The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
Abstract
To further improve the uranyl adsorption capacity and the selectivity adsorption ability of marine fungus ZZF51 from Zhanjiang sea area in China, its two new modification biosorbents (ZTBA/ZTDA) linked by the open-chain polyether terminal with two/one amidoxime unit(s) on mycelium were designed according to the synthesis process of etherification, sulfonylation, substitution, and amidoximation. By the reasonable characterization of Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), and scanning electron microscopy (SEM), it was confirmed that the above target materials were successfully prepared. The relevant experiments showed that both of ZTBA and ZTDA had not only the excellent uranium (VI) adsorption performance with the maximum adsorption capacity of 525.7 mg g−1 and 465.7 mg g−1, respectively, but also the better uranyl adsorption selectivity when in the simulated wastewater containing the various ions of UO2 2+, Th4+, Ba2+, Pb2+, Fe3+, Cu2+, and Ca2+. In addition, the selectivity analysis explored the longer polyether in the middle bridge and the more number of terminal amidoxime unit could synergistically improve their uranyl adsorption capacity and selectivity performance. Surely, the adsorption isotherm/kinetics models, the Gibbs free energy analysis, and the favourable reusability of the target materials were also discussed in this study in detail.
Funding source: The Natural Science Foundation of Hunan Province
Award Identifier / Grant number: No. 2020JJ4520
Funding source: The Research Learning and Innovative Experimental Program of Hunan
Award Identifier / Grant number: No. 2453, D202305082053299807
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: Ni Tan contributed to the study conception and design. Material preparation, experiments, data collection, and analysis were performed by Qiaorong Ye. The first draft of the manuscript was written by Qiaorong Ye. Chensi Zeng, Yanfang Gong, Chenxi Qi, and Xianghua Zeng commented on the previous versions of manuscript. All authors read and approved the final manuscript.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was financially supported by the Natural Science Foundation of Hunan Province (No. 2020JJ4520) and the Research Learning and Innovative Experimental Program of Hunan (No. 2453, D202305082053299807).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Ma, F. Q.; Dong, B. R.; Gui, Y. Y.; Cao, M.; Han, L.; Jiao, C. S.; Lv, H. T.; Hou, J. J.; Xue, Y. Adsorption of Low-Concentration Uranyl Ion by Amidoxime Polyacrylonitrile Fibers. Ind. Eng. Chem. Res. 2018, 57 (51), 17384–17393; https://doi.org/10.1021/acs.iecr.8b03509.Search in Google Scholar
2. Zhang, G.; Fan, H. M.; Zhou, R. Y.; Yin, W. Y.; Wang, R. B.; Yang, M.; Xue, Z. Y.; Yang, Y. S.; Yu, J. X. Decorating UiO-66-NH2 Crystals on Recyclable Fiber Bearing Polyamine and Amidoxime Bifunctional Groups via Cross-Linking Method with Good Stability for Highly Efficient Capture of U(VI) from Aqueous Solution. J. Hazard. Mater. 2022, 424, 127273; https://doi.org/10.1016/j.jhazmat.2021.127273.Search in Google Scholar PubMed
