate Cancer Imaging. Nucl. Med. Biol. 2017, 44 (11), 789–795.Search in Google Scholar

44. Schwochau, K. Technetium: Chemistry and Radiopharmaceutical Applications; Wiley-VCH, New York, 2008. 458 p.Search in Google Scholar

45. Miller, J.; Farrell, M. Transition Metal Complexes with Nitro Ligands. Coord. Chem. Rev. 2012, 256, 1223–1235.Search in Google Scholar

46. Wads, T. J.; Wong, J.; Weisman, G. R.; Anderson, C. J. Coordinating Radiometals with Peptides and Small Molecules for Imaging and Therapy. Chem. Rev. 2010, 110, 2858–2902; https://doi.org/10.1021/cr900325h.Search in Google Scholar PubMed PubMed Central

47. Müller, A.; Meier, C.; Schibli, R. Radiolabeling Chemistry of Technetium-99m: Understanding Reaction Mechanisms and Stability. Bioconjugate Chem. 2018, 29 (7), 2120–2133.Search in Google Scholar

48. Li, S.; Li, J.; Zhang, J. Radiolabeling Techniques for Technetium-99m Radiopharmaceuticals: Understanding Reaction Conditions. Curr. Radiopharm. 2017, 10 (1), 4–15.Search in Google Scholar

49. Li, X.; Li, J.; Zhang, J. Reduction of Pertechnetate by Stannous Ions: A pH-dependent Study. Inorg. Chem. 2016, 55 (1), 405–412.Search in Google Scholar

50. Müller, A.; Meier, C.; Schibli, R. Understanding the Chemistry of Technetium-99m Complexes with Antiandrogen Drugs. Coord. Chem. Rev. 2019, 378, 152–165.Search in Google Scholar

51. Li, B.; Li, J.; Zhang, J. Hydrolysis and Oxidation of Technetium(IV) Complexes: A Mechanistic Study. Inorg. Chem. 2018, 57 (12), 7201–7728.Search in Google Scholar

52. Alberto, R.; de la Torre, B.; García-Orea, M.; de Frutos, G. Understanding the Hydrolysis and Oxidation of Technetium(IV) Complexes. Inorg. Chem. 2017, 56 (17), 10473–10482.Search in Google Scholar

53. Challan, S. B.; Massoud, A. A.; El Tawoosy, M.; Motaleb, M. A.; Borei, I. H.; Ghanem, H. M. 99mTc-Labeled Erythromycin and Biological Evaluation in Mice for Detection of Bacterial Infection. Asian J. Phys. Chem. Sci. 2018, 5 (2), 1–13; https://doi.org/10.9734/ajopacs/2018/40170.Search in Google Scholar

54. Eyssa, H. M.; El Refay, H. M.; Sanad, M.H. Enhancement of the Thermal and Physicochemical Properties of Styrene Butadiene Rubber Composite Foam Using Nanoparticle Fillers and Electron Beam Radiation. Radiochimica Acta 2022, 110 (3), 205–218.10.1515/ract-2021-1091Search in Google Scholar

55. Sanad, M. H.; Eysaa, H. M.; Marzook, F. A.; Farag, A. B.; Elrefaei, A.; Fouzy, A. S. M.; Challan, S. B. Radiocomplexation, Biological Evaluation, and Characterization of [99mTc]-5-[(3-Carboxy-4-Hydroxyphenyl)diazenyl]-2-Hydroxybenzoic Acid as a Novel Agent for Imaging of Ulcerative Colitis in Mice. Radiochemistry 2023, 65, 378–386; https://doi.org/10.1134/s1066362223030141.Search in Google Scholar

56. Marzook, E. A.; Talaat, H. M.; Challan, S. B. Comparative Biological Evaluation of 99mTc-Timonacic Acid Prepared Using Different Reducing Agents as a Complex for Hepatobiliary Imaging. J. Radiochem. 2018, 60 (3), 309–315; https://doi.org/10.1134/s1066362218030141.Search in Google Scholar

57. Sanad, M.; Challan, S. Radioiodination and Biological Evaluation of Rabeprazole as a Peptic Ulcer Localization Radiotracer. Radiochemistry 2017, 59, 307–312; https://doi.org/10.1134/s1066362217030158.Search in Google Scholar

58. Sanad, M. H.; Marzook, F. A.; Rizvi, S. F. A.; Farag, A. B.; Fouzy, A. S. M. Radioiodinated Azilsartan as a New Highly Selective Radiotracer for Myocardial Perfusion Imaging. Radiochemistry 2021, 63 (4), 520–525; https://doi.org/10.1134/s1066362221040160.Search in Google Scholar

59. Schwochau, K. Technecium: Chemistry and Radiopharmaceuticals Application. Springer Science and Business Media; Springer-Verlag: Berlin, Heidelberg, 2000; pp 205–2010.10.1002/9783527613366Search in Google Scholar

60. Khoshnevisan, S. M.; Sadeghi, A. R.; Zolfaghari, B. Preparation and Quality Control of Technecium-99m Radiopharmaceuticals. Iran J Nucl Med 2017, 25, 71–88.Search in Google Scholar

61. Li, B.; Li, J.; Zhang, J. Stability of Technetium-99m Complexes under Physiological Conditions. Curr. Radiopharm. 2018, 11 (3), 220–228.Search in Google Scholar

62. Albert, B.; Johnson, A.; Lewis, J.; Raff, M.; Robert, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, 2002.Search in Google Scholar

63. Reece, J. B.; Urry, L. A.; Cain, M. L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Cambell Biology, 10th ed.; Pearson: Boston, MA, 2011.Search in Google Scholar

64. Liu, S.; Wang, X.; Zhang, L.; Li, J. Structural Analysis of Technetium-99m Complexes with Antiandrogen Drugs. Nucl. Med. Biol. 2017, 45 (1), 42–48.Search in Google Scholar

65. Sanad, M. H.; Challan, S. B.; Marzook, F. A.; Abd-Elhaliem, S. M.; Marzook, E. A. Radioiodination and Biological Evaluation of Cimetidine as a New Highly Selective Radiotracer for Peptic Ulcer Disorder Detection. Radiochim. Acta 2021, 109 (2), 109–117; https://doi.org/10.1515/ract-2020-0046.Search in Google Scholar

66. Sanad, M. H.; Marzook, E. A.; Challan, S. B. Radioiodination of Olmesartanmedoxomil and Biological Evaluation of the Product as a Tracer for Cardiac Imaging. Radiochim. Acta 2018, 106 (4), 329–336; https://doi.org/10.1515/ract-2017-2830.Search in Google Scholar

67. El, H. N.; Rubio, N.; Martinez-Villacampa, M.; Blanco, J. Combined Noninvasive Imaging and Luminometric Quantification of Luciferase Labeled Human Prostate Tumors and Metastases. Lab Investig. 2002, 82 (11), 1563–1571.10.1097/01.LAB.0000036877.36379.1FSearch in Google Scholar

68. Jiang, Z. K.; Sato, M.; Wei, L. H.; Kao, C.; Wu, L. Androgen-independent Molecularimaging Vectors to Detect Castration-Resistant and Metastatic Prostatecancer. Cancer Res. 2011, 71 (19), 6250–6260; https://doi.org/10.1158/0008-5472.can-11-1520.Search in Google Scholar PubMed PubMed Central

69. Park, H. S.; Seo, C. S.; Wijerathne, C. U.; Jeong, H. Y.; Moon, O. S.; Seo, Y. W.; Won, Y. S.; Son, H. Y.; Lim, J. H.; Kwun, H. J. Effect of Veratrum Maackii on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats. Biol. Pharm. Bull. 2019, 42 (1), 1–9; https://doi.org/10.1248/bpb.b18-0031.Search in Google Scholar

70. Polizio, A. H.; Peña, C. Effects of Angiotensin II Type 1 Receptor Blockade on the Oxidative Stress in Spontaneously Hypertensive Rat Tissues. Regul. Pept. 2005, 128, 1–5; https://doi.org/10.1016/j.regpep.2004.12.004.Search in Google Scholar PubMed

71. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275; https://doi.org/10.1016/s0021-9258(19)52451-6.Search in Google Scholar

72. Aebi, H. Catalase. In Methods of Enzymatic Analysis; Bergrenyer, H. U., Ed.; Academic Press: New York, 1974; pp. 673–684.10.1016/B978-0-12-091302-2.50032-3Search in Google Scholar

73. Misura, H. P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175; https://doi.org/10.1016/s0021-9258(19)45228-9.Search in Google Scholar

74. Paulis, G. Inflammatory Mechanisms and Oxidative Stress in Prostatitis: the Possible Role of Antioxidant Therapy. Res. Rep. Urol. 2018, 10, 75–87; https://doi.org/10.2147/RRU.S170400.Search in Google Scholar PubMed PubMed Central

75. Meagher, E. A.; FitzGerald, G. A. Indices of Lipid Peroxidation In Vivo: Strengths and Limitations. Free Radic. Biol. Med. 2000, 28 (12), 1745–1750; https://doi.org/10.1016/s0891-5849(00)00232-x.Search in Google Scholar PubMed

76. Merendino, R. A.; Salvo, F.; Saija, A.; Di Pasquale, G.; Tomaino, A.; Minciullo, P. L.; Fraccica, G.; Gangemi, S. Malondialdehyde in Benign Prostate Hypertrophy: a Useful Marker? Mediato. Inflamm. 2003, 12 (2), 127–128; https://doi.org/10.1080/0962935031000097745.Search in Google Scholar PubMed PubMed Central

77. Olinski, R.; Zastawny, T. H.; Foksinski, M.; Barecki, A.; Dizdaroglu, M. DNA Base Modifications and Antioxidant Enzyme Activities in Human Benign Prostatic Hyperplasia. Free Radic. Biol. Med. 1995, 18 (4), 807–813; https://doi.org/10.1016/0891-5849(94)00171-f.Search in Google Scholar PubMed

78. Pace, G.; Di Massimo, C.; De Amicis, D.; Corbacelli, C.; Di Renzo, L.; Vicentini, C.; Miano, L.; Tozzi Ciancarelli, M. G. Oxidative Stress in Benign Prostatic Hyperplasia and Prostate Cancer. Urol. Int. 2010, 85 (3), 328–333; https://doi.org/10.1159/00031506438.Search in Google Scholar

79. Ub, W. C.; Park, H. S.; Jeong, H. Y.; Song, J. W.; Moon, O. S.; Seo, Y. W.; Won, Y. S.; Son, H. Y.; Lim, J. H.; Yeon, S. H.; Kwun, H. J. Quisqualis Indica Improves Benign Prostatic Hyperplasia by Regulating Prostate Cell Proliferation and Apoptosis. Biol. Pharm. Bull. 2017, 40 (12), 2125–2133; https://doi.org/10.1248/bpb.b17-00468.Search in Google Scholar PubMed

80. Bancroft, J. D.; Stevens, A.; Turner, D. R. Theory and Practice of Histological Techniques, 4th ed.; Churchill: Livingston, New York, London, San Francisco, Tokyo, 2013.Search in Google Scholar

81. Sanad, M. H.; Rizvi, S. F. A.; Farag, A. B. Radiosynthesis and In Silico Bioevaluation of 131I-Sulfasalazine as a Highly Selective Radiotracer for Imaging of Ulcerative Colitis. Chem. Biol. Drug Des. 2021, 98 (5), 751–761; https://doi.org/10.1111/cbdd.13929.Search in Google Scholar PubMed

82. Bekheet, S.; El Tawoosy, M.; Massoud, A. A.; Borei, I. H.; Ghanem, H. M.; Motaleb, M. A. 99mTc-Labeled Ceftazidime and Biological Evaluation in Experimental Animals for Detection of Bacterial Infection. Am. J. Biochem. 2014, 4 (2), 15–24.Search in Google Scholar

83. Sanad, M. H.; Fouzy, A. S. M.; Sobhy, H. M.; Hathout, A. S.; Hussain, O. A. Tracing the Protective Activity of Lactobacillus Plantarum Using Technetium-99m-Labeled Zearalenone for Organ Toxicity. Int. J. Radiat. Biol. 2018, 94 (12), 1151–1158; https://doi.org/10.1080/09553002.2019.1524990.Search in Google Scholar PubMed

84. Motaleb, M. A.; El Tawoosy, M.; Mohamed, S. B.; Borei, I. H.; Ghanem, H. M.; Massoud, A. A. 99mTc-Labeled Teicoplanin and its Biological Evaluation in Experimental Animals for Detection of Bacterial Infection. J. Radiochem. 2014, 56 (5), 544–549.10.1134/S1066362214050154Search in Google Scholar

85. Sanad, M. H.; Marzook, F.; Saleh, G. M.; Farag, A. B.; Talaat, H. M. Radiolabeling, Preparation, and Bioevaluation of 99mTc-Azathioprine as a Potential Targeting Agent for Solid Tumor Imaging. Radiochemistry 2019, 61 (4), 478–482; https://doi.org/10.1134/s106636221904012x.Search in Google Scholar

86. Sanad, M. H.; Marzook, F. A.; Challan, S. B.; Essam, H. M.; Ayman, B. F. Radioiodination, and Biological Assessment of Olsalazine, as a Highly Selective Radiotracer for Ulcerative Colitis Imaging in Mice. Arab. J. Nucl. Sci. Applic. 2023, 56, 105–120; https://doi.org/10.21608/ajnsa.2022.163538.1639.Search in Google Scholar

87. Eyssa, H. M.; Mohamed, M.; El Refay, H. M.; Sanad, M. H. In-vitro Evaluation of Blood Bags Based on Poly (vinyl chloride)/Selenium Nanocomposites and Exposed to Electron Beam Irradiation. Egypt. J. Chem. 2024. https://doi.org/10.21608/ejchem.2024.303268.9984.Search in Google Scholar

88. El Mogy, S. A.; Eyssa, H. M.; Fathy, R. M.; Sanad, M. H. Dual Influence of Graphene Oxide/Clay and Electron Beam Radiation on the Structure, Mechanical, Thermal, and Antimicrobial Properties of Nitrile Butadiene Rubber. Compo. Mater. 2024, 58 (22), 2473–2486.10.1177/00219983241268898Search in Google Scholar

89. Sanad, M. H.; Eyssa, H. M.; Marzook, F. A.; Rizvi, S. F. A.; Farag, A. B.; Fouzy, A. S. M. Synthesis, Radiolabeling, and Biological Evaluation of 99mTc-Tricarbonyl Mesalamine as a Potential Ulcerative Colitis Imaging Agent. Radiochemistry 2021, 63 (6), 835–842.10.1134/S1066362221060163Search in Google Scholar

90. Sanad, M. H.; Eyssa, H. M.; Marzook, F. A.; Farag, A. B.; Rizvi, S. F. A.; Mandal, S. K. Optimized Chromatographic Separation and Bioevalution of Radioiodinated Ilaprazole as a New Labeled Compound for Peptic Ulcer Localization in Mice. Rdiochemistry 2021, 63 (6), 811–819.10.1134/S1066362221060138Search in Google Scholar

91. Sanad, M. H.; Fouzy, A. S. M.; Sobhy, H. M.; Hathout, A. S.; Hussain, O. A. Tracing the Protective Activity of Lactobacillus Plantarum Using Technetium-99m-labeled Zearalenone for Organtoxicity. Int. J. Radiat. Biol. 2018, 94, 1151–1158.10.1080/09553002.2019.1524990Search in Google Scholar PubMed

92. Moustapha, M. E.; Motaleb, M. A.; Sanad, M. H. Synthesis and Biological Evaluation of 99mTc-labetalol for β1-adrenoceptormediated Cardiac Imaging. J. Radioanal. Nucl. Chem. 2016, 309, 511–516.10.1007/s10967-015-4622-3Search in Google Scholar

93. Sanad, M. H.; Ibrahim, A. A.; Talaat, H. M. Synthesis, Bioevaluation and Gamma Scintigraphy of 99mTc-N-2-(Furylmethyliminodiacetic acid) Complex as a New Renal Radiopharmaceutical. J. Radioanal. Nucl. Chem. 2018, 315, 57–63.10.1007/s10967-017-5617-zSearch in Google Scholar

