Startseite Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases

  • Samaneh Zolghadri EMAIL logo , Fateme Badipa , Hassan Yousefnia und Zahra Shiri-Yekta
Veröffentlicht/Copyright: 7. März 2024

Abstract

In this study, preclinical evaluation and dosimetric estimation of [64Cu]Cu-BPAMD, as a new bone-seeking agent for PET imaging, was studied. [64Cu]Cu-BPAMD was produced with a specific activity of 8.7 GBq/µmol and radiochemical purity (R.P.) of >98 %. The HA binding results showed the binding of nearly all [64Cu]Cu-BPAMD complex to HA at about 15 mg. Biodistribution studies in the male Syrian rats indicated considerable accumulation in the bone with negligible uptake in the other organs. The bone surface and the bone marrow receiving 0.199 and 0.092 mGy/MBq, respectively, are the organs with the most absorbed dose. This study confirms the production of [64Cu]Cu-BPAMD with high R.P. showing high potential for PET-imaging of bone metastases. The lower absorbed dose of mainly human organs compared to 68Ga-BPAMD can be considered one of the advantages of this new radiolabeled compound.


Corresponding author: Samaneh Zolghadri, Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran, E-mail:

Acknowledgments

The authors would like to acknowledge the financial support of the Nuclear Science and Technology Research Institute.

  1. Research ethics: All animal experiments were conducted according to the “General Principles and Guidelines for Care and Use of Experimental Animals”, Nuclear Science and Technology Research Institute.

  2. Author contributions: S. Zolghadri performed some parts of biological data, dosimetry studies, and wrote the main manuscript text, F. badipa complete the biological data, H. Yousefnia conducted the study and analyzed the data, Z. Shiri-Yekta participated in in most parts of the study and prepared the figures and table. All authors reviewed and approved the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Rabiei, A., Shamsaei, M., Yousefnia, H., Zolghadri, S., Jalilian, A. R., Enayati, R. Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic agent. Radiochim. Acta. 2016, 104, 727–734; https://doi.org/10.1515/ract-2015-2561.Suche in Google Scholar

2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249; https://doi.org/10.3322/caac.21660.Suche in Google Scholar PubMed

3. Jacofsky, D. J., Frassica, D. A., Frassica, F. Metastatic diseases to bone. Hosp. Phys. 2004, 39, 21–28.Suche in Google Scholar

4. Singh, V. A., Haseeb, A., Alkubaisi, A. Incidence and outcome of bone metastatic disease at University Malaya Medical Centre. Singapore Med. J. 2014, 55, 539–546; https://doi.org/10.11622/smedj.2014138.Suche in Google Scholar PubMed PubMed Central

5. Rabiei, A., Shamsaei, M., Yousefnia, H., Jalilian, A. R. Pharmacokinetic studies and human absorbed dose estimation of 68Ga-(4{[(bis (phosphonomethyl)) carbamoyl] methyl}-7,10-bis (carboxymethy l)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid. Int. J. Radiat. Res. 2018, 16, 473–480.Suche in Google Scholar

6. Tahara, R. K., Brewer, T. M., Theriault, R. L., Ueno, N. T. Bone metastasis of breast cancer. Adv. Exp. Med. Biol. 2019, 1152, 105–129; https://doi.org/10.1007/978-3-030-20301-6_7.Suche in Google Scholar PubMed

7. Heindel, W., Gübitz, R., Vieth, V., Weckesser, M., Schober, O., Schäfers, M. The diagnostic imaging of bone metastases. Dtsch. Arztebl. Int. 2014, 111, 741–747; https://doi.org/10.3238/arztebl.2014.0741.Suche in Google Scholar PubMed PubMed Central

8. Cook, G. J. PET and PET/CT imaging of skeletal metastases. Cancer Imaging 2010, 10, 1–8; https://doi.org/10.1102/1470-7330.2010.0022.Suche in Google Scholar PubMed PubMed Central

9. Fogelman, I., Cook, G., Israel, O., Van der Wall, H. Positron emission tomography and bone metastases. Semin. Nucl. Med. 2005, 35, 135–142; https://doi.org/10.1053/j.semnuclmed.2004.11.005.Suche in Google Scholar PubMed