3. Xu, C.; Wang, J. J.; Yang, T. L.; Chen, X.; Liu, X. Y.; Ding, X. C. Adsorption of Uranium by Amidoximated Chitosan-Grafted Polyacrylonitrile Using Response Surface Methodology. Carbohydr. Polym. 2015, 121, 79–85; https://doi.org/10.1016/j.carbpol.2014.12.024.Search in Google Scholar PubMed
4. Bao, L.; Guo, F. Y.; Wang, H. R.; Steven, L. L.; John, H. B.; Heather, M. K. S.; Zhang, Q. K.; Nie, J.; Ahmet, C.; Saiful, M. I.; Shalom, D.; Zhang, N. M.; Han, F. X. Functionalization of Clay Surface for the Removal of Uranium from Water. Methods X 2021, 8, 101275; https://doi.org/10.1016/j.mex.2021.101275.Search in Google Scholar PubMed PubMed Central
5. Fan, Q. H.; Hao, L. M.; Wang, C. L.; Zheng, Z.; Liu, C. L.; Wu, W. S. The Adsorption Behavior of U(VI) on Granite. Environ. Sci. Processes Impacts 2014, 16, 534–541; https://doi.org/10.1039/c3em00324h.Search in Google Scholar PubMed
6. Ahmed, W.; Mehmood, S.; Qaswar, M.; Ali, S.; Khan, Z. H.; Ying, H.; Chen, D.Y.; Nunez-Delgado, A. Oxidized Biochar Obtained from Rice Straw as Adsorbent to Remove Uranium(VI) from Aqueous Solutions. J. Environ. Chem. Eng. 2021, 9, 105104; https://doi.org/10.1016/j.jece.2021.105104.Search in Google Scholar
7. Wang, L. L.; Fang, F.; Liu, J.; Beiyuan, J. Z.; Cao, J.L.; Liu, S. Y.; Ouyang, Q.; Huang, Y.L.; Wang, J.; Liu, Y. Y.; Song, G.; Chen, D. Y. U(VI) Adsorption by Green and Facilely Modified Ficus Microcarpa Aerial Roots: Behavior and Mechanism Investigation. Sci. Total Environ. 2022, 810, 151166; https://doi.org/10.1016/j.scitotenv.2021.151166.Search in Google Scholar PubMed
8. Li, N.; Yin, M. L.; Tsang, D. C. W.; Yang, S. T.; Liu, J.; Li, X.; Song, G.; Wang, J. Mechanisms of U(VI) Removal by Biochar Derived from Ficus Microcarpa Aerial Root: A Comparison between Raw and Modified Biochar. Sci. Total Environ. 2019, 697, 134115; https://doi.org/10.1016/j.scitotenv.2019.134115.Search in Google Scholar PubMed
9. De Araujo, L. G.; Vieira, L. C.; Sehn, C. R. L.; Da, S. E. A.; Watanabe, T.; De, P. F. R. V.; Marumo, J. T. Biosorption of Uranium from Aqueous Solutions by Azolla Sp. and Limnobium Laevigatum. Environ. Sci. Pollut. Res. 2022, 29, 45221–45229; https://doi.org/10.1007/s11356-022-19128-8.Search in Google Scholar PubMed
10. Embaby, M. A.; Haggag, E. A.; El-Sheikh, A. S.; Marrez, D. A. Biosorption of Uranium from Aqueous Solution by Green Microalga Chlorella Sorokiniana. Environ. Sci. Pollut. Res. 2022, 29, 58388–58404; https://doi.org/10.1007/s11356-022-19827-2.Search in Google Scholar PubMed PubMed Central
11. Srivastava, P. K.; Vaish, A.; Dwivedi, S.; Chakrabarty, D.; Singh, N.; Tripathi, R. D. Biological Removal of Arsenic Pollution by Soil Fungi. Sci. Total Environ. 2011, 409, 2430–2442; https://doi.org/10.1016/j.scitotenv.2011.03.002.Search in Google Scholar PubMed
