A novel method for evaluating the depletion of veterinary pharmaceuticals using radioisotopes
-
Yousef Fazaeli
, Gholamreza Shahhoseini
Abstract
Antimicrobial resistance (AMR) as one of the world’s most pressing public health problems needs immediate attention, because it has the ability to affect the human healthcare, agriculture, and veterinary industries. Despite warnings about overuse and their implications, antimicrobials are overprescribed worldwide for humans and animals, which leads to the promotion of resistant microorganisms such as bacteria. Food is a medium for exposure to or transfer of residues of the drugs and can contribute to the burden of the pharmaceuticals associated with development of AMR. Studying on residues of veterinary drugs in foods is essential in the fight against AMR. Herein, we introduce a new method for visualizing the residues of a veterinary drug in animal matrices using radionuclides, called “Depletion Imaging”. Amoxicillin was chosen to be the first antimicrobial for this study. The drug was labeled with [62Zn/65Zn] ZnCl2. Radiolabelled amoxicillin and non-labeled amoxicillin were administrated to rainbow trout fish simultaneously. To enable visualization of the remaining residues of amoxicillin in fish, In-vivo positron emission tomography (PET) imaging was done at different intervals from 30 min to 21 days after administration. Evaluation of the amount of radiolabelled amoxicillin in fish was done using a high purity germanium (HPGe) nuclear detector, and enzyme linked immunosorbent assay (ELISA) technique was used for the non-labeled drug. In this study, a comprehensive method for in-house production of zinc radioisotopes was also included. The results showed that depletion imaging and biodistribution study based on gamma spectroscopy of radionuclides in tissues, is a precise method for accurate understanding of the drug’s distribution, metabolic and excretory profile.
Acknowledgment
This study was supported in part by the joint FAO/IAEA division (Centre) of Nuclear Techniques in Food & Agriculture, and Coordinated Research Project (CRP): D52043 entitled: “Depletion of Veterinary Pharmaceuticals and Radiometric Analysis of their Residues in Animal Matrices”.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review. The animal experiments were performed under guidelines on the use of living animals in scientific investigations.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Prestinaci, F., Pezzotti, P., Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318; https://doi.org/10.1179/2047773215y.0000000030.Suche in Google Scholar
2. Samanta, I., Bandyopadhyay, S. Chapter 2 – use of antimicrobials and antibiotics in livestock, poultry, fishery and agriculture. In Antimicrobial Resistance in Agriculture; Samanta, I., Bandyopadhyay, S., Eds.; Academic Press: Cambridge, United States, 2020; pp. 7–18.10.1016/B978-0-12-815770-1.00002-XSuche in Google Scholar
3. Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., Zhu, N. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924; https://doi.org/10.1021/acs.accounts.8b00643.Suche in Google Scholar PubMed
4. Carrique-Mas, J. J., Trung, N. V., Hoa, N. T., Mai, H. H., Thanh, T. H., Campbell, J. I., Wagenaar, J. A., Hardon, A., Hieu, T. Q., Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Publ. Health 2015, 62, 70–78; https://doi.org/10.1111/zph.12165.Suche in Google Scholar PubMed
5. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654; https://doi.org/10.1073/pnas.1503141112.Suche in Google Scholar PubMed PubMed Central
6. Samtiya, M., Matthews, K. R., Dhewa, T., Puniya, A. K. Antimicrobial resistance in the food chain: trends, mechanisms, pathways, and possible regulation strategies. Foods 2022, 11, 2966; https://doi.org/10.3390/foods11192966.Suche in Google Scholar PubMed PubMed Central
7. Vital, P. G., Zara, E., Paraoan, C., Dimasupil, M., Abello, J., Santos, I., Rivera, W. Antibiotic resistance and extended-spectrum beta-lactamase production of Escherichia coli isolated from irrigation waters in selected urban farms in Metro Manila, Philippines. Water 2018, 10, 548; https://doi.org/10.3390/w10050548.Suche in Google Scholar