10. Chhabra, A., Thakur, M. L. Theragnostic radionuclide pairs for prostate cancer Management: 64Cu/67Cu, can be a budding hot duo. Biomedicines 2022, 10, 2787; https://doi.org/10.3390/biomedicines10112787.Suche in Google Scholar PubMed PubMed Central

11. Avila-Rodriguez, M. A., Rios, C., Carrasco-Hernandez, J., Manrique-Arias, J. C., Martinez-Hernandez, R., García-Pérez, F. O., Jalilian, A. R., Martinez-Rodriguez, E., Romero-Piña, M. E., Diaz-Ruiz, A. Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res. 2017, 7, 98; https://doi.org/10.1186/s13550-017-0346-4.Suche in Google Scholar PubMed PubMed Central

12. Zhou, Y., Li, J., Xu, X., Zhao, M., Zhang, B., Deng, S., Wu, Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol. Cancer Res. Treat. 2019, 18, 1–10; https://doi.org/10.1177/1533033819830758.Suche in Google Scholar PubMed PubMed Central

13. Fellner, M., Baum, R. P., Kubícek, V., Hermann, P., Lukes, I., Prasad, V., Rösch, F. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 834; https://doi.org/10.1007/s00259-009-1355-y.Suche in Google Scholar PubMed

14. Yousefnia, H., Amraei, N., Hosntalab, M., Zolghadri, S., Bahrami-samaneh, A. Preparation and biological evaluation of 166Ho-BPAMD as a potential therapeutic bone-seeking agent. J. Radioanal. Nucl. Chem. 2015, 304, 1285–1291; https://doi.org/10.1007/s10967-014-3924-1.Suche in Google Scholar

15. Yousefnia, H., Zolghadri, S., Jalilian, A. R. Preparation and biodistribution assessment of 111In-BPAMD as a novel agent for bone SPECT imaging. Radiochim. Acta. 2015, 103, 653–661; https://doi.org/10.1515/ract-2015-2391.Suche in Google Scholar

16. Yousefnia, H., Zolghadri, S., Shanehsazzadeh, S. Estimated human absorbed dose of 177Lu-BPAMD based on mice data: comparison with 177Lu-EDTMP. Appl. Radiat. Isot. 2015, 104, 128–135; https://doi.org/10.1016/j.apradiso.2015.06.033.Suche in Google Scholar PubMed

17. Dosimetry in Diagnostic Radiology: An International Code for Practice. Technical Reports Series No. 457, IAEA: Vienna, 2007, pp. 1–359.Suche in Google Scholar

18. Alirezapour, B., Rasaee, M. J., Jalilian, A. R., Paknejad, M. Preparation and preliminary studies of [64Cu]-antiMUC-1 for breast cancer targeting. Pharm. Biomed. Res. 2016, 2, 31–46; https://doi.org/10.18869/acadpub.pbr.2.2.31.Suche in Google Scholar

19. Fellner, M., Biesalski, B., Bausbacher, N., Kubícek, V., Hermann, P., Rösch, F., Thews, O. 68Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl. Med. Biol. 2012, 39, 993–999; https://doi.org/10.1016/j.nucmedbio.2012.04.007.Suche in Google Scholar PubMed

20. Neves, M., Gano, L., Pereira, N., Costa, M. C., Costa, M. R., Chandia, M., Rosado, M., Fausto, R. Synthesis, characterization and biodistribution of bisphosphonates Sm-153 complexes: correlation with molecular modeling interaction studies. Nucl. Med. Biol. 2002, 29, 329–338; https://doi.org/10.1016/s0969-8051(01)00305-5.Suche in Google Scholar PubMed

21. Sparks, R. B., Aydogan, B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In Proceedings of the sixth international radiopharmaceutical dosimetry symposium, Oak Ridge, TN: Oak Ridge Associated Universities, 1996, p. 705.Suche in Google Scholar

22. Habibi, F., Faghihi, R., Zolghadri, S., Yousefnia, H., Sina, S., Mohammadpour-Ghazi, F. Estimation of human absorbed dose of 68Ga-Citrate based on biodistribution data in rats: comparison with 67Ga -Citrate. Int. J. Radiat. Res. 2022, 20, 151–156; https://doi.org/10.52547/ijrr.20.1.23.Suche in Google Scholar

23. Stabin, M. G., Sparks, R. B., Crowe, E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005, 46, 1023–1027.Suche in Google Scholar

24. Rabiei, A., Yousefnia, H., Zolghadri, S., Shamsaei, M., Jalilian, A. R. Preparation, quality control and biodistribution study of 68Ga-BPAMD: optimized production with an in-house 68Ge-68Ga generator. Iran. J. Nucl. Med. 2018, 26, 82–86.Suche in Google Scholar

25. Vatsa, R., Kaur, D., Shekhar, S. S., Chhabra, A., Chakraborty, S., Dash, A., Shukla, J., Mittal, B. R. Comparison of 99mTc-methylenediphosphonate and 68Ga-BPAMD PET/computed tomography imaging in bone metastasis. Nucl. Med. Commun. 2023, 44, 463–470; https://doi.org/10.1097/mnm.0000000000001685.Suche in Google Scholar

26. Pena-Bonhome, C., Fiaccabrino, D., Rama, T., Fernández-Pavón, D., Southcott, L., Zhang, Z., Lin, K. S., de Blas, A., Patrick, B. O., Schaffer, P., Orvig, C., de Guadalupe Jaraquemada-Peláez, M., Rodríguez-Blas, T. Toward 68Ga and 64Cu positron emission tomography probes: is H2dedpa-N,N′-pram the Missing link for dedpa conjugation? Inorg. Chem. 2023, 62, 20593–20607; https://doi.org/10.1021/acs.inorgchem.2c04123.Suche in Google Scholar PubMed PubMed Central

27. Copper-64 Radiopharmaceuticals: Production, Quality Control and Clinical Applications. IAEA Radioisotopes and Radiopharmaceuticals Series No. 7, IAEA, Vienna, 2022, pp. 1–125.Suche in Google Scholar

28. Sudbrock, F., Fischer, T., Zimmermanns, B., Guliyev, M., Dietlein, M., Drzezga, A., Schomäcker, K. Characterization of SnO2-based (68)Ge/(68)Ga generators and (68)GaDOTATATE preparations: radionuclide purity, radiochemical yield and long-term constancy. EJNMMI Res. 2014, 4, 36; https://doi.org/10.1186/s13550-014-0036-4.Suche in Google Scholar PubMed PubMed Central

29. Velikyan, I. Prospective of 68Ga-radiopharmaceutical development. Theranostics 2013, 4, 47–80; https://doi.org/10.7150/thno.7447.Suche in Google Scholar PubMed PubMed Central

30. Jalilian, A. R. An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications. Iran J. Nucl. Med. 2016, 24, 1–10.Suche in Google Scholar

31. IAEA Radioisotopes and Radiopharmaceuticals Series No. 7. Copper-64 Radiopharmaceuticals: Production, Quality Control and Clinical Applications; IAEA: Austria, 2022.Suche in Google Scholar

32. Johnbeck, C. B., Knigge, U., Loft, A., Berthelsen, A. K., Mortensen, J., Oturai, P., Langer, S. W., Elema, D. R., Kjaer, A. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J. Nucl. Med. 2017, 58, 451–457; https://doi.org/10.2967/jnumed.116.180430.Suche in Google Scholar PubMed

33. Gutfilen, B., Souza, S. A. L., Valentini, G. Copper-64: a real theranostic agent. Drug. Des. Devel. Ther. 2018, 12, 3235–3245; https://doi.org/10.2147/dddt.s170879.Suche in Google Scholar

34. ICRP Radiological Protection in Biomedical Research ICRP Publication 62. In Annals of ICRP; Pergamon Press: Oxford, New York, Seoul, Tokyo, Vol. 22, 1992.10.1016/0146-6453(91)90019-DSuche in Google Scholar

Received: 2023-10-04
Accepted: 2024-01-31
Published Online: 2024-03-07
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0236/html
Button zum nach oben scrollen