Home Physical Sciences Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases
Article
Licensed
Unlicensed Requires Authentication

Development of [64Cu]Cu-BPAMD for PET imaging of bone metastases

  • Samaneh Zolghadri EMAIL logo , Fateme Badipa , Hassan Yousefnia and Zahra Shiri-Yekta
Published/Copyright: March 7, 2024

Abstract

In this study, preclinical evaluation and dosimetric estimation of [64Cu]Cu-BPAMD, as a new bone-seeking agent for PET imaging, was studied. [64Cu]Cu-BPAMD was produced with a specific activity of 8.7 GBq/µmol and radiochemical purity (R.P.) of >98 %. The HA binding results showed the binding of nearly all [64Cu]Cu-BPAMD complex to HA at about 15 mg. Biodistribution studies in the male Syrian rats indicated considerable accumulation in the bone with negligible uptake in the other organs. The bone surface and the bone marrow receiving 0.199 and 0.092 mGy/MBq, respectively, are the organs with the most absorbed dose. This study confirms the production of [64Cu]Cu-BPAMD with high R.P. showing high potential for PET-imaging of bone metastases. The lower absorbed dose of mainly human organs compared to 68Ga-BPAMD can be considered one of the advantages of this new radiolabeled compound.


Corresponding author: Samaneh Zolghadri, Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran, E-mail:

Acknowledgments

The authors would like to acknowledge the financial support of the Nuclear Science and Technology Research Institute.

  1. Research ethics: All animal experiments were conducted according to the “General Principles and Guidelines for Care and Use of Experimental Animals”, Nuclear Science and Technology Research Institute.

  2. Author contributions: S. Zolghadri performed some parts of biological data, dosimetry studies, and wrote the main manuscript text, F. badipa complete the biological data, H. Yousefnia conducted the study and analyzed the data, Z. Shiri-Yekta participated in in most parts of the study and prepared the figures and table. All authors reviewed and approved the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Rabiei, A., Shamsaei, M., Yousefnia, H., Zolghadri, S., Jalilian, A. R., Enayati, R. Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic agent. Radiochim. Acta. 2016, 104, 727–734; https://doi.org/10.1515/ract-2015-2561.Search in Google Scholar

2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249; https://doi.org/10.3322/caac.21660.Search in Google Scholar PubMed

3. Jacofsky, D. J., Frassica, D. A., Frassica, F. Metastatic diseases to bone. Hosp. Phys. 2004, 39, 21–28.Search in Google Scholar

4. Singh, V. A., Haseeb, A., Alkubaisi, A. Incidence and outcome of bone metastatic disease at University Malaya Medical Centre. Singapore Med. J. 2014, 55, 539–546; https://doi.org/10.11622/smedj.2014138.Search in Google Scholar PubMed PubMed Central

5. Rabiei, A., Shamsaei, M., Yousefnia, H., Jalilian, A. R. Pharmacokinetic studies and human absorbed dose estimation of 68Ga-(4{[(bis (phosphonomethyl)) carbamoyl] methyl}-7,10-bis (carboxymethy l)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid. Int. J. Radiat. Res. 2018, 16, 473–480.Search in Google Scholar

6. Tahara, R. K., Brewer, T. M., Theriault, R. L., Ueno, N. T. Bone metastasis of breast cancer. Adv. Exp. Med. Biol. 2019, 1152, 105–129; https://doi.org/10.1007/978-3-030-20301-6_7.Search in Google Scholar PubMed

7. Heindel, W., Gübitz, R., Vieth, V., Weckesser, M., Schober, O., Schäfers, M. The diagnostic imaging of bone metastases. Dtsch. Arztebl. Int. 2014, 111, 741–747; https://doi.org/10.3238/arztebl.2014.0741.Search in Google Scholar PubMed PubMed Central

8. Cook, G. J. PET and PET/CT imaging of skeletal metastases. Cancer Imaging 2010, 10, 1–8; https://doi.org/10.1102/1470-7330.2010.0022.Search in Google Scholar PubMed PubMed Central