8. Price Lance, B., Graham, J. P., Lackey, L. G., Roess, A., Vailes, R., Silbergeld, E. Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. Poultry workers. Environ. Health Perspect. 2007, 115, 1738–1742; https://doi.org/10.1289/ehp.10191.Suche in Google Scholar PubMed PubMed Central
9. Da Costa, P. M., Loureiro, L., Matos, A. J. F. Transfer of multidrug-resistant bacteria between intermingled ecological Niches: the interface between humans, animals and the environment. Int. J. Environ. Res. Publ. Health 2013, 10, 278–294; https://doi.org/10.3390/ijerph10010278.Suche in Google Scholar PubMed PubMed Central
10. Chang, Q., Wang, W., Regev‐Yochay, G., Lipsitch, M., Hanage, W. P. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol. Appl. 2015, 8, 240–247; https://doi.org/10.1111/eva.12185.Suche in Google Scholar PubMed PubMed Central
11. Depoorter, P., Persoons, D., Uyttendaele, M., Butaye, P., De Zutter, L., Dierick, K., Herman, L., Imberechts, H., Van Huffel, X., Dewulf, J. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium. Int. J. Food Microbiol. 2012, 159, 30–38; https://doi.org/10.1016/j.ijfoodmicro.2012.07.026.Suche in Google Scholar PubMed
12. Rosenquist, H., Smidt, L., Andersen, S. R., Jensen, G. B., Wilcks, A. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 2005, 250, 129–136; https://doi.org/10.1016/j.femsle.2005.06.054.Suche in Google Scholar PubMed
13. Marshall, B. M., Levy, S. B. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733; https://doi.org/10.1128/cmr.00002-11.Suche in Google Scholar
14. Coleman, B. L., Salvadori, M. I., McGeer, A. J., Sibley, K. A., Neumann, N. F., Bondy, S. J., Gutmanis, I. A., McEwen, S. A., Lavoie, M., Strong, D., Johnson, I., Jamieson, F. B., Louie, M. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol. Infect. 2011, 140, 633–642; https://doi.org/10.1017/s0950268811001038.Suche in Google Scholar
15. Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005, 365, 579–587; https://doi.org/10.1016/s0140-6736(05)17907-0.Suche in Google Scholar
16. de Mesquita Souza Saraiva, M., Lim, K., do Monte, D. F. M., Givisiez, P. E. N., Alves, L. B. R., de Freitas Neto, O. C., Kariuki, S., Júnior, A. B., de Oliveira, C. J. B., Gebreyes, W. A. Antimicrobial resistance in the globalized food chain: a one health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 1–22; https://doi.org/10.1007/s42770-021-00635-8.Suche in Google Scholar PubMed PubMed Central
17. Apreja, M., Sharma, A., Balda, S., Kataria, K., Capalash, N., Sharma, P. Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation. Environ. Sci. Pollut. Res. 2022, 29, 3355–3371; https://doi.org/10.1007/s11356-021-17374-w.Suche in Google Scholar PubMed
18. Lundborg, C. S., Tamhankar, A. J. Antibiotic residues in the environment of South East Asia. BMJ 2017, 358, j2440; https://doi.org/10.1136/bmj.j2440.Suche in Google Scholar PubMed PubMed Central
19. Burch, D. G. S., Sperling, D. Amoxicillin – current use in swine medicine. J. Vet. Pharmacol. Therapeut. 2018, 41, 356–368; https://doi.org/10.1111/jvp.12482.Suche in Google Scholar PubMed
20. Arsène, M. M. J., Davares, A. K. L., Viktorovna, P. I., Andreevna, S. L., Sarra, S., Khelifi, I., Sergueïevna, D. M. The public health issue of antibiotic residues in food and feed: causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671; https://doi.org/10.14202/vetworld.2022.662-671.Suche in Google Scholar PubMed PubMed Central
21. Kirchhelle, C. Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96; https://doi.org/10.1057/s41599-018-0152-2.Suche in Google Scholar
22. Commission Regulation (EU) N° 2377/90 of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in food stuffs of animal origin (Off. J. Eur. Commun. 1990 N° L224), as amended by Council Regulation N° 2593/99 (Off. J. Eur. Commun. 1999 N0 L315).Suche in Google Scholar
23. Doyle, M. E. Veterinary drug residues in processed meats – potential health risk. In FRI Briefings; Food Research Institute, University of Wisconsin: Madison, 2006; pp. 1–8.Suche in Google Scholar
24. Lindemayr, H., Knobler, R., Kraft, D., Baumgartner, W. Challenge of penicillin-allergic volunteers with penicillin-contaminated meat. Allergy 1981, 36, 471–478; https://doi.org/10.1111/j.1398-9995.1981.tb01858.x.Suche in Google Scholar PubMed
