Startseite Investigation of the dose-response linearity of guar gum for gamma-ray dosimetry at radiation processing levels using Raman spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the dose-response linearity of guar gum for gamma-ray dosimetry at radiation processing levels using Raman spectroscopy

  • Shahryar Malekie ORCID logo EMAIL logo und Amir Veiskarami
Veröffentlicht/Copyright: 23. Februar 2024

Abstract

In this experimental work, guar gum powder was exposed to gamma radiation from a 60Co source at absorbed doses of 0, 10, 30, 50, 80, 100, 150 kGy at dose rate of 1.62 Gy/s. Raman spectroscopy was applied to measure the intensity of the samples ranging from of 500–4600 cm−1. The intensity versus Raman shift was evaluated at 3800–4000 cm−1. Then the curve was fitted linearly. The slope of the lines was determined in each absorbed dose. Results indicated that the absolute values of the slope of each line were enhanced with increasing the absorbed dose. This trend was linear within the absorbed dose ranging from of 0–50 kGy, in which was saturated after 80 kGy. Results showed that guar gum can be applied as a passive dosimeter at radiation processing level.


Corresponding author: Shahryar Malekie, Radiation Application Research School, Nuclear Science and Technology Research Institute, PO Box 31485-498, Karaj, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All authors equally contributed to the current investigation, Also, all the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Niroomand-Rad, A., Blackwell, C. R., Coursey, B. M., Gall, K. P., Galvin, J. M., McLaughlin, W. L., Meigooni, A. S., Nath, R., Rodgers, J. E., Soares, C. G. Radiochromic Film Dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 1998, 25, 2093–2115; https://doi.org/10.1118/1.598407.Suche in Google Scholar PubMed

2. Mudgil, D., Barak, S., Khatkar, B. S. Guar Gum: Processing, Properties and Food Applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418; https://doi.org/10.1007/s13197-011-0522-x.Suche in Google Scholar PubMed PubMed Central

3. Thombare, N., Jha, U., Mishra, S., Siddiqui, M. Guar Gum as a Promising Starting Material for Diverse Applications: A Review. Int. J. Biol. Macromol. 2016, 88, 361–372; https://doi.org/10.1016/j.ijbiomac.2016.04.001.Suche in Google Scholar PubMed

4. Verma, D., Sharma, S. K. Recent Advances in Guar Gum Based Drug Delivery Systems and Their Administrative Routes. Int. J. Biol. Macromol. 2021, 181, 653–671; https://doi.org/10.1016/j.ijbiomac.2021.03.087.Suche in Google Scholar PubMed

5. Madni, A., Khalid, A., Wahid, F., Ayub, H., Khan, R., Kousar, R. Preparation and Applications of Guar Gum Composites in Biomedical, Pharmaceutical, Food, and Cosmetics Industries. Curr. Nanosci. 2021, 17, 365–379; https://doi.org/10.2174/1573413716999201110142551.Suche in Google Scholar

6. King, K., Gray, R. The Effect of Gamma Irradiation on Guar Gum, Locust Bean Gum, Gum Tragacanth and Gum Karaya. Food Hydrocolloids 1993, 6, 559–569; https://doi.org/10.1016/s0268-005x(09)80079-9.Suche in Google Scholar

7. Hamdani, A. M., Wani, I. A., Bhat, N. A. Effect of Gamma Irradiation on the Physicochemical and Structural Properties of Plant Seed Gums. Int. J. Biol. Macromol. 2018, 106, 507–515; https://doi.org/10.1016/j.ijbiomac.2017.08.045.Suche in Google Scholar PubMed

8. Gorji, H. N., Farahmandfar, R., Milani, J. M., Hashemi, S. M. B. Effect of Gamma Irradiation on Structural Properties and Rheological Behavior of Binary Biopolymer Blend: A Case Study on Guar Gum-Sage Seed Gum Blends. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100366; https://doi.org/10.1016/j.bcdf.2023.100366.Suche in Google Scholar

9. Sayed, A., Mohamed, M. M., Abdel-Raouf, M.E.-S., Mahmoud, G. A. Radiation Synthesis of Green Nanoarchitectonics of Guar Gum-Pectin/Polyacrylamide/Zinc Oxide Superabsorbent Hydrogel for Sustainable Agriculture. J. Inorg. Organomet. Polym. Mater. 2022, 32, 4589–4600; https://doi.org/10.1007/s10904-022-02465-z.Suche in Google Scholar

10. Teimouri, S., Abbasi, S., Sheikh, N. Effects of Gamma Irradiation on Some Physicochemical and Rheological Properties of Persian Gum and Gum Tragacanth. Food Hydrocolloids 2016, 59, 9–16; https://doi.org/10.1016/j.foodhyd.2015.12.010.Suche in Google Scholar

11. Hussein, H. A. S. Study of Chemical and Physical Properties of Irradiated Guar Gum; Sudan Academy of Sciences: Khartoum, Sudan, 2012.Suche in Google Scholar