12. Bayramoglu, G.; Bektas, S.; Arica, M.Y. Biosorption of Heavy Metal Ions on Immobilized White-Rot Fungus Trametes Versicolor. J. Hazard. Mater. B 2003, 101, 285–300; https://doi.org/10.1016/s0304-3894(03)00178-x.Search in Google Scholar PubMed
13. Martinez-Juarez, V. M.; Cardenas-Gonzalez, J. F.; Eugenia, T. B. M.; Acosta-Rodriguez, I. Biosorption of Mercury(II) from Aqueous Solutions onto Fungal Biomass. Bioinorg. Chem. Appl. 2012, 156190; https://doi.org/10.1155/2012/156190.Search in Google Scholar PubMed PubMed Central
14. Gao, Y. Y.; Qin, Y. B.; Zhang, M.; Xu, L. H.; Yang, Z. C.; Xu, Z. L.; Wang, Y.; Men, M. Revealing the Role of Oxygen-Containing Functional Groups on Graphene Oxide for the Highly Efficient Adsorption of Thorium Ions. J. Hazard. Mater. 2022, 436, 129128; https://doi.org/10.1016/j.jhazmat.2022.129128.Search in Google Scholar PubMed
15. Feng, Y. Z.; Qiu, X. Y.; Tao, Z. L.; Zheng, Y. E.; Song, J. Y.; Dong, Y. Q.; Liang, J. J.; Li, P.; Fan, Q. H. Oxygen-Containing Groups in Cellulose and Lignin Biochar: Their Roles in U(VI) Adsorption. Environ. Sci. Pollut. Res. 2022, 29, 76728–76738; https://doi.org/10.1007/s11356-022-20981-w.Search in Google Scholar PubMed
16. Luan, X. F.; Wang, C. Z.; Wu, Q. Y.; Lan, J. H.; Chai, Z. F.; Xia, L. S.; Shi, W. Q. Theoretical Insights into Selective Extraction of Uranium from Seawater with Tetradentate N,O-Mixed Donor Ligands. Dalton Trans. 2022, 51, 11381–11389; https://doi.org/10.1039/d2dt01273a.Search in Google Scholar PubMed
17. Zeng, X. C.; Zhang, G. H.; Zhu, J. F. Selective Adsorption of Heavy Metals from Water by a Hyper-Branched Magnetic Composite Material: Characterization, Performance, and Mechanism. J. Environ. Manage. 2022, 314, 114979; https://doi.org/10.1016/j.jenvman.2022.114979.Search in Google Scholar PubMed
18. Shozo, Y.; Kazutomo, T.; Mitsuo, O. Matal-ion Complexation of Poly(oxyethylene) Derivatives. III Complexation in Aprotic Solvent and Isolation of their Solid Complexes. Bull. Chem. Soc. Jpn. 1978, 51 (12), 3111–3114.10.1246/bcsj.51.3111Search in Google Scholar
19. Paola, H.; Ana, R. H.; Francisco, G.; Said, H.; Bruno, M. H. Gas-Phase Complexes of Cyclic and Linear Polyethers with Alkali Cations. Phys. Chem. Chem. Phys. 2010, 12, 13752–13758; https://doi.org/10.1039/c0cp00595a.Search in Google Scholar PubMed
20. Di, D. Synthesis of Open-Chain Crown Ether Like Diphosphate and their Application in Supercritical Carbon Dioxide. Dissertation; University of Zhejiang, Hangzhou, 2014.Search in Google Scholar
21. Daniel, A.; Ernö, P.; Wilhelm, S. Darstellung von neutralen, lipophilen Liganden für Membranelektroden mit Selektivität für Erdalkali-Ionen. Helv. Chim. Acta 1973, 56, 1780–1785; https://doi.org/10.1002/hlca.19730560538.Search in Google Scholar
22. Fritz, V.; Edwin, W. Multidentate Acyclic Neutral Ligands and Their Complexation. Angew. Chem.- Int. Ed. 1979, 18, 753–758; https://doi.org/10.1002/anie.197907531.Search in Google Scholar