9. Fogelman, I., Cook, G., Israel, O., Van der Wall, H. Positron emission tomography and bone metastases. Semin. Nucl. Med. 2005, 35, 135–142; https://doi.org/10.1053/j.semnuclmed.2004.11.005.Search in Google Scholar PubMed

10. Chhabra, A., Thakur, M. L. Theragnostic radionuclide pairs for prostate cancer Management: 64Cu/67Cu, can be a budding hot duo. Biomedicines 2022, 10, 2787; https://doi.org/10.3390/biomedicines10112787.Search in Google Scholar PubMed PubMed Central

11. Avila-Rodriguez, M. A., Rios, C., Carrasco-Hernandez, J., Manrique-Arias, J. C., Martinez-Hernandez, R., García-Pérez, F. O., Jalilian, A. R., Martinez-Rodriguez, E., Romero-Piña, M. E., Diaz-Ruiz, A. Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res. 2017, 7, 98; https://doi.org/10.1186/s13550-017-0346-4.Search in Google Scholar PubMed PubMed Central

12. Zhou, Y., Li, J., Xu, X., Zhao, M., Zhang, B., Deng, S., Wu, Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol. Cancer Res. Treat. 2019, 18, 1–10; https://doi.org/10.1177/1533033819830758.Search in Google Scholar PubMed PubMed Central

13. Fellner, M., Baum, R. P., Kubícek, V., Hermann, P., Lukes, I., Prasad, V., Rösch, F. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 834; https://doi.org/10.1007/s00259-009-1355-y.Search in Google Scholar PubMed

14. Yousefnia, H., Amraei, N., Hosntalab, M., Zolghadri, S., Bahrami-samaneh, A. Preparation and biological evaluation of 166Ho-BPAMD as a potential therapeutic bone-seeking agent. J. Radioanal. Nucl. Chem. 2015, 304, 1285–1291; https://doi.org/10.1007/s10967-014-3924-1.Search in Google Scholar

15. Yousefnia, H., Zolghadri, S., Jalilian, A. R. Preparation and biodistribution assessment of 111In-BPAMD as a novel agent for bone SPECT imaging. Radiochim. Acta. 2015, 103, 653–661; https://doi.org/10.1515/ract-2015-2391.Search in Google Scholar

16. Yousefnia, H., Zolghadri, S., Shanehsazzadeh, S. Estimated human absorbed dose of 177Lu-BPAMD based on mice data: comparison with 177Lu-EDTMP. Appl. Radiat. Isot. 2015, 104, 128–135; https://doi.org/10.1016/j.apradiso.2015.06.033.Search in Google Scholar PubMed

17. Dosimetry in Diagnostic Radiology: An International Code for Practice. Technical Reports Series No. 457, IAEA: Vienna, 2007, pp. 1–359.Search in Google Scholar

18. Alirezapour, B., Rasaee, M. J., Jalilian, A. R., Paknejad, M. Preparation and preliminary studies of [64Cu]-antiMUC-1 for breast cancer targeting. Pharm. Biomed. Res. 2016, 2, 31–46; https://doi.org/10.18869/acadpub.pbr.2.2.31.Search in Google Scholar

19. Fellner, M., Biesalski, B., Bausbacher, N., Kubícek, V., Hermann, P., Rösch, F., Thews, O. 68Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl. Med. Biol. 2012, 39, 993–999; https://doi.org/10.1016/j.nucmedbio.2012.04.007.Search in Google Scholar PubMed

20. Neves, M., Gano, L., Pereira, N., Costa, M. C., Costa, M. R., Chandia, M., Rosado, M., Fausto, R. Synthesis, characterization and biodistribution of bisphosphonates Sm-153 complexes: correlation with molecular modeling interaction studies. Nucl. Med. Biol. 2002, 29, 329–338; https://doi.org/10.1016/s0969-8051(01)00305-5.Search in Google Scholar PubMed

21. Sparks, R. B., Aydogan, B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In Proceedings of the sixth international radiopharmaceutical dosimetry symposium, Oak Ridge, TN: Oak Ridge Associated Universities, 1996, p. 705.Search in Google Scholar

22. Habibi, F., Faghihi, R., Zolghadri, S., Yousefnia, H., Sina, S., Mohammadpour-Ghazi, F. Estimation of human absorbed dose of 68Ga-Citrate based on biodistribution data in rats: comparison with 67Ga -Citrate. Int. J. Radiat. Res. 2022, 20, 151–156; https://doi.org/10.52547/ijrr.20.1.23.Search in Google Scholar

23. Stabin, M. G., Sparks, R. B., Crowe, E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005, 46, 1023–1027.Search in Google Scholar

24. Rabiei, A., Yousefnia, H., Zolghadri, S., Shamsaei, M., Jalilian, A. R. Preparation, quality control and biodistribution study of 68Ga-BPAMD: optimized production with an in-house 68Ge-68Ga generator. Iran. J. Nucl. Med. 2018, 26, 82–86.Search in Google Scholar

25. Vatsa, R., Kaur, D., Shekhar, S. S., Chhabra, A., Chakraborty, S., Dash, A., Shukla, J., Mittal, B. R. Comparison of 99mTc-methylenediphosphonate and 68Ga-BPAMD PET/computed tomography imaging in bone metastasis. Nucl. Med. Commun. 2023, 44, 463–470; https://doi.org/10.1097/mnm.0000000000001685.Search in Google Scholar

26. Pena-Bonhome, C., Fiaccabrino, D., Rama, T., Fernández-Pavón, D., Southcott, L., Zhang, Z., Lin, K. S., de Blas, A., Patrick, B. O., Schaffer, P., Orvig, C., de Guadalupe Jaraquemada-Peláez, M., Rodríguez-Blas, T. Toward 68Ga and 64Cu positron emission tomography probes: is H2dedpa-N,N′-pram the Missing link for dedpa conjugation? Inorg. Chem. 2023, 62, 20593–20607; https://doi.org/10.1021/acs.inorgchem.2c04123.Search in Google Scholar PubMed PubMed Central

27. Copper-64 Radiopharmaceuticals: Production, Quality Control and Clinical Applications. IAEA Radioisotopes and Radiopharmaceuticals Series No. 7, IAEA, Vienna, 2022, pp. 1–125.Search in Google Scholar

28. Sudbrock, F., Fischer, T., Zimmermanns, B., Guliyev, M., Dietlein, M., Drzezga, A., Schomäcker, K. Characterization of SnO2-based (68)Ge/(68)Ga generators and (68)GaDOTATATE preparations: radionuclide purity, radiochemical yield and long-term constancy. EJNMMI Res. 2014, 4, 36; https://doi.org/10.1186/s13550-014-0036-4.Search in Google Scholar PubMed PubMed Central

29. Velikyan, I. Prospective of 68Ga-radiopharmaceutical development. Theranostics 2013, 4, 47–80; https://doi.org/10.7150/thno.7447.Search in Google Scholar PubMed PubMed Central

30. Jalilian, A. R. An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications. Iran J. Nucl. Med. 2016, 24, 1–10.Search in Google Scholar

31. IAEA Radioisotopes and Radiopharmaceuticals Series No. 7. Copper-64 Radiopharmaceuticals: Production, Quality Control and Clinical Applications; IAEA: Austria, 2022.Search in Google Scholar

32. Johnbeck, C. B., Knigge, U., Loft, A., Berthelsen, A. K., Mortensen, J., Oturai, P., Langer, S. W., Elema, D. R., Kjaer, A. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J. Nucl. Med. 2017, 58, 451–457; https://doi.org/10.2967/jnumed.116.180430.Search in Google Scholar PubMed

33. Gutfilen, B., Souza, S. A. L., Valentini, G. Copper-64: a real theranostic agent. Drug. Des. Devel. Ther. 2018, 12, 3235–3245; https://doi.org/10.2147/dddt.s170879.Search in Google Scholar

34. ICRP Radiological Protection in Biomedical Research ICRP Publication 62. In Annals of ICRP; Pergamon Press: Oxford, New York, Seoul, Tokyo, Vol. 22, 1992.10.1016/0146-6453(91)90019-DSearch in Google Scholar

Received: 2023-10-04
Accepted: 2024-01-31
Published Online: 2024-03-07
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0236/html
Scroll to top button