25. Woodward, K. N. Hypersensitivity in humans and exposure to veterinary drugs. Vet. Hum. Toxicol. 1991, 33, 168–172.Suche in Google Scholar
26. Kanny, G., Puygrenier, J., Beaudoin, E., Moneret-Vautrin, D. A. Alimentary anaphylactic shock: implication of penicillin residues. Allerg. Immunol. (Paris) 1994, 26, 181–183.Suche in Google Scholar
27. Sundlof, S. F., Cooper, J. Human health risks associated with drug residues in animal-derived foods. In Veterinary Drug Residues; American Chemical Society, 1996; pp. 5–17.10.1021/bk-1996-0636.ch002Suche in Google Scholar
28. Raison-Peyron, N., Messaad, D., Bousquet, J., Demoly, P. Anaphylaxis to beef in penicillin-allergic patient. Allergy 2001, 56, 796–797; https://doi.org/10.1034/j.1398-9995.2001.056008796.x.Suche in Google Scholar PubMed
29. Becker, M., Zittlau, E., Petz, M. Residue analysis of 15 penicillins and cephalosporins in bovine muscle, kidney and milk by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2004, 520, 19–32; https://doi.org/10.1016/j.aca.2004.04.022.Suche in Google Scholar
30. Bogialli, S., Capitolino, V., Curini, R., Di Corcia, A., Nazzari, M., Sergi, M. Simple and rapid liquid chromatography−tandem mass spectrometry confirmatory Assay for determining amoxicillin and ampicillin in bovine tissues and milk. J. Agric. Food Chem. 2004, 52, 3286–3291; https://doi.org/10.1021/jf0499572.Suche in Google Scholar PubMed
31. Baere, S., Wassink, P., Croubels, S., Boever, S. D., Baert, K., Backer, P. D. Quantitative liquid chromatographic–mass spectrometric analysis of amoxycillin in broiler edible tissues. Anal. Chim. Acta 2005, 529, 221–227; https://doi.org/10.1016/j.aca.2004.09.069.Suche in Google Scholar
32. Fagerquist, C. K., Lightfield, A. R., Lehotay, S. J. Confirmatory and quantitative analysis of beta-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2005, 77, 1473–1482; https://doi.org/10.1021/ac040138q.Suche in Google Scholar PubMed
33. Boison, J. O., Keng, L. J. Multiresidue liquid chromatographic method for determining residues of mono- and dibasic penicillins in bovine muscle tissues. J. AOAC Int. 1998, 81, 1113–1120; https://doi.org/10.1093/jaoac/81.6.1113.Suche in Google Scholar
34. Sørensen, L. K., Snor, L. K., Elkær, T., Hansen, H. Simultaneous determination of seven penicillins in muscle, liver and kidney tissues from cattle and pigs by a multiresidue high-performance liquid chromatographic method. J. Chromatogr. B Biomed. Sci. Appl. 1999, 734, 307–318; https://doi.org/10.1016/s0378-4347(99)00389-8.Suche in Google Scholar PubMed
35. Luo, W., Ang, C. Y. Determination of amoxicillin residues in animal tissues by solid-phase extraction and liquid chromatography with fluorescence detection. J. AOAC Int. 2000, 83, 20–25; https://doi.org/10.1093/jaoac/83.1.20.Suche in Google Scholar
36. Beyer, T., Townsend, D., Brun, T., Kinahan, P. E., Charron, M., Roddy, R. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 2000, 41, 1369–1379.Suche in Google Scholar
37. Fazaeli, Y., Jalilian, A. R., Kamali-Dehghan, M., Bolourinovin, F., Moradkhani, S., Aslani, G., Rahimnejad, A., Ghannadi-Maragheh, M. Production, quality control and imaging of 64Cu-ATSM in healthy rabbits for clinical applications. Iran. J. Nucl. Med. 2010, 18, 29–37.Suche in Google Scholar
38. Fazaeli, Y., Rahighi, R., Tayyebi, A., Feizi, S. Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging. Radiochim. Acta 2017, 105, 65–73; https://doi.org/10.1515/ract-2015-2556.Suche in Google Scholar
39. Vangu, M. D. T., Momodu, J. I. F-18 FDG PET/CT imaging in normal variants, pitfalls and artifacts in the abdomen and pelvis. Front. Nucl. Med. 2022, 1, 1–12; https://doi.org/10.3389/fnume.2021.826109.Suche in Google Scholar
40. Feizi, S., Fazaeli, Y., Ashtari, P., Shirmardi, S. P., Yousefnia, H., Aslani, G. A new targetry system for production of zirconium-89 radioisotope with cyclone-30 cyclotron. Radiochim. Acta 2023, 111, 169–175; https://doi.org/10.1515/ract-2022-0083.Suche in Google Scholar
41. Aboudzadeh, M., Fazaeli, Y., Khodaverdi, H., Afarideh, H. Production, nano-purification, radiolabeling and biodistribution study of [140Nd] 5,10,15,20-tetraphenylporphyrin complex as a possible imaging agent. J. Radioanal. Nucl. Chem. 2013, 295, 105–113; https://doi.org/10.1007/s10967-012-1826-7.Suche in Google Scholar