23. Tang, N.; Liang, J.; Niu, C. G.; Wang, H.; Luo, Y.; Xing, W. L.; Ye, S. J.; Liang, C.; Guo, H.; Guo, J. Y.; Zhang, Y. F.; Zeng, G. M. Amidoxime-based Materials for Uranium Recovery and Removal. J. Mater. Chem. A 2020, 8, 7588–7625; https://doi.org/10.1039/c9ta14082d.Search in Google Scholar
24. Bolotin, D. S.; Bokach, N. A.; Kukushkin, V. Y. Coordination Chemistry and Metal-Involving Reactions of Amidoximes. Relevance to the Chemistry of Oximes and Oxime Ligands. Coord. Chem. Rev. 2015, 313, 62–93; https://doi.org/10.1016/j.ccr.2015.10.005.Search in Google Scholar
25. Wang, Y.; Lin, Z. W.; Zhu, J. H.; Liu, J.Y.; Yu, J.; Liu, Q.; Chen, R. R.; Li, Y.; Wang, J. Co-construction of Molecular-Level Uranyl-specific “Nano-holes” with Amidoxime and Amino Groups on Natural Bamboo Strips for Specifically Capturing Uranium from Seawater. J. Hazard. Mater. 2022, 437, 129407; https://doi.org/10.1016/j.jhazmat.2022.129407.Search in Google Scholar PubMed
26. Yang, H. B.; Tan, N.; Zhang, H. P.; Deng, C. G.; Sun, M.; Lin, Y. C.; She, Z. G. Adsorption of Uranium(Ⅵ) by the Mangrove Endophytic Fungus Fusarium Sp. #ZZF51 from the South china Sea. J. Nucl. Radiochem. 2011, 33, 358–362.10.1007/s10967-011-1552-6Search in Google Scholar PubMed PubMed Central
27. George, W. K.; Manju, V.; Rajender, S. V.; Prem, C. S.; Furn, F. K. J. The Tosylation of Alcohols. J. Org. Chem. 1986, 51 (12), 2386–2388; https://doi.org/10.1021/jo00362a044.Search in Google Scholar
28. Wen, J.; Li, Q. Y.; Li, H.; Chen, M.; Hu, S.; Cheng, H. M. Nano-TiO2 Imparts Amidoximated Wool Fibers with Good Antibacterial Activity and Adsorption Capacity for Uranium (VI) Recovery. Ind. Eng. Chem. Res. 2018, 57 (6), 1826–1833; https://doi.org/10.1021/acs.iecr.7b04380.Search in Google Scholar
29. Wongjaikham, W.; Wongsawaeng, D.; Hosemann, P.; Kanokworakan, C.; Ratnitsai, V. Enhancement of Uranium Recovery from Seawater Using Amidoximated Polymer Gel Synthesized from Radiation-Polymerization and Crosslinking of Acrylonitrile and Methacrylic Acid Monomers. J. Environ. Chem. Eng. 2018, 6 (2), 2768–2777; https://doi.org/10.1016/j.jece.2018.04.016.Search in Google Scholar
30. Savvin, S. B. Analytical Use of Arsenazo III: Determination of Thorium, Zirconium, Uranium and Rare Earth Elements. Talanta 1961, 8 (9), 673–685; https://doi.org/10.1016/0039-9140(61)80164-1.Search in Google Scholar
31. Huang, D. W.; Zhu, X. Q. Study on Catalytic Spectrophotometric Determination of Trace Iron (Ⅲ) with Fe(Ⅲ)-Hydrogen Peroxide-Arsenazo Ⅲ System. Metall. Anal. 2004, 24 (5). (in Chinese).Search in Google Scholar
32. Luo, C. N.; Yang, Y.; Wei, Q.; Lyao, L. Spectrophotometric Determinafion of Trace Amount Molybdenum by Catalytic Kinetic. J. Anal. Sci. 1997, 13 (3). (in Chinese).Search in Google Scholar