12. Villalpando-Paez, F., Dresselhaus, G., Dresselhaus, M., Champion, P. M., Ziegler, L. D. Raman Spectroscopy of Carbon Nanostructures. AIP Conf. Proc. 2010, 1267, 73–74; https://doi.org/10.1063/1.3482783.Suche in Google Scholar

13. Dresselhaus, M., Dresselhaus, G., Jorio, A. Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. J. Phys. Chem. C 2007, 111, 17887–17893; https://doi.org/10.1021/jp071378n.Suche in Google Scholar

14. Vatankhah, A. R., Hosseini, M. A., Malekie, S. The Characterization of Gamma-Irradiated Carbon-Nanostructured Materials Carried Out Using a Multi-Analytical Approach Including Raman Spectroscopy. Appl. Surf. Sci. 2019, 488, 671–680; https://doi.org/10.1016/j.apsusc.2019.05.294.Suche in Google Scholar

15. Hosseini, M. A., Zare, H., Malekie, S. Raman Spectroscopy of Electron Irradiated Multi-Walled Carbon Nanotube for Dosimetry Purposes. Radiat. Phys. Chem. 2023, 202, 110535; https://doi.org/10.1016/j.radphyschem.2022.110535.Suche in Google Scholar

16. Ebrahimi, N., Hosseini, M. A., Malekie, S. Preliminary Study of Linearity Response of γ-irradiated Graphene Oxide as a Novel Dosimeter Using the Raman Spectroscopy. Bull. Mater. Sci. 2020, 43, 1–5; https://doi.org/10.1007/s12034-020-02177-5.Suche in Google Scholar

17. Zare, H., Hosseini, M. A., Malekie, S. Evaluation of 10 MeV Electron Irradiation-Induced Defects in Graphene Oxide and Multi-Walled Carbon Nanotube Using a Multi-Analytical Approach. Nucl. Instrum. Methods Phys. Res., Sect. B 2023, 543, 165089; https://doi.org/10.1016/j.nimb.2023.165089.Suche in Google Scholar

18. Bradley, D., Ee, L. S., Nawi, S. N. M., Sani, S. F. A., Khandaker, M., Alzimami, K., Jambi, L., Alqhatani, A. Radiation Induced Defects in Graphite. Appl. Radiat. Isot. 2022, 182, 110141; https://doi.org/10.1016/j.apradiso.2022.110141.Suche in Google Scholar PubMed

19. Ramya, J. R., Arul, K. T., Sathiamurthi, P., Nivethaa, E., Baskar, S., Amudha, S., Mohana, B., Elayaraja, K., Veerla, S. C., Asokan, K., Kalkura, S. N. Gamma Irradiated Poly (Methyl Methacrylate)-Reduced Graphene Oxide Composite Thin Films for Multifunctional Applications. Composites, Part B 2019, 163, 752–760; https://doi.org/10.1016/j.compositesb.2019.01.041.Suche in Google Scholar

20. Botti, S., Rufoloni, A., Rindzevicius, T., Schmidt, M. S. Surface-Enhanced Raman Spectroscopy Characterization of Pristine and Functionalized Carbon Nanotubes and Graphene; InTechOpen: London, 2018.10.5772/intechopen.74065Suche in Google Scholar

21. Jiang, J., Pachter, R., Mehmood, F., Islam, A. E., Maruyama, B., Boeckl, J. J. A Raman Spectroscopy Signature for Characterizing Defective Single-Layer Graphene: Defect-Induced I (D)/I (D′) Intensity Ratio by Theoretical Analysis. Carbon 2015, 90, 53–62; https://doi.org/10.1016/j.carbon.2015.03.049.Suche in Google Scholar

22. Beams, R., Cançado, L. G., Novotny, L. Raman Characterization of Defects and Dopants in Graphene. J. Phys.: Condens. Matter 2015, 27, 083002; https://doi.org/10.1088/0953-8984/27/8/083002.Suche in Google Scholar PubMed

23. Kashid, R. V., Panchakarla, L., Dhole, S. D., More, M. A., Joag, D. S. Effect of Cobalt-60 Gamma Irradiation on Graphene: Raman and Field Emission Investigations. Radiat. Eff. Defects Solids 2014, 169, 447–456; https://doi.org/10.1080/10420150.2014.905938.Suche in Google Scholar

24. Nandi, S., Guha, P. Modelling the Effect of Guar Gum on Physical, Optical, Barrier and Mechanical Properties of Potato Starch Based Composite Film. Carbohydr. Polym. 2018, 200, 498–507; https://doi.org/10.1016/j.carbpol.2018.08.028.Suche in Google Scholar PubMed

25. Ashfaq, A., Clochard, M.-C., Coqueret, X., Dispenza, C., Driscoll, M. S., Ulański, P., Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877; https://doi.org/10.3390/polym12122877.Suche in Google Scholar PubMed PubMed Central

Received: 2023-10-30
Accepted: 2023-12-14
Published Online: 2024-02-23
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0246/html
Button zum nach oben scrollen