42. Valipour Yekany, L., Chiniforoush, T. A., Fazaeli, Y., Aboudzadeh, M., Sadeghi, M. Preparation and quality control of a new porphyrin complex labeled with 45Ti for PET imaging. Appl. Radiat. Isot. 2023, 193, 110650; https://doi.org/10.1016/j.apradiso.2023.110650.Suche in Google Scholar PubMed
43. Yousef, F., Aboudzadeh, M., Aardaneh, K., Kakavand, T., Bayat, F., Yousefi, K. A new approach to targetry and cyclotron production of 45Ti by proton irradiation of 45Sc. Nucl. Technol. Radiat. Protect. 2014, 29, 28–33; https://doi.org/10.2298/ntrp1401028f.1Suche in Google Scholar
44. Porter, D. G. Ethical scores for animal experiments. Nature 1992, 356, 101–102; https://doi.org/10.1038/356101a0.Suche in Google Scholar PubMed
45. Codecasa, E., Pageat, P., Marcet-Rius, M., Cozzi, A. Legal frameworks and controls for the protection of research animals: a focus on the animal welfare body with a French case study. Animals 2021, 11, 695–711; https://doi.org/10.3390/ani11030695.Suche in Google Scholar PubMed PubMed Central
46. P.t.P.p.t.S.o.t.A.S.P.A, Eds. Guidance on the operation of the animals (scientific procedures) act 1986, 1986; Williams Lea Group on behalf of the Controller of Her Majesty’s Stationery Office: UK, 2014.Suche in Google Scholar
47. Lobanovska, M., Pilla, G. Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J. Biol. Med. 2017, 90, 135–145.Suche in Google Scholar
48. Lee, H., Yoon, E. J., Kim, D., Kim, J. W., Lee, K. J., Kim, H. S., Kim, Y. R., Shin, J. H., Shin, J. H., Shin, K. S., Kim, Y. A., Uh, Y., Jeong, S. H. Ceftaroline resistance by clone-specific polymorphism in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, 1–8; https://doi.org/10.1128/aac.00485-18.Suche in Google Scholar
49. Gasser, G. Metal complexes and medicine: a successful combination. CHIMIA 2015, 69, 442; https://doi.org/10.2533/chimia.2015.442.Suche in Google Scholar PubMed
50. Kean, W. F., Hart, L., Buchanan, W. W. Auranofin. Rheumatology 1997, 36, 560–572; https://doi.org/10.1093/rheumatology/36.5.560.Suche in Google Scholar PubMed
51. World Health Organization. World Health Organization model list of essential medicines: 21st list 2019; World Health Organization: Geneva, 2019.Suche in Google Scholar
52. Biot, C., Nosten, F., Fraisse, L., Ter-Minassian, D., Khalife, J., Dive, D. The antimalarial ferroquine: from bench to clinic. Parasite 2011, 18, 207–214; https://doi.org/10.1051/parasite/2011183207.Suche in Google Scholar PubMed PubMed Central
53. Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., McFarland, S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797–828; https://doi.org/10.1021/acs.chemrev.8b00211.Suche in Google Scholar PubMed PubMed Central
54. Claudel, M., Schwarte, J. V., Fromm, K. M. New antimicrobial strategies based on metal complexes. Chemistry 2020, 2, 849–899; https://doi.org/10.3390/chemistry2040056.Suche in Google Scholar
55. Frei, A., Zuegg, J., Elliott, A. G., Baker, M., Braese, S., Brown, C., Chen, F.G., Dowson, C., Dujardin, G., Jung, N., King, A. P., Mansour, A. M., Massi, M., Moat, J., Mohamed, H. A., Renfrew, A. K., Rutledge, P. J., Sadler, P. J., Todd, M. H., Willans, C. E., Wilson, J. J., Cooper, M. A., Blaskovich, M. A. T. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639; https://doi.org/10.1039/c9sc06460e.Suche in Google Scholar PubMed PubMed Central
56. Drug Interactions between Amoxicillin and Zinc, 2023. https://www.drugs.com/drug-interactions/amoxicillin-with-zinc-187-0-2329-16534.html.Suche in Google Scholar
57. Imran, M., Iqbal, J., Mehmood, T., Latif, S. Synthesis, characterization and in vitro screening of amoxicillin and its complexes with Ag(I), Cu(II), Co(II), Zn(II) and Ni(II). J. Biol. Sci. 2006, 6, 946–949; https://doi.org/10.3923/jbs.2006.946.949.Suche in Google Scholar
58. Bravo, A., Anacona, J. R. Synthesis and characterization of metal complexes with ampicillin. J. Coord. Chem. 1998, 44, 173–182; https://doi.org/10.1080/00958979808022891.Suche in Google Scholar
59. McMahon, M. E., Santucci, R. J., Scully, J. R. Advanced chemical stability diagrams to predict the formation of complex zinc compounds in a chloride environment. RSC Adv. 2019, 9, 19905–19916; https://doi.org/10.1039/c9ra00228f.Suche in Google Scholar PubMed PubMed Central
60. Bernatová, S., Samek, O., Pilát, Z., Šerý, M., Ježek, J., Jákl, P., Šiler, M., Krzyžánek, V., Zemánek, P., Holá, V., Dvořáčková, M., Růžička, F. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 2013, 18, 13188–13199; https://doi.org/10.3390/molecules181113188.Suche in Google Scholar PubMed PubMed Central
61. Anjaneyulu, Y., Rao, R.P. Preparation, characterization and antimicrobial activity studies of some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257–272.10.1080/00945718608057530Suche in Google Scholar
62. Beyene, B. B., Mihirteu, A. M., Ayana, M. T., Yibeltal, A. W. Synthesis, characterization and antibacterial activity of metalloporphyrins: role of central metal ion. Results Chem. 2020, 2, 100073; https://doi.org/10.1016/j.rechem.2020.100073.Suche in Google Scholar
63. Bhatt, V. Chapter 1 – basic coordination chemistry. In Essentials of Coordination Chemistry; Bhatt, V., Ed. Academic Press, 2016; pp. 1–35.10.1016/B978-0-12-803895-6.00001-XSuche in Google Scholar
64. Ghandi, M., Feizi, S., Ziaie, F., Fazaeli, Y., Notash, B. Synthesis, characterization and in vivo evaluation of [62Zn]–benzo-δ-sultam complex as a possible pet imaging agent. Ann. Nucl. Med. 2014, 28, 880–890; https://doi.org/10.1007/s12149-014-0885-y.Suche in Google Scholar PubMed
65. Aghanejad, A., Jalilian, A. R., Fazaeli, Y., Beiki, D., Fateh, B., Khalaj, A. Radiosynthesis and biodistribution studies of [62Zn/62Cu]–plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J. Radioanal. Nucl. Chem. 2014, 299, 1635–1644; https://doi.org/10.1007/s10967-013-2822-2.Suche in Google Scholar
66. Firth, G., Yu, Z., Bartnicka, J. J., Parker, D., Kim, J., Sunassee, K., Greenwood, H. E., Al-Salamee, F., Jauregui-Osoro, M., Di Pietro, A., Guzman, J., Blower, P. J. Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 2022, 14, 1–11; https://doi.org/10.1093/mtomcs/mfac076.Suche in Google Scholar PubMed PubMed Central
67. Reyns, T., De Boever, S., De Baere, S., De Backer, P., Croubels, S. Tissue depletion of amoxicillin and its major metabolites in pigs: influence of the administration route and the simultaneous dosage of clavulanic acid. J. Agric. Food Chem. 2008, 56, 448–454; https://doi.org/10.1021/jf072398p.Suche in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2023-0249).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Reverse phase liquid chromatographic method for the measurement of uranium in process stream solutions from uranium extraction facility
- An LSC approach for tritium determination in gaseous mixtures optimized with respect to handling, reaction parameters and miniaturization towards microfluidic analysis
- Application of thin boron deposit by electrophoresis as neutron detectors
- Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases
- Investigation of the dose-response linearity of guar gum for gamma-ray dosimetry at radiation processing levels using Raman spectroscopy
- A novel method for evaluating the depletion of veterinary pharmaceuticals using radioisotopes
- 210Pb dating and neutron activation analysis of the Sundarban mangrove sediments: sedimentation rate and metal contamination history
- Obituary
- In Memoriam: Jens Volker Kratz (1944–2024)
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Reverse phase liquid chromatographic method for the measurement of uranium in process stream solutions from uranium extraction facility
- An LSC approach for tritium determination in gaseous mixtures optimized with respect to handling, reaction parameters and miniaturization towards microfluidic analysis
- Application of thin boron deposit by electrophoresis as neutron detectors
- Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases
- Investigation of the dose-response linearity of guar gum for gamma-ray dosimetry at radiation processing levels using Raman spectroscopy
- A novel method for evaluating the depletion of veterinary pharmaceuticals using radioisotopes
- 210Pb dating and neutron activation analysis of the Sundarban mangrove sediments: sedimentation rate and metal contamination history
- Obituary
- In Memoriam: Jens Volker Kratz (1944–2024)