33. Liang, Y. H.; Wang, C. C.; Chen, C. Y. Synthesis and Characterization of a New Network Polymer Electrolyte Containing Polyether in the Main Chains and Side Chains. Eur. Polym. J. 2008, 44, 2376–2384; https://doi.org/10.1016/j.eurpolymj.2008.05.006.Search in Google Scholar
34. Shi, S.; Wu, R.; Meng, S. L.; Xiao, G. P.; Ma, C. X.; Yang, G. C.; Wang, N. High-strength and Anti-biofouling Nanofiber Membranes for Enhanced Uranium Recovery from Seawater and Wastewater. J. Hazard. Mater. 2022, 436, 128983; https://doi.org/10.1016/j.jhazmat.2022.128983.Search in Google Scholar PubMed
35. Wang, H. T.; Feng, L. J.; He, M.; Zhang, Y. Z.; Guo, D.; Zeng, Q. Q.; Yang, L. T.; Zhang, L. X. Preparation and Properties of Sodium Polyoxyethylene Ethernaphthalene Sulfonate with Different Chain-Length Alkyl Groups. Petroleum Science Bulletin 2020, 4, 587–596. (in Chinese).Search in Google Scholar
36. Nakanishi, K; Solomon, P. H Infrared Absorption Spectroscopy; Holden Day: San Francisco, 1962.Search in Google Scholar
37. Das, S.; Pandey, A. K.; Athawale, A. A.; Manchanda, V. K. Exchanges of Uranium(VI) Species in Amidoxime-Functionalized Sorbents. J. Phys. Chem. B 2009, 113, 6328–6335; https://doi.org/10.1021/jp8097928.Search in Google Scholar PubMed
38. Yue, Y. F.; Zhang, C. X.; Tang, Q.; Mayes, R. T.; Liao, W.; Liao, C.; Tsouris, C.; Stankovich, J. J.; Chen, J. H.; Hensley, D. K.; Abney, C. W.; Jiang, D.; Brown, S.; Dai, S. A Poly(acrylonitrile)-Functionalized Porous Aromaticframework Synthesized by Atom-Transfer Radical Polymerization for the Extraction of Uranium from Seawater. Ind. Eng. Chem. Res. 2015, 55 (15), 4125–4129; https://doi.org/10.1021/acs.iecr.5b03372.Search in Google Scholar
39. Mei, D. C.; Liu, L. J.; Li, H.; Wang, Y. D.; Ma, F. Q.; Zhang, C. H.; Dong, H. X. Efficient Uranium Adsorbent with Antimicrobial Function Constructed by Grafting Amidoxime Groups on ZIF-90 via Malononitrile Intermediate. J. Hazard. Mater. 2022, 422, 126872; https://doi.org/10.1016/j.jhazmat.2021.126872.Search in Google Scholar PubMed
40. Gao, Q.; Tao, D. W.; Qi, Z. B.; Liu, Y. F.; Guo, J.; Yu, Y. Amidoxime Functionalized PVDF-Based Chelating Membranes Enable Synchronous Elimination of Heavy Metals and Organic Contaminants from Wastewater. J. Environ. Manage. 2022, 318, 115643; https://doi.org/10.1016/j.jenvman.2022.115643.Search in Google Scholar PubMed
41. He, S. Y.; Hu, W. R.; Liu, Y. L.; Xie, Y.; Zhou, H.; Wang, X. Q.; Chen, J.; Zhang, Y. K. Mechanism of Efficient Remediation of U(VI) Using Biogenic CMC-FeS Complex Produced by Sulfate-Reducing Bacteria. J. Hazard. Mater. 2021, 420, 126645; https://doi.org/10.1016/j.jhazmat.2021.126645.Search in Google Scholar PubMed
42. Yu, J. Q.; Zhang, H. S.; Liu, Q.; Zhu, J. H.; Yu, J.; Sun, G. H.; Li, R. M.; Wang, J. A High-Flux Antibacterial Poly(amidoxime)-Polyacrylonitrile Blend Membrane for Highly Efficient Uranium Extraction from Seawater. J. Hazard. Mater. 2022, 440, 129735; https://doi.org/10.1016/j.jhazmat.2022.129735.Search in Google Scholar PubMed
