Home A novel method for evaluating the depletion of veterinary pharmaceuticals using radioisotopes
Article
Licensed
Unlicensed Requires Authentication

A novel method for evaluating the depletion of veterinary pharmaceuticals using radioisotopes

  • Yousef Fazaeli ORCID logo EMAIL logo , Gholamreza Shahhoseini , Alireza Neisi , James Jacob Sasanya , Parviz Ashtari and Shahzad Feizi
Published/Copyright: February 16, 2024

Abstract

Antimicrobial resistance (AMR) as one of the world’s most pressing public health problems needs immediate attention, because it has the ability to affect the human healthcare, agriculture, and veterinary industries. Despite warnings about overuse and their implications, antimicrobials are overprescribed worldwide for humans and animals, which leads to the promotion of resistant microorganisms such as bacteria. Food is a medium for exposure to or transfer of residues of the drugs and can contribute to the burden of the pharmaceuticals associated with development of AMR. Studying on residues of veterinary drugs in foods is essential in the fight against AMR. Herein, we introduce a new method for visualizing the residues of a veterinary drug in animal matrices using radionuclides, called “Depletion Imaging”. Amoxicillin was chosen to be the first antimicrobial for this study. The drug was labeled with [62Zn/65Zn] ZnCl2. Radiolabelled amoxicillin and non-labeled amoxicillin were administrated to rainbow trout fish simultaneously. To enable visualization of the remaining residues of amoxicillin in fish, In-vivo positron emission tomography (PET) imaging was done at different intervals from 30 min to 21 days after administration. Evaluation of the amount of radiolabelled amoxicillin in fish was done using a high purity germanium (HPGe) nuclear detector, and enzyme linked immunosorbent assay (ELISA) technique was used for the non-labeled drug. In this study, a comprehensive method for in-house production of zinc radioisotopes was also included. The results showed that depletion imaging and biodistribution study based on gamma spectroscopy of radionuclides in tissues, is a precise method for accurate understanding of the drug’s distribution, metabolic and excretory profile.


Corresponding author: Yousef Fazaeli, Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran, E-mail:

Acknowledgment

This study was supported in part by the joint FAO/IAEA division (Centre) of Nuclear Techniques in Food & Agriculture, and Coordinated Research Project (CRP): D52043 entitled: “Depletion of Veterinary Pharmaceuticals and Radiometric Analysis of their Residues in Animal Matrices”.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review. The animal experiments were performed under guidelines on the use of living animals in scientific investigations.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Prestinaci, F., Pezzotti, P., Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318; https://doi.org/10.1179/2047773215y.0000000030.Search in Google Scholar

2. Samanta, I., Bandyopadhyay, S. Chapter 2 – use of antimicrobials and antibiotics in livestock, poultry, fishery and agriculture. In Antimicrobial Resistance in Agriculture; Samanta, I., Bandyopadhyay, S., Eds.; Academic Press: Cambridge, United States, 2020; pp. 7–18.10.1016/B978-0-12-815770-1.00002-XSearch in Google Scholar

3. Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., Zhu, N. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924; https://doi.org/10.1021/acs.accounts.8b00643.Search in Google Scholar PubMed

4. Carrique-Mas, J. J., Trung, N. V., Hoa, N. T., Mai, H. H., Thanh, T. H., Campbell, J. I., Wagenaar, J. A., Hardon, A., Hieu, T. Q., Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Publ. Health 2015, 62, 70–78; https://doi.org/10.1111/zph.12165.Search in Google Scholar PubMed

5. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654; https://doi.org/10.1073/pnas.1503141112.Search in Google Scholar PubMed PubMed Central

6. Samtiya, M., Matthews, K. R., Dhewa, T., Puniya, A. K. Antimicrobial resistance in the food chain: trends, mechanisms, pathways, and possible regulation strategies. Foods 2022, 11, 2966; https://doi.org/10.3390/foods11192966.Search in Google Scholar PubMed PubMed Central

7. Vital, P. G., Zara, E., Paraoan, C., Dimasupil, M., Abello, J., Santos, I., Rivera, W. Antibiotic resistance and extended-spectrum beta-lactamase production of Escherichia coli isolated from irrigation waters in selected urban farms in Metro Manila, Philippines. Water 2018, 10, 548; https://doi.org/10.3390/w10050548.Search in Google Scholar

8. Price Lance, B., Graham, J. P., Lackey, L. G., Roess, A., Vailes, R., Silbergeld, E. Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. Poultry workers. Environ. Health Perspect. 2007, 115, 1738–1742; https://doi.org/10.1289/ehp.10191.Search in Google Scholar PubMed PubMed Central

9. Da Costa, P. M., Loureiro, L., Matos, A. J. F. Transfer of multidrug-resistant bacteria between intermingled ecological Niches: the interface between humans, animals and the environment. Int. J. Environ. Res. Publ. Health 2013, 10, 278–294; https://doi.org/10.3390/ijerph10010278.Search in Google Scholar PubMed PubMed Central

10. Chang, Q., Wang, W., Regev‐Yochay, G., Lipsitch, M., Hanage, W. P. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol. Appl. 2015, 8, 240–247; https://doi.org/10.1111/eva.12185.Search in Google Scholar PubMed PubMed Central

11. Depoorter, P., Persoons, D., Uyttendaele, M., Butaye, P., De Zutter, L., Dierick, K., Herman, L., Imberechts, H., Van Huffel, X., Dewulf, J. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium. Int. J. Food Microbiol. 2012, 159, 30–38; https://doi.org/10.1016/j.ijfoodmicro.2012.07.026.Search in Google Scholar PubMed

12. Rosenquist, H., Smidt, L., Andersen, S. R., Jensen, G. B., Wilcks, A. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 2005, 250, 129–136; https://doi.org/10.1016/j.femsle.2005.06.054.Search in Google Scholar PubMed

13. Marshall, B. M., Levy, S. B. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733; https://doi.org/10.1128/cmr.00002-11.Search in Google Scholar

14. Coleman, B. L., Salvadori, M. I., McGeer, A. J., Sibley, K. A., Neumann, N. F., Bondy, S. J., Gutmanis, I. A., McEwen, S. A., Lavoie, M., Strong, D., Johnson, I., Jamieson, F. B., Louie, M. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol. Infect. 2011, 140, 633–642; https://doi.org/10.1017/s0950268811001038.Search in Google Scholar

15. Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005, 365, 579–587; https://doi.org/10.1016/s0140-6736(05)17907-0.Search in Google Scholar

16. de Mesquita Souza Saraiva, M., Lim, K., do Monte, D. F. M., Givisiez, P. E. N., Alves, L. B. R., de Freitas Neto, O. C., Kariuki, S., Júnior, A. B., de Oliveira, C. J. B., Gebreyes, W. A. Antimicrobial resistance in the globalized food chain: a one health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 1–22; https://doi.org/10.1007/s42770-021-00635-8.Search in Google Scholar PubMed PubMed Central

17. Apreja, M., Sharma, A., Balda, S., Kataria, K., Capalash, N., Sharma, P. Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation. Environ. Sci. Pollut. Res. 2022, 29, 3355–3371; https://doi.org/10.1007/s11356-021-17374-w.Search in Google Scholar PubMed

18. Lundborg, C. S., Tamhankar, A. J. Antibiotic residues in the environment of South East Asia. BMJ 2017, 358, j2440; https://doi.org/10.1136/bmj.j2440.Search in Google Scholar PubMed PubMed Central

19. Burch, D. G. S., Sperling, D. Amoxicillin – current use in swine medicine. J. Vet. Pharmacol. Therapeut. 2018, 41, 356–368; https://doi.org/10.1111/jvp.12482.Search in Google Scholar PubMed

20. Arsène, M. M. J., Davares, A. K. L., Viktorovna, P. I., Andreevna, S. L., Sarra, S., Khelifi, I., Sergueïevna, D. M. The public health issue of antibiotic residues in food and feed: causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671; https://doi.org/10.14202/vetworld.2022.662-671.Search in Google Scholar PubMed PubMed Central

21. Kirchhelle, C. Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96; https://doi.org/10.1057/s41599-018-0152-2.Search in Google Scholar

22. Commission Regulation (EU) N° 2377/90 of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in food stuffs of animal origin (Off. J. Eur. Commun. 1990 N° L224), as amended by Council Regulation N° 2593/99 (Off. J. Eur. Commun. 1999 N0 L315).Search in Google Scholar

23. Doyle, M. E. Veterinary drug residues in processed meats – potential health risk. In FRI Briefings; Food Research Institute, University of Wisconsin: Madison, 2006; pp. 1–8.Search in Google Scholar

24. Lindemayr, H., Knobler, R., Kraft, D., Baumgartner, W. Challenge of penicillin-allergic volunteers with penicillin-contaminated meat. Allergy 1981, 36, 471–478; https://doi.org/10.1111/j.1398-9995.1981.tb01858.x.Search in Google Scholar PubMed

25. Woodward, K. N. Hypersensitivity in humans and exposure to veterinary drugs. Vet. Hum. Toxicol. 1991, 33, 168–172.Search in Google Scholar

26. Kanny, G., Puygrenier, J., Beaudoin, E., Moneret-Vautrin, D. A. Alimentary anaphylactic shock: implication of penicillin residues. Allerg. Immunol. (Paris) 1994, 26, 181–183.Search in Google Scholar

27. Sundlof, S. F., Cooper, J. Human health risks associated with drug residues in animal-derived foods. In Veterinary Drug Residues; American Chemical Society, 1996; pp. 5–17.10.1021/bk-1996-0636.ch002Search in Google Scholar

28. Raison-Peyron, N., Messaad, D., Bousquet, J., Demoly, P. Anaphylaxis to beef in penicillin-allergic patient. Allergy 2001, 56, 796–797; https://doi.org/10.1034/j.1398-9995.2001.056008796.x.Search in Google Scholar PubMed

29. Becker, M., Zittlau, E., Petz, M. Residue analysis of 15 penicillins and cephalosporins in bovine muscle, kidney and milk by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2004, 520, 19–32; https://doi.org/10.1016/j.aca.2004.04.022.Search in Google Scholar

30. Bogialli, S., Capitolino, V., Curini, R., Di Corcia, A., Nazzari, M., Sergi, M. Simple and rapid liquid chromatography−tandem mass spectrometry confirmatory Assay for determining amoxicillin and ampicillin in bovine tissues and milk. J. Agric. Food Chem. 2004, 52, 3286–3291; https://doi.org/10.1021/jf0499572.Search in Google Scholar PubMed

31. Baere, S., Wassink, P., Croubels, S., Boever, S. D., Baert, K., Backer, P. D. Quantitative liquid chromatographic–mass spectrometric analysis of amoxycillin in broiler edible tissues. Anal. Chim. Acta 2005, 529, 221–227; https://doi.org/10.1016/j.aca.2004.09.069.Search in Google Scholar

32. Fagerquist, C. K., Lightfield, A. R., Lehotay, S. J. Confirmatory and quantitative analysis of beta-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2005, 77, 1473–1482; https://doi.org/10.1021/ac040138q.Search in Google Scholar PubMed

33. Boison, J. O., Keng, L. J. Multiresidue liquid chromatographic method for determining residues of mono- and dibasic penicillins in bovine muscle tissues. J. AOAC Int. 1998, 81, 1113–1120; https://doi.org/10.1093/jaoac/81.6.1113.Search in Google Scholar

34. Sørensen, L. K., Snor, L. K., Elkær, T., Hansen, H. Simultaneous determination of seven penicillins in muscle, liver and kidney tissues from cattle and pigs by a multiresidue high-performance liquid chromatographic method. J. Chromatogr. B Biomed. Sci. Appl. 1999, 734, 307–318; https://doi.org/10.1016/s0378-4347(99)00389-8.Search in Google Scholar PubMed

35. Luo, W., Ang, C. Y. Determination of amoxicillin residues in animal tissues by solid-phase extraction and liquid chromatography with fluorescence detection. J. AOAC Int. 2000, 83, 20–25; https://doi.org/10.1093/jaoac/83.1.20.Search in Google Scholar

36. Beyer, T., Townsend, D., Brun, T., Kinahan, P. E., Charron, M., Roddy, R. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 2000, 41, 1369–1379.Search in Google Scholar

37. Fazaeli, Y., Jalilian, A. R., Kamali-Dehghan, M., Bolourinovin, F., Moradkhani, S., Aslani, G., Rahimnejad, A., Ghannadi-Maragheh, M. Production, quality control and imaging of 64Cu-ATSM in healthy rabbits for clinical applications. Iran. J. Nucl. Med. 2010, 18, 29–37.Search in Google Scholar

38. Fazaeli, Y., Rahighi, R., Tayyebi, A., Feizi, S. Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging. Radiochim. Acta 2017, 105, 65–73; https://doi.org/10.1515/ract-2015-2556.Search in Google Scholar

39. Vangu, M. D. T., Momodu, J. I. F-18 FDG PET/CT imaging in normal variants, pitfalls and artifacts in the abdomen and pelvis. Front. Nucl. Med. 2022, 1, 1–12; https://doi.org/10.3389/fnume.2021.826109.Search in Google Scholar

40. Feizi, S., Fazaeli, Y., Ashtari, P., Shirmardi, S. P., Yousefnia, H., Aslani, G. A new targetry system for production of zirconium-89 radioisotope with cyclone-30 cyclotron. Radiochim. Acta 2023, 111, 169–175; https://doi.org/10.1515/ract-2022-0083.Search in Google Scholar

41. Aboudzadeh, M., Fazaeli, Y., Khodaverdi, H., Afarideh, H. Production, nano-purification, radiolabeling and biodistribution study of [140Nd] 5,10,15,20-tetraphenylporphyrin complex as a possible imaging agent. J. Radioanal. Nucl. Chem. 2013, 295, 105–113; https://doi.org/10.1007/s10967-012-1826-7.Search in Google Scholar

42. Valipour Yekany, L., Chiniforoush, T. A., Fazaeli, Y., Aboudzadeh, M., Sadeghi, M. Preparation and quality control of a new porphyrin complex labeled with 45Ti for PET imaging. Appl. Radiat. Isot. 2023, 193, 110650; https://doi.org/10.1016/j.apradiso.2023.110650.Search in Google Scholar PubMed

43. Yousef, F., Aboudzadeh, M., Aardaneh, K., Kakavand, T., Bayat, F., Yousefi, K. A new approach to targetry and cyclotron production of 45Ti by proton irradiation of 45Sc. Nucl. Technol. Radiat. Protect. 2014, 29, 28–33; https://doi.org/10.2298/ntrp1401028f.1Search in Google Scholar

44. Porter, D. G. Ethical scores for animal experiments. Nature 1992, 356, 101–102; https://doi.org/10.1038/356101a0.Search in Google Scholar PubMed

45. Codecasa, E., Pageat, P., Marcet-Rius, M., Cozzi, A. Legal frameworks and controls for the protection of research animals: a focus on the animal welfare body with a French case study. Animals 2021, 11, 695–711; https://doi.org/10.3390/ani11030695.Search in Google Scholar PubMed PubMed Central

46. P.t.P.p.t.S.o.t.A.S.P.A, Eds. Guidance on the operation of the animals (scientific procedures) act 1986, 1986; Williams Lea Group on behalf of the Controller of Her Majesty’s Stationery Office: UK, 2014.Search in Google Scholar

47. Lobanovska, M., Pilla, G. Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J. Biol. Med. 2017, 90, 135–145.Search in Google Scholar

48. Lee, H., Yoon, E. J., Kim, D., Kim, J. W., Lee, K. J., Kim, H. S., Kim, Y. R., Shin, J. H., Shin, J. H., Shin, K. S., Kim, Y. A., Uh, Y., Jeong, S. H. Ceftaroline resistance by clone-specific polymorphism in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, 1–8; https://doi.org/10.1128/aac.00485-18.Search in Google Scholar

49. Gasser, G. Metal complexes and medicine: a successful combination. CHIMIA 2015, 69, 442; https://doi.org/10.2533/chimia.2015.442.Search in Google Scholar PubMed

50. Kean, W. F., Hart, L., Buchanan, W. W. Auranofin. Rheumatology 1997, 36, 560–572; https://doi.org/10.1093/rheumatology/36.5.560.Search in Google Scholar PubMed

51. World Health Organization. World Health Organization model list of essential medicines: 21st list 2019; World Health Organization: Geneva, 2019.Search in Google Scholar

52. Biot, C., Nosten, F., Fraisse, L., Ter-Minassian, D., Khalife, J., Dive, D. The antimalarial ferroquine: from bench to clinic. Parasite 2011, 18, 207–214; https://doi.org/10.1051/parasite/2011183207.Search in Google Scholar PubMed PubMed Central

53. Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., McFarland, S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797–828; https://doi.org/10.1021/acs.chemrev.8b00211.Search in Google Scholar PubMed PubMed Central

54. Claudel, M., Schwarte, J. V., Fromm, K. M. New antimicrobial strategies based on metal complexes. Chemistry 2020, 2, 849–899; https://doi.org/10.3390/chemistry2040056.Search in Google Scholar

55. Frei, A., Zuegg, J., Elliott, A. G., Baker, M., Braese, S., Brown, C., Chen, F.G., Dowson, C., Dujardin, G., Jung, N., King, A. P., Mansour, A. M., Massi, M., Moat, J., Mohamed, H. A., Renfrew, A. K., Rutledge, P. J., Sadler, P. J., Todd, M. H., Willans, C. E., Wilson, J. J., Cooper, M. A., Blaskovich, M. A. T. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639; https://doi.org/10.1039/c9sc06460e.Search in Google Scholar PubMed PubMed Central

56. Drug Interactions between Amoxicillin and Zinc, 2023. https://www.drugs.com/drug-interactions/amoxicillin-with-zinc-187-0-2329-16534.html.Search in Google Scholar

57. Imran, M., Iqbal, J., Mehmood, T., Latif, S. Synthesis, characterization and in vitro screening of amoxicillin and its complexes with Ag(I), Cu(II), Co(II), Zn(II) and Ni(II). J. Biol. Sci. 2006, 6, 946–949; https://doi.org/10.3923/jbs.2006.946.949.Search in Google Scholar

58. Bravo, A., Anacona, J. R. Synthesis and characterization of metal complexes with ampicillin. J. Coord. Chem. 1998, 44, 173–182; https://doi.org/10.1080/00958979808022891.Search in Google Scholar

59. McMahon, M. E., Santucci, R. J., Scully, J. R. Advanced chemical stability diagrams to predict the formation of complex zinc compounds in a chloride environment. RSC Adv. 2019, 9, 19905–19916; https://doi.org/10.1039/c9ra00228f.Search in Google Scholar PubMed PubMed Central

60. Bernatová, S., Samek, O., Pilát, Z., Šerý, M., Ježek, J., Jákl, P., Šiler, M., Krzyžánek, V., Zemánek, P., Holá, V., Dvořáčková, M., Růžička, F. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 2013, 18, 13188–13199; https://doi.org/10.3390/molecules181113188.Search in Google Scholar PubMed PubMed Central

61. Anjaneyulu, Y., Rao, R.P. Preparation, characterization and antimicrobial activity studies of some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257–272.10.1080/00945718608057530Search in Google Scholar

62. Beyene, B. B., Mihirteu, A. M., Ayana, M. T., Yibeltal, A. W. Synthesis, characterization and antibacterial activity of metalloporphyrins: role of central metal ion. Results Chem. 2020, 2, 100073; https://doi.org/10.1016/j.rechem.2020.100073.Search in Google Scholar

63. Bhatt, V. Chapter 1 – basic coordination chemistry. In Essentials of Coordination Chemistry; Bhatt, V., Ed. Academic Press, 2016; pp. 1–35.10.1016/B978-0-12-803895-6.00001-XSearch in Google Scholar

64. Ghandi, M., Feizi, S., Ziaie, F., Fazaeli, Y., Notash, B. Synthesis, characterization and in vivo evaluation of [62Zn]–benzo-δ-sultam complex as a possible pet imaging agent. Ann. Nucl. Med. 2014, 28, 880–890; https://doi.org/10.1007/s12149-014-0885-y.Search in Google Scholar PubMed

65. Aghanejad, A., Jalilian, A. R., Fazaeli, Y., Beiki, D., Fateh, B., Khalaj, A. Radiosynthesis and biodistribution studies of [62Zn/62Cu]–plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J. Radioanal. Nucl. Chem. 2014, 299, 1635–1644; https://doi.org/10.1007/s10967-013-2822-2.Search in Google Scholar

66. Firth, G., Yu, Z., Bartnicka, J. J., Parker, D., Kim, J., Sunassee, K., Greenwood, H. E., Al-Salamee, F., Jauregui-Osoro, M., Di Pietro, A., Guzman, J., Blower, P. J. Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 2022, 14, 1–11; https://doi.org/10.1093/mtomcs/mfac076.Search in Google Scholar PubMed PubMed Central

67. Reyns, T., De Boever, S., De Baere, S., De Backer, P., Croubels, S. Tissue depletion of amoxicillin and its major metabolites in pigs: influence of the administration route and the simultaneous dosage of clavulanic acid. J. Agric. Food Chem. 2008, 56, 448–454; https://doi.org/10.1021/jf072398p.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0249).


Received: 2023-11-10
Accepted: 2024-01-28
Published Online: 2024-02-16
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0249/html
Scroll to top button