94. Sanad, M. H.; Marzook, E. A.; El-Kawy, O. A. Radiochemical and Biological Characterization of 99mTc-Oxiracetam as a Model for Brain Imaging. Radiochemistry 2017, 59, 624–629.10.1134/S1066362217060011XSearch in Google Scholar

95. Sanad, M. H.; Marzook, F. A.; Abd-Elhaliem, S. M. Radioiodination and Biological Evaluation of Irbesartan as a Tracer for Cardiac Imaging. Radiochim. Acta 2021, 109, 41–46.10.1515/ract-2020-0025Search in Google Scholar

96. Sanad, M. H.; Eyssa, H. M.; Gomaa, N. M.; Marzook, F. A.; Sabry, B. A. Radioiodinated Esomeprazole as a Model for Peptic Ulcer Localization. Radiochim. Acta 2021, 109, 711–716.10.1515/ract-2021-1056Search in Google Scholar

97. Sanad, M. H.; Eyssa, H. M.; Marzook, F. A.; Farag, A. B.; Rizvic, S. F. A.; Mandal, S. K.; Patnaik, S. S.; Fouzy, A. S. M.; Sabry, B. A.; Verpoort, F. Radiosynthesis and Biological Evaluation of 99mTc Nitrido-Levetiracetam as a Brain Imaging Agent. Radiochemistry. 2021, 63, 635–641.10.1134/S106636222105012XSearch in Google Scholar

98. Sanad, M. H.; Eyssa, H. M.; Marzook, F. A.; Farag, A. B.; Rizvic, S. F. A.; Mandal, S. K.; Patnaik, S. S.; Fouzy, A. S. M.; Sabry, B. A.; Verpoort, F. Comparative Bioevaluation of 99mTc Tricarbonyl and 99mTc-Sn(II) Lansoprazole as a Model for Peptic Ulcer Localization. Radiochemistry 2021, 63, 642–647.10.1134/S1066362221050131Search in Google Scholar

99. Sanad, M. H.; Saleh, G. M.; Marzook, F. A. Radioiodination and Biological Evaluation of Nizatidine as a New Highly Selective Radiotracer for Peptic Ulcer Disorder Detection. J. Label. Compd. Radiopharm. 2017, 60, 600–607.10.1002/jlcr.3541Search in Google Scholar PubMed

100. Sanad, M. H.; Salama, D. H.; Marzook, F. A. Radioiodinated Famotidine as a New Highly Selective Radiotracer for Peptic Ulcer Disorder Detection, Diagnostic Nuclear Imaging and Biodistribution. Radiochim. Acta 2017, 105, 389–398.10.1515/ract-2016-2683Search in Google Scholar

101. Sanad, M. H.; Ibrahim, I. T. Radiodiagnosis of Peptic Ulcer with Technetium-99m Pantoprazole. Radiochemistry 2013, 55, 341–345.10.1134/S106636221303017XSearch in Google Scholar

102. Sanad, M. H.; Ibrahim, I. T. Radiodiagnosis of Peptic Ulcer with Technetium-99m Labeled Rabeprazole. Radiochemistry 2015, 57, 422–430.10.1134/S1066362215040165Search in Google Scholar

103. Sanad, M. H.; Talaat, H. M. Radiodiagnosis of Peptic Ulcer with Technetium-99m-Labeled Esomeprazole. Radiochemistry 2017, 59, 396–401.10.1134/S1066362217040129Search in Google Scholar

104. Sanad, M. H.; Shweeta, H. A. Preparation and Bio-evaluation of 99mTc-Carbonyl Complex of Ursodeoxycholic Acid for Hepatobiliary Imaging. J. Mol. Imag. Dynamic 2015, 5, 1–6.Search in Google Scholar

105. Sanad, M. H.; Sallam, K. M.; Marzook, F. Labeling and Biological Evaluation of 99mTc-Tricarbonyl-Chenodiol for Hepatobiliary Imaging. Radiochemistry 2017, 59, 525–529.Search in Google Scholar

106. Motaleb, M. A.; Selim, A. A.; El-Tawoosy, M.; Sanad, M. H.; El-Hashash, M. A. Synthesis, Radiolabeling and Biological Distribution of a New Dioxime Derivative as a Potential Tumor Imaging Agent. J. Radioanal. Nucl. Chem. 2017, 314, 1517–1522.10.1007/s10967-017-5310-2Search in Google Scholar

107. Elgemeie, G. H.; Fathy, N. M.; Farag, A. B.; Yahab, I. B. Design and Synthesis of New Class Indeno[1,2-b]pyridine Thioglycosides. Nucleoside 2020, 107 (8), 1134–1149.10.1080/15257770.2020.1780436Search in Google Scholar PubMed

108. Farag, A. B.; Ewida, H. E.; Ahmed, M. S. Design, Synthesis, and Biological Evaluation of Novel Amide and Hydrazide Based Thioether Analogs Targeting Histone Deacteylase (HDAC) Enzymes. Eur. J. Med. Chem. 2018, 148, 73–85.10.1016/j.ejmech.2018.02.011Search in Google Scholar PubMed

109. Sanad, M. H.; Abelrahman, M. A.; Marzook, F. M. A. Radioiodination and Biological Evaluation of Levalbuterol as a New Selective Radiotracer: A β2-Adrenoceptor Agonist. Radiochim. Acta 2016, 104, 345–353.10.1515/ract-2015-2518Search in Google Scholar

110. Sanad, M. H.; Amin, A. M. Optimization of Labeling Conditions and Bioevalution of 99mTc-Meloxicam for Inflammation Imaging. Radiochemistry 2013, 55, 521–526.10.1134/S1066362213050123Search in Google Scholar

111. El-Kawy, O.; Sanad, M. H.; Marzook, F. 99mTc-Mesalamine as Potential Agent for Diagnosis and Monitoring of Ulcerative Colitis: Labelling, Characterisation and Biological Evaluation. J. Radioanal. Nucl. Chem. 2016, 308, 279–286.10.1007/s10967-015-4338-4Search in Google Scholar

112. Motaleb, M. A.; Sanad, M. H.; Selim, A. A.; El-Tawoosy, M.; El-Hashash, M. A. Synthesis, Characterization, Radiolabeling and Biodistribution of a Novel Cyclohexane Dioxime Derivative as a Potential Candidate for Tumor Imaging. Int. J. Radiat. Biol. 2018, 94, 590–596.10.1080/09553002.2018.1466067Search in Google Scholar PubMed

113. Sanad, H. M.; Ibrahim, A. A. Radioiodination, Diagnostic Nuclear Imaging and Bioevaluation of Olmesartan as a Tracer for Cardiac Imaging. Radiochim. Acta 2018, 106, 843–850.10.1515/ract-2018-2960Search in Google Scholar

114. Sanad, M. H.; Sakr, T. M.; Walaa, H. A. A.; Marzook, E. A. In Silico Study and Biological Evaluation of 99mTc-Tricabonyl Oxiracetam as a Selective Imaging Probe for AMPA Receptors. J. Radioanal. Nucl. Chem. 2017, 314, 1505–1515.10.1007/s10967-016-5120-ySearch in Google Scholar

115. Sanad, M. H.; Borai, E. H.; Fouzy, A. S. M. Chromatographic Separation and Utilization of Labeled99mTc-Valsartan for Cardiac Imaging. IOSR-JESTFT 2014, 8, 10–17.10.9790/2402-081221017Search in Google Scholar

116. Sanad, M. H.; Farag, A. B.; Dina, H. S. J. Radioiodination and Bioevaluation of Rolipram as a Tracer for Brain Imaging: In Silico Study, Molecular Modeling and Gamma Scintigraphy. J. Label Compd. Radiopharm. 2018, 61, 501–508.10.1002/jlcr.3614Search in Google Scholar PubMed

117. Sanad, M. H.; Alhussein, A. I. Preparation and Biological Evaluation of 99mTcN-Histamine as a Model for Brain Imaging: In Silico Study and Preclinical Evaluation. Radiochim. Acta 2018, 106, 229–238.10.1515/ract-2017-2804Search in Google Scholar

118. Sanad, M. H.; Farouk, N.; Fouzy, A. S. M. Radiocomplexation and Bioevaluation of 99mTc nitrido-Piracetam as a Model for Brain Imaging. Radiochim. Acta 2017, 105, 729–737.10.1515/ract-2016-2714Search in Google Scholar

119. Rizvi, S. F. A.; Zhang, H.; Mehmood, S.; Sanad, M. H. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a Novel Radiotracer to Diagnose Tumor Hypoxia. Translational Oncology 2020, 13, 100854.10.1016/j.tranon.2020.100854Search in Google Scholar PubMed PubMed Central

120. Sanad, M. H.; Saad, M. M.; Fouzy, A. S. M.; Marzook, F.; Ibrahim, I. T. Radiochemical and Biological Evaluation of 99mTc-Labeling of Phthalic Acid Using 99mTc-Tricabonyl and 99mTc-Sn (II) as a Model for Potential Hazards Imaging. J. Mol. Imag. Dynamic 2016, 6 (1). https://doi.org/10.4172/2155-9937.1000126.Search in Google Scholar

121. Sanad, M. H. Novel Radiochemical and Biological Characterization of 99mTc-histamine as a Model for Brain Imaging. J. Anal. Sci. Technol. 2014, 5, 23.10.1186/s40543-014-0023-4Search in Google Scholar

122. Borai, E. H.; Sanad, M. H.; Fouzy, A. S. M. Optimized Chromatographic Separation and Biological Evaluation of 99mTc-clarithromycin for Infective Inflammation Diagnosis. Radiochemistry 2016, 58, 84–91.10.1134/S1066362216010136Search in Google Scholar

123. Sanad, M. H.; Sallam, K. M.; Marzook, F. Labeling and Biological Evaluation of 99mTc-tricarbonyl-chenodiol for Hepatobiliary Imaging. Radiochemistry 2017, 59, 525–529.10.1134/S10663622170500149Search in Google Scholar

124. Sanad, M. H.; Emad, H. B. Performance Characteristics of Biodistribution of 99mTc-cefprozil for in-vivo Infection Imaging. J. Anal. Sci. Technol. 2014, 5, 32.10.1186/s40543-014-0032-3Search in Google Scholar

125. Sanad, M. H.; Farag, A. B.; Saleh, G. M. Radiosynthesis and Biological Evaluation of 188Re-5,10,15,20–Tetra (4-pyridyl)- 21H,23H-porphyrin Complex as a Tumor-targeting Agent. Radiochemistry 2019, 61, 347–351.10.1134/S106636221903010XSearch in Google Scholar

126. Motaleb, M. A.; Sanad, M. H.; Selim, A. A.; El-Tawoosy, M.; El-Hashash, M. A. Synthesis, Characterization, and Radiolabeling of Heterocyclic Bisphosphonate Derivative as a Potential Agent for Bone Imaging. Radiochemistry 2018, 60, 201–207.10.1134/S106636221802011XSearch in Google Scholar

127. Motaleb, M. A.; Adli, A. S. A.; El-Tawoosy, M.; Sanad, M. H.; AbdAllah, M. An Easy and Effective Method for Synthesis and Radiolabelling of Risedronate as a Model for Bone Imaging. J. Label Compd. Radiopharm. 2016, 59, 157–163.10.1002/jlcr.3384Search in Google Scholar PubMed

128. Sanad, M. H.; El-Bayoumy, A. S. A.; Alhussein, A. I. Comparative Biological Evaluation Between 99mTc(CO)3 and 99mTc-Sn(II) Complexes of Novel Quinoline Derivative: A Promising Infection Radiotracer. J. Radioanal. Nucl. Chem. 2017, 311, 1–14.10.1007/s10967-016-4945-8Search in Google Scholar

129. Sanad, M. H.; Emad, H. B. Comparative Biological Evaluation Between 99mTc- tricarbonyl and 99mTc-Sn(II) levosalbutamol as a β2- adrenoceptor Agonist. Radiochim. Acta 2015, 103, 879–891.10.1515/ract-2015-2428Search in Google Scholar

130. Sanad, M. H.; El-Tawoosy, M. Labeling of Ursodeoxycholic Acid with Technetium-99m for Hepatobiliary Imaging. J. Radioanal. Nucl. Chem. 2013, 298, 1105–1109.10.1007/s10967-013-2512-0Search in Google Scholar

131. Amin, A. M.; Sanad, M. H.; Abd-Elhaliem, S. M. Radiochemical and Biological Characterization of 99mTc-piracetam for Brain Imaging. Radiochemistry 2013, 55, 624–628.10.1134/S1066362213060118Search in Google Scholar

132. Sanad, M. H.; Talaat, H. M.; Fouzy, A. S. M. Radioiodination and Biological Evaluation of Mesalamine as a Tracer for Ulcerative Colitis Imaging. Radiochim. Acta 2018, 106, 393–400.10.1515/ract-2017-2840Search in Google Scholar

133. Sanad, M. H.; Sallam, K. M.; Salama, D. H. 99mTc-Oxiracetam as a Potential Agent for Diagnostic Imaging of Brain: Labeling, Characterization, and Biological Evaluation. Radiochemistry 2018, 60, 58–63.10.1134/S1066362218010101Search in Google Scholar

134. Sanad, M. H.; Hanan, T.; Ibrahim, I. T.; Gehan, S.; Abozaid, L. A. Radioiodinated Celiprolol as a New Highly Selective Radiotracer for β1-adrenoceptormyocardial Perfusion Imaging. Radiochim. Acta 2018, 106, 751–757.10.1515/ract-2017-2903Search in Google Scholar

135. Sanad, M. H.; Rizvi, F. A.; Kumar, R. R.; Ibrahim, A. A. Synthesis and Preliminary Biological Evaluation of 99mTc-Tricarbonyl Ropinirole as a Potential Brain Imaging Agent. Radiochemistry 2019, 61, 754–758.10.1134/S1066362219060195Search in Google Scholar

136. Sanad, M. H.; Ibrahim, I. T. Preparation and Biological Evaluation of 99mTc-Timonacic Acid as a New Complex for Hepatobiliary Imaging. Radiochemistry 2017, 59, 92–97.10.1134/S106636221701012XSearch in Google Scholar

137. Sanad, M. H.; Eyssa, H. M.; Marzook, F. A.; Abd-Elhaliem, S. M.; Abdou, F. Y. Radiosynthesis, Preparation, and Biological Evaluation of [99MTC]Tricarbonyl Pantoprazole for Stomach Ulcer Detection in Mice. Pharm. Chem. J. 2024, 58, 1–7.10.1007/s11094-024-03228-5Search in Google Scholar

138. Sanad, M. H.; Abd-Elhaliem, S. M.; Abdou, F. Y.; Soliman, A. M.; Farag, A. B. Radiolabeled Nefiracetam for Brain Imaging: Chromatographic Separation, Bio-Evaluation and Preclinical Assessment Studies. Pharm. Chem. J. 2024, 58, 1–9.10.1007/s11094-024-03206-xSearch in Google Scholar

139. Sanad, M. H.; Nermien, M. G.; Nermeen, M. E.; Ismail, T. I.; Ayman, M. Radioiodination of Balsalazide, Bioevaluation and Characterization as a Highly Selective Radiotracer for Imaging of Ulcerative Colitis in Mice. J. Label Compd. Radiopharm. 2022, 65, 71–82.10.1002/jlcr.3961Search in Google Scholar PubMed

140. Sanad, M. H., M. H.; Farag, A. B.; Sabry, A. B. A.; Marzook, F. A. Radioiodination of Zearalenone and Determination of Lactobacillus Plantarum Effect of on Zearalenone Organ Distribution: In Silico Study and Preclinical Evaluation. Toxicol. Rep. 2022, 9, 470–479.10.1016/j.toxrep.2022.02.003Search in Google Scholar PubMed PubMed Central

Received: 2024-05-09
Accepted: 2024-11-05
Published Online: 2024-12-03
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0303/pdf
Scroll to top button