43. Zhang, X.; Ouyang, B.; Hou, G. S.; Chang, P. P.; Shao, D. D. Application of Poly(amidoxime)/scrap Facemasks in Extraction of Uranium from Seawater: from Dangerous Waste to Nuclear Power. J. Radioanal. Nucl. Chem. 2022, 331, 3475–3484; https://doi.org/10.1007/s10967-022-08364-4.Search in Google Scholar PubMed PubMed Central
44. Dai, Z. R.; Zhang, H.; Sui, Y.; Ding, D. X.; Hu, N.; Li, L.; Wang, Y. D. Synthesis and Characterization of a Novel Core–Shell Magnetic Nanocomposite via Surface-Initiated RAFT Polymerization for Highly Efficient and Selective Adsorption of Uranium(VI). J. Radioanal. Nucl. Chem. 2018, 316, 369–382; https://doi.org/10.1007/s10967-018-5720-9.Search in Google Scholar
45. Yu, S. J.; Wang, X. X.; Chen, Z. S.; Wang, J.; Wang, S. H.; Hayat, T.; Wang, X. K. Layered Double Hydroxide Intercalated with Aromatic Acid Anions for the Efficient Capture of Aniline from Aqueous Solution. J. Hazard. Mater. 2017, 321, 111–120; https://doi.org/10.1016/j.jhazmat.2016.09.009.Search in Google Scholar PubMed
46. Ji, K. J.; Wang, J. Q.; Chen, C. F. An XPS Study of Polyester-Polyether Multiblock Copolymers. J. Beijing Inst. Technol. 1990, 10 (1).Search in Google Scholar
47. Liao, J.; Ding, L.; Zhang, Y.; Zhu, W. K. Efficient Removal of Uranium Fromwastewater Using Pig Manure Biochar: Understanding Adsorption and Binding Mechanisms. J. Hazard. Mater. 2022, 423, 127190; https://doi.org/10.1016/j.jhazmat.2021.127190.Search in Google Scholar PubMed
48. Wang, B. D.; Zhou, Y. X.; Li, L.; Wang, Y. Preparation of Amidoxime-Functionalized Mesoporous Silica Nanospheres (Ami-MSN) from Coal Flfly Ash for the Removal of U(VI). Sci. Total Environ. 2018, 626, 219–227; https://doi.org/10.1016/j.scitotenv.2018.01.057.Search in Google Scholar PubMed
49. Monier, M.; Abdel-Latif, D. A.; Mohammed, H. A. Synthesis and Characterization of Uranyl Ion-Imprinted Microspheres Based on Amidoximated Modifified Alginate. Int. J. Biol. Macromol. 2015, 75, 354–363; https://doi.org/10.1016/j.ijbiomac.2014.12.001.Search in Google Scholar PubMed
50. Lu, X.; He, S. N.; Zhang, D. X.; Reda, A. T.; Liu, C.; Feng, J.; Yang, Z. Synthesis and Characterization of Amidoxime Modified Calix[8]arene for Adsorption of U(VI) in Low Concentration Uranium Solution. RSC Adv. 2016, 6, 101087–101097; https://doi.org/10.1039/c6ra23764a.Search in Google Scholar
51. Yu, P.; Zhu, X. X.; Gao, J. D.; Wu, S. Y.; Tang, L.; Xiong, S. B.; Wang, L. M.; Zou, G. Preparation of Dendritic-Linear Polyether-Modified Silica Sol and its Application in Coatings. J. Coat. Technol. Res. 2016, 13 (6), 963–971; https://doi.org/10.1007/s11998-016-9807-3.Search in Google Scholar
52. Liu, Y. Q.; Chen, C.; He, L. Q.; Hu, L.; Ding, Z.; Liao, S.; Tan, N. Preparation of a Fungal-Modified Material Linked by the Monoamidoxime Terminal Open-Chain Polyether and its Uranyl Adsorption. Ind. Eng. Chem. Res. 2021, 60, 4705–4713; https://doi.org/10.1021/acs.iecr.0c05213.Search in Google Scholar
53. Tan, N.; Ye, Q. R.; Liu, Y. Q.; Yang, Y. C.; Ding, Z.; Liu, L. J.; Wang, D. D.; Zeng, C. S. A Fungal-Modified Material with High Uranium (VI) Adsorption Capacity and Strong Anti-interference Ability. Environ. Sci. Pollut. Res. 2023, 30, 26752–26763; https://doi.org/10.1007/s11356-022-24092-4.Search in Google Scholar PubMed
54. Cheng, Y. X.; Li, F. Z.; Liu, N.; Lan, T.; Yang, Y. Y.; Zhang, T.; Liao, J. L.; Qing, R. W. A Novel Freeze-Dried Natural Microalga Powder for Highly Efficient Removal of Uranium from Wastewater. Chemosphere 2021, 282, 131084; https://doi.org/10.1016/j.chemosphere.2021.131084.Search in Google Scholar PubMed
55. He, D. X.; Tan, N.; Luo, X. M.; Yang, X. C.; Ji, K.; Han, J. W.; Chen, C.; Liu, Y. Q. Preparation, Uranium (VI) Absorption and Reuseability of Marine Fungus Mycelium Modified by the Bis-Amidoxime-Based Groups. Radiochim. Acta 2019, 108, 37–49; https://doi.org/10.1515/ract-2018-3063.Search in Google Scholar
56. Han, J. W.; Hu, L.; He, L. Q.; Ji, K.; Liu, Y. Q.; Chen, C.; Luo, X. M.; Tan, N. Preparation and Uranium(VI) Biosorption for Tri-amidoxime Modified Marine Fungus Material. Environ. Sci. Pollut. Res. 2020, 27, 37313–37323; https://doi.org/10.1007/s11356-020-07746-z.Search in Google Scholar PubMed
57. Meng, P. P. Application of Origin Self Defined Function Fitting to Analysis of Soil Adsorption Isotherm Model. Exp. Technol.Manage. 2017, 34, 62–68. (in Chinese).Search in Google Scholar
58. Yu, H. Z. Teaching Reference Book of Communication Electronic Circuit; Tsinghua University Press: Beijing, 2005.Search in Google Scholar
59. Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon. Chem. Eng. J. 2009, 148, 480–487; https://doi.org/10.1016/j.cej.2008.09.027.Search in Google Scholar
60. Khamizov, R. K. A Pseudo-second Order Kinetic Equation for Sorption Processes. Russ. J. Phys. Chem. A 2020, 94 (1), 125–130; https://doi.org/10.1134/s0036024420010148.Search in Google Scholar
61. CHien, S. H.; Clayton, W. R. Application of Elovich Equation to the Kinetic of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268; https://doi.org/10.2136/sssaj1980.03615995004400020013x.Search in Google Scholar
62. Urano, K.; Tachikawa, H. Process Development for Removal and Recovery of Phosphorus from Wastewater by New Adsorbent 2 Adsorption Rates and Breakthrough Curves. Ind. Eng. Chem. Res. 1991, 30, 1897–1899; https://doi.org/10.1021/ie00056a033.Search in Google Scholar
63. Zhou, Y. Z.; Li, Y.; Wang, X. L.; Liu, D. X.; Liu, D. B. Preparation of Amidoxime Functionalized Titanate Nanosheets for Efficient Extraction of Uranium from Aqueous Solution. J. Solid State Chem. 2020, 290, 121562; https://doi.org/10.1016/j.jssc.2020.121562.Search in Google Scholar
64. Nollet, H.; Roels, M.; Lutgen, P.; Vander, M. P.; Verstraete, W. Removal of PCBs from Wastewater Using Fly Ash. Chemosphere 2003, 53, 655–665; https://doi.org/10.1016/s0045-6535(03)00517-4.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0296).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses