Home Physical Sciences Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
Article
Licensed
Unlicensed Requires Authentication

Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides

  • Amr M. Emara , Emad M. Elsharma , Islam M. Abdelmonem ORCID logo EMAIL logo and Mamdoh R. Mahmoud
Published/Copyright: June 4, 2024

Abstract

A novel SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate), SiO2/Al2O3/P(AA-co-GMA), composite was synthesized and evaluated for its effectiveness in adsorbing Co(II) ions from aqueous solutions. The composite was analyzed using various techniques including FTIR, SEM, TGA, DTA, and XRD. The composite displays a high specific surface area of 17.451 m2/g, exceeding that of the corresponding copolymer, which measures 0.236 m2/g. Batch adsorption experiments were conducted to investigate the factors influencing the adsorption capacity of the composite for Co(II) ions. In the pH experiments, it was found that at a solution pH of 3.4, the P(AA-co-GMA) copolymer alone showed limited capability in adsorbing Co(II) ions, achieving only 3.82 mg/g. However, upon integration of SiO2/Al2O3 into the polymer matrix, the composite exhibited a significantly enhanced adsorption capacity of 103.54 mg/g. The adsorption process followed a pseudo-second-order kinetic model and attained equilibrium within 60 min. The Langmuir isotherm model was found to best describe the adsorption behavior, with a maximum adsorption capacity of 217.86 mg/g. The adsorption of Co(II) was significantly affected by the ionic strength, especially with Al3+ displaying a more pronounced impact on the adsorption of Co(II) ions compared to Na+, Ca2+, and Mg2+. Thermodynamic studies indicate that the adsorption process was spontaneous and endothermic. Overall, the SiO2/Al2O3/P(AA-co-GMA) composite material displayed significant adsorption ability for Co(II) ions, making it a suitable option for further development as an effective adsorbent in water treatment applications.


Corresponding author: Islam M. Abdelmonem, Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in Radiochimica Acta. Category 1: Conception and design of study: Islam M. Abdelmonem, Emad M. El-Sharma, Amr M. Emara, Mamdoh R. Mahmoud; Acquisition of data: Islam M. Abdelmonem, Emad M. El-Sharma, Amr M. Emara, Mamdoh R. Mahmoud; Analysis and/or interpretation of data: Islam M. Abdelmonem; Category 2: Drafting the manuscript: Islam M. Abdelmonem; Revising the manuscript critically for important intellectual content: Islam M. Abdelmonem, Emad M. El-Sharma, Amr M. Emara, Mamdoh R. Mahmoud; Category 3: Approval of the version of the manuscript to be published: Islam M. Abdelmonem. The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author(s) state(s) no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Ghamry, M. A.; Abdelmonem, I. M. Adsorption of 60Co and 154+152Eu Using Graft Copolymer of Starch-Polyacrylic Acid-Polyvinylsulfonic Acid. J. Polym. Environ. 2022, 30, 3622–3632; https://doi.org/10.1007/s10924-022-02446-w.Search in Google Scholar

2. Abdelmonem, I. M.; Emara, A. M.; Elsharma, E. M. Utilizing Low-Cost Purple Coneflower (Echniacea Purpurea) Marc for Competitive Sorption of 152+154Eu (III), 60Co (II) and 134Cs (I) Radionuclides. J. Environ. Radioact. 2024, 275, 107426; https://doi.org/10.1016/j.jenvrad.2024.107426.Search in Google Scholar PubMed

3. Abou-Lilah, R. A.; Rizk, H. E.; Elshorbagy, M. A.; Gamal, A. M.; Ali, A. M.; Badawy, N. A. Efficiency of Bentonite in Removing Cesium, Strontium, Cobalt and Uranium Ions from Aqueous Solution: Encapsulation with Alginate for Column Application. Int. J. Environ. Anal. Chem. 2020, 102, 1–24; https://doi.org/10.1080/03067319.2020.1761348.Search in Google Scholar

4. Abdel Maksoud, M. I. A.; Sami, N. M.; Hassan, H. S.; Bekhit, M.; Ashour, A. H. Novel Adsorbent Based on Carbon-Modified Zirconia/spinel Ferrite Nanostructures: Evaluation for the Removal of Cobalt and Europium Radionuclides from Aqueous Solutions. J. Colloid Interface Sci. 2022, 607, 111–124; https://doi.org/10.1016/j.jcis.2021.08.166.Search in Google Scholar PubMed

5. Ivanets, A.; Shashkova, I.; Kitikova, N.; Dzikaya, A.; Nekrasova, N.; Milyutin, V.; Baigenzhenov, O.; Zaruba-Venhlinskaya, K.; Radkevich, A. Composite Metal Phosphates for Selective Adsorption and Immobilization of Cesium, Strontium, and Cobalt Radionuclides in Ceramic Matrices. J. Clean. Prod. 2022, 376, 134104; https://doi.org/10.1016/j.jclepro.2022.134104.Search in Google Scholar

6. Sofronov, D.; Krasnopyorova, A.; Efimova, N.; Oreshina, А.; Bryleva, E.; Yuhno, G.; Lavrynenko, S.; Rucki, M. Extraction of Radionuclides of Cerium, Europium, Cobalt and Strontium with Mn3O4, MnO2, and MNOOH Sorbents. Process Saf. Environ. Prot. 2019, 125, 157–163; https://doi.org/10.1016/j.psep.2019.03.013.Search in Google Scholar

7. Zhang, P.; Wang, L.; Du, K.; Wang, S.; Huang, Z.; Yuan, L.; Li, Z.; Wang, H.; Zheng, L.; Chai, Z.; Shi, W. Effective Removal of U(VI) and Eu(III) by Carboxyl Functionalized MXene Nanosheets. J. Hazard. Mater. 2020, 396, 122731; https://doi.org/10.1016/j.jhazmat.2020.122731.Search in Google Scholar PubMed

8. Liu, J.; Ren, S.; Cao, J.; Tsang, D. C. W.; Beiyuan, J.; Peng, Y.; Fang, F.; She, J.; Yin, M.; Shen, N.; Wang, J. Highly Efficient Removal of Thallium in Wastewater by MnFe2O4-Biochar Composite. J. Hazard. Mater. 2021, 401, 123311; https://doi.org/10.1016/j.jhazmat.2020.123311.Search in Google Scholar PubMed

9. Liu, B.; Kim, K. H.; Kumar, V.; Kim, S. A Review of Functional Sorbents for Adsorptive Removal of Arsenic Ions in Aqueous Systems. J. Hazard. Mater. 2020, 388, 121815; https://doi.org/10.1016/j.jhazmat.2019.121815.Search in Google Scholar PubMed

10. Fang, X. H.; Fang, F.; Lu, C. H.; Zheng, L. Removal of Cs+, Sr2+, and Co2+ Ions from the Mixture of Organics and Suspended Solids Aqueous Solutions by Zeolites. Nucl. Eng. Technol. 2017, 49, 556–561; https://doi.org/10.1016/j.net.2016.11.008.Search in Google Scholar

11. Attallah, M. F.; Allan, K. F.; Mahmoud, M. R. Synthesis of Poly(acrylic Acid–Maleic acid)SiO2/Al2O3 as Novel Composite Material for Cesium Removal from Acidic Solutions. J. Radioanal. Nucl. Chem. 2016, 307, 1231–1241; https://doi.org/10.1007/s10967-015-4349-1.Search in Google Scholar

12. Al-Shahrani, S. S. Treatment of Wastewater Contaminated with Cobalt Using Saudi Activated Bentonite. Alex. Eng. J. 2014, 53, 205–211; https://doi.org/10.1016/j.aej.2013.10.006.Search in Google Scholar

13. Liu, H.; Fu, T.; Sarwar, M. T.; Yang, H. Recent Progress in Radionuclides Adsorption by Bentonite-Based Materials as Ideal Adsorbents and Buffer/backfill Materials. Appl. Clay Sci. 2023, 232, 106796; https://doi.org/10.1016/j.clay.2022.106796.Search in Google Scholar

14. Abukhadra, M. R.; El-Sherbeeny, A. M.; El-Meligy, M. A.; Luqman, M. Insight into Carbohydrate Polymers (Chitosan and 2- Hydroxyethyl Methacrylate/methyl Methacrylate) Intercalated Bentonite-Based Nanocomposites as Multifunctional and Environmental Adsorbents for Methyl Parathion Pesticide. Int. J. Biol. Macromol. 2021, 167, 335–344; https://doi.org/10.1016/j.ijbiomac.2020.11.209.Search in Google Scholar PubMed

15. Yılmaz, Ş.; Zengin, A.; Şahan, T. Bentonite Grafted with poly(N-Acryloylglycineamide) Brush: A Novel Clay-Polymer Brush Hybrid Material for the Effective Removal of Hg(II) and As(V) from Aqueous Environments. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125979; https://doi.org/10.1016/j.colsurfa.2020.125979.Search in Google Scholar

16. Zhao, G.; Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X. Polymer-based Nanocomposites for Heavy Metal Ions Removal from Aqueous Solution: A Review. Polym. Chem. 2018, 9, 3562–3582; https://doi.org/10.1039/c8py00484f.Search in Google Scholar

17. Zhuang, S.; Yin, Y.; Wang, J. Removal of Cobalt Ions from Aqueous Solution Using Chitosan Grafted with Maleic Acid by Gamma Radiation. Nucl. Eng. Technol. 2018, 50, 211–215; https://doi.org/10.1016/j.net.2017.11.007.Search in Google Scholar

18. Wang, R.; Deng, L.; Fan, X.; Li, K.; Lu, H.; Li, W. Removal of Heavy Metal Ion Cobalt (II) from Wastewater via Adsorption Method Using Microcrystalline Cellulose–Magnesium Hydroxide. Int. J. Biol. Macromol. 2021, 189, 607–617; https://doi.org/10.1016/j.ijbiomac.2021.08.156.Search in Google Scholar PubMed

19. Vafajoo, L.; Cheraghi, R.; Dabbagh, R.; McKay, G. Removal of Cobalt (II) Ions from Aqueous Solutions Utilizing the Pre-treated 2-Hypnea Valentiae Algae: Equilibrium, Thermodynamic, and Dynamic Studies. Chem. Eng. J. 2018, 331, 39–47; https://doi.org/10.1016/j.cej.2017.08.019.Search in Google Scholar

20. Siddiqui, M. N.; Chanbasha, B.; Al-Arfaj, A. A.; Kon’kova, T.; Ali, I. Super-fast Removal of Cobalt Metal Ions in Water Using Inexpensive Mesoporous Carbon Obtained from Industrial Waste Material. Environ. Technol. Innovat. 2021, 21, 101257; https://doi.org/10.1016/j.eti.2020.101257.Search in Google Scholar

21. Shahwan, T.; Üzüm, Ç.; Eroǧlu, A. E.; Lieberwirth, I. Synthesis and Characterization of Bentonite/iron Nanoparticles and Their Application as Adsorbent of Cobalt Ions. Appl. Clay Sci. 2010, 47, 257–262; https://doi.org/10.1016/j.clay.2009.10.019.Search in Google Scholar

22. Salmani, M. H.; Ehrampoush, M. H.; Eslami, H.; Eftekhar, B. Synthesis, Characterization and Application of Mesoporous Silica in Removal of Cobalt Ions from Contaminated Water. Groundwater Sustain. Dev. 2020, 11, 100425; https://doi.org/10.1016/j.gsd.2020.100425.Search in Google Scholar

23. Ma, F.; Zhu, W.; Cheng, W.; Chen, J.; Gao, J.; Xue, Y.; Yan, Y. Removal of Cobalt Ions (II) from Simulated Radioactive Effluent by Electrosorption on Potassium Hydroxide Modified Activated Carbon Fiber Felt. J. Water Process Eng. 2023, 53, 103635; https://doi.org/10.1016/j.jwpe.2023.103635.Search in Google Scholar

24. Foroutan, R.; Esmaeili, H.; Rishehri, S. D.; Sadeghzadeh, F.; Mirahmadi, S.; Kosarifard, M.; Ramavandi, B. Zinc, Nickel, and Cobalt Ions Removal from Aqueous Solution and Plating Plant Wastewater by Modified Aspergillus flavus Biomass: A dataset. Data Brief 2017, 12, 485–492; https://doi.org/10.1016/j.dib.2017.04.031.Search in Google Scholar PubMed PubMed Central

25. Fang, F.; Kong, L.; Huang, J.; Wu, S.; Zhang, K.; Wang, X.; Sun, B.; Jin, Z.; Wang, J.; Huang, X. J.; Liu, J. Removal of Cobalt Ions from Aqueous Solution by an Amination Graphene Oxide Nanocomposite. J. Hazard. Mater. 2014, 270, 1–10; https://doi.org/10.1016/j.jhazmat.2014.01.031.Search in Google Scholar PubMed

26. Abdelfatah, A.; Abdel-Gawad, O. F.; Elzanaty, A. M.; Rabie, A. M.; Mohamed, F. Fabrication and Optimization of Poly(ortho-Aminophenol) Doped Glycerol for Efficient Removal of Cobalt Ion from Wastewater. J. Mol. Liq. 2022, 345, 117034; https://doi.org/10.1016/j.molliq.2021.117034.Search in Google Scholar

27. Anirudhan, T. S.; Suchithra, P. S. Heavy Metals Uptake from Aqueous Solutions and Industrial Wastewaters by Humic Acid-Immobilized Polymer/bentonite Composite: Kinetics and Equilibrium Modeling. Chem. Eng. J. 2010, 156, 146–156; https://doi.org/10.1016/j.cej.2009.10.011.Search in Google Scholar

28. Wang, K.; Ma, H.; Pu, S.; Yan, C.; Wang, M.; Yu, J.; Wang, X.; Chu, W.; Zinchenko, A. Hybrid Porous Magnetic Bentonite-Chitosan Beads for Selective Removal of Radioactive Cesium in Water. J. Hazard. Mater. 2019, 362, 160–169; https://doi.org/10.1016/j.jhazmat.2018.08.067.Search in Google Scholar PubMed

29. Yu, S. M.; Ren, A. P.; Chen, C. L.; Chen, Y. X.; Wang, X. Effect of pH, Ionic Strength and Fulvic Acid on the Sorption and Desorption of Cobalt to Bentonite. Appl. Radiat. Isot. 2006, 64, 455–461; https://doi.org/10.1016/j.apradiso.2005.08.019.Search in Google Scholar PubMed

30. Manohar, D. M.; Noeline, B. F.; Anirudhan, T. S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194–206; https://doi.org/10.1016/j.clay.2005.08.008.Search in Google Scholar

31. Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319; https://doi.org/10.1021/ja01269a023.Search in Google Scholar

32. Yehia, M.; Labib, S.; Ismail, S. M. Structure, Magnetic and Optical Characterization of Sn1−xLaxO2 Nanoparticles. J. Electron. Mater. 2021, 50, 5796–5809; https://doi.org/10.1007/s11664-021-09085-2.Search in Google Scholar

33. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069; https://doi.org/10.1515/pac-2014-1117.Search in Google Scholar

34. Elsharma, E. M.; Abdelmonem, I. M.; Emara, A. M. Radiation Synthesis and Characterization of Starch-Acrylic Acid-Nanohalloysite Composite for the Removal of Co(II) Ions from Aqueous Solutions. Appl. Radiat. Isot. 2023, 191, 110558; https://doi.org/10.1016/j.apradiso.2022.110558.Search in Google Scholar PubMed

35. Reis, A. V.; Fajardo, A. R.; Schuquel, I. T. A.; Guilherme, M. R.; Vidotti, G. J.; Rubira, A. F.; Muniz, E. C. Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups of Poly(vinyl Alcohol) and Poly(acrylic Acid): Is This Reaction Mechanism Still Unclear? J. Org. Chem. 2009, 74, 3750–3757; https://doi.org/10.1021/jo900033c.Search in Google Scholar PubMed

36. Li, P.; Huang, J. Y.; Liu, G. Z. Preparation of Low Viscosity Epoxy Acrylic Acid Photopolymer Prepolymer in Light Curing System. IOP Conf. Ser. Mater. Sci. Eng. 2018, 292, 012108; https://doi.org/10.1088/1757-899x/292/1/012108.Search in Google Scholar

37. Madrid, J. F.; Cabalar, P. J. E.; Abad, L. V. Radiation-induced Graft Polymerization of Acrylic Acid and Glycidyl Methacrylate onto Abaca/polyester Nonwoven Fabric. J. Nat. Fibers. 2018, 15, 625–638; https://doi.org/10.1080/15440478.2017.1349713.Search in Google Scholar

38. Kalaleh, H. A.; Tally, M.; Atassi, Y. Preparation of Bentonite-G-Poly(acrylate-Co-Acrylamide) Superabsorbent Polymer Composite for Agricultural Applications: Optimization and Characterization. Polym. Sci. B 2015, 57, 750–758; https://doi.org/10.1134/s1560090415060081.Search in Google Scholar

39. Zhao, J.; Wang, S.; Zhang, L.; Wang, C.; Zhang, B. Kinetic, Isotherm, and Thermodynamic Studies for Ag(I) Adsorption Using Carboxymethyl Functionalized Poly(glycidyl Methacrylate). Polymers 2018, 10, 1090; https://doi.org/10.3390/polym10101090.Search in Google Scholar PubMed PubMed Central

40. Hanna, D. M. A.; Youssef, A. M.; El-Metwally, E. A.; Abdelaal, M. Y. Preparation and Characterization of Novel poly(MMA-Co-GMA)/Ag Nanocomposites for Biomedical Applications. Egypt. J. Chem. 2019, 62, 2245–2252.Search in Google Scholar

41. Cheng, W. M.; Hu, X. M.; Zhao, Y. Y.; Wu, M. Y.; Hu, Z. X.; Yu, X. T. Preparation and Swelling Properties of Poly(acrylic Acid-Co-Acrylamide) Composite Hydrogels. E-Polymers 2017, 17, 95–106; https://doi.org/10.1515/epoly-2016-0250.Search in Google Scholar

42. Moulay, S.; Bensacia, N. Removal of Heavy Metals by Homolytically Functionalized Poly(acrylic Acid) with Hydroquinone. Int. J. Ind. Chem. 2016, 7, 369–389; https://doi.org/10.1007/s40090-016-0097-5.Search in Google Scholar

43. Sayed, A.; Hany, F.; Abdel-Raouf, M. E. S.; Mahmoud, G. A. Gamma Irradiation Synthesis of Pectin- Based Biohydrogels for Removal of Lead Cations from Simulated Solutions. J. Polym. Res. 2022, 29, 372; https://doi.org/10.1007/s10965-022-03219-8.Search in Google Scholar

44. Ding, X.; Liang, D.; Zhao, H. Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High‐capacity Lithium‐ion Batteries. Materials 2021, 14, 1–11; https://doi.org/10.3390/ma14051071.Search in Google Scholar PubMed PubMed Central

45. Todica, M.; Stefan, T.; Simon, S.; Balasz, I.; Daraban, L. UV-vis and XRD Investigation of Graphite-Doped Poly(acrylic) Acid Membranes. Turk. J. Phys. 2014, 38, 261–267; https://doi.org/10.3906/fiz-1305-16.Search in Google Scholar

46. Mohammadi, Z. S.; Pourmadadi, M.; Abdouss, M.; Jafari, S. H.; Rahdar, A.; Díez-Pascual, A. M. pH-Sensitive Polyacrylic Acid/Fe3O4@SiO2 Hydrogel Nanocomposite Modified with Agarose for Controlled Release of Quercetin. Inorg. Chem. Commun. 2024, 163, 112338; https://doi.org/10.1016/j.inoche.2024.112338.Search in Google Scholar

47. Shahr El-Din, A. M.; Labib, S.; Allan, K. F.; Attallah, M. F. Novel Nano Network Trigonal Prismatic Ba2CoO4–Deficient BaCoO3 for High-Affinity Sorption of Radiolanthanide Elements of Biomedical Applications: Synthesis and Sorption Studies. Environ. Sci. Pollut. Res. 2021, 28, 21936–21949; https://doi.org/10.1007/s11356-020-12233-6.Search in Google Scholar PubMed

48. Molavi, H.; Mirzaei, K.; Jafarpour, E.; Mohammadi, A.; Salimi, M. S.; Rezakazemi, M.; Nadagouda, M. M.; Aminabhavi, T. M. Wastewater Treatment Using Nanodiamond and Related Materials. J. Environ. Manage. 2024, 349, 119349; https://doi.org/10.1016/j.jenvman.2023.119349.Search in Google Scholar

49. Zhang, C.; Li, H.; Lin, Z.; Du, B.; Zhang, X. Preparation and Characterization of Polyvinyl Chloride Based Carbon Materials with High Specific Surface Area. Carbon Trends 2024, 14, 100322; https://doi.org/10.1016/j.cartre.2024.100322.Search in Google Scholar

50. Ivanets, A. I.; Shashkova, I. L.; Kitikova, N. V.; Drozdova, N. V. Extraction of Co (II) Ions from Aqueous Solutions with Thermally Activated Dolomite. Russ. J. Appl. Chem. 2014, 87, 270–275; https://doi.org/10.1134/s1070427214030045.Search in Google Scholar

51. Lur’e, Y. Y. Handbook on Analytical Chemistry [in Russian]; Khimiya: Moscow, 1979.Search in Google Scholar

52. Krivoshapkin, P. V.; Ivanets, A. I.; Torlopov, M. A.; Mikhaylov, V. I.; Srivastava, V.; Sillanpää, M.; Prozorovich, V. G.; Kouznetsova, T. F.; Koshevaya, E. D.; Krivoshapkina, E. F. Nanochitin/manganese Oxide-Biodegradable Hybrid Sorbent for Heavy Metal Ions. Carbohydr. Polym. 2019, 210, 135–143; https://doi.org/10.1016/j.carbpol.2019.01.045.Search in Google Scholar PubMed

53. Sid Kalal, H.; Rashedi, H.; Shiri-Yekta, Z.; Taghiof, M. The Adsorption of Cobalt Ions from Aqueous Solution Using Multiwalled Carbon Nanotube/polypyrrole Modified with NaBH4: Batch and Fixed-Bed Studies. Microporous Mesoporous Mater. 2024, 366, 112944; https://doi.org/10.1016/j.micromeso.2023.112944.Search in Google Scholar

54. Abdelmonem, I. M.; Allam, E. A.; Gizawy, M. A.; El-Sharkawy, R. M.; Mahmoud, M. E. Adsorption of 60Co(II) and 152+154Eu(III) Radionuclides by a Sustainable Nanobentonite@sodium Alginate@oleylamine Nanocomposite. Int. J. Biol. Macromol. 2023, 229, 344–353; https://doi.org/10.1016/j.ijbiomac.2022.12.288.Search in Google Scholar PubMed

55. Ivanets, A.; Prozorovich, V.; Roshchina, M.; Kouznetsova, T.; Budeiko, N.; Kulbitskaya, L.; Hosseini-Bandegharaei, A.; Masindi, V.; Pankov, V. A Comparative Study on the Synthesis of Magnesium Ferrite for the Adsorption of Metal Ions: Insights into the Essential Role of Crystallite Size and Surface Hydroxyl Groups. Chem. Eng. J. 2021, 411, 128523; https://doi.org/10.1016/j.cej.2021.128523.Search in Google Scholar

56. Wu, X. L.; Zhao, D.; Yang, S. T. Impact of Solution Chemistry Conditions on the Sorption Behavior of Cu(II) on Lin’an Montmorillonite. Desalination 2011, 269, 84–91; https://doi.org/10.1016/j.desal.2010.10.046.Search in Google Scholar

57. Ivanets, A. I.; Srivastava, V.; Kitikova, N. V.; Shashkova, I. L.; Sillanpää, M. Non-apatite Ca-Mg Phosphate Sorbent for Removal of Toxic Metal Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 2010–2017; https://doi.org/10.1016/j.jece.2017.03.041.Search in Google Scholar

58. Maslova, M.; Mudruk, N.; Ivanets, A.; Shashkova, I.; Kitikova, N. The Effect of pH on Removal of Toxic Metal Ions from Aqueous Solutions Using Composite Sorbent Based on Ti-Ca-Mg Phosphates. J. Water Process Eng. 2021, 40, 101830; https://doi.org/10.1016/j.jwpe.2020.101830.Search in Google Scholar

Received: 2023-11-04
Accepted: 2024-05-22
Published Online: 2024-06-04
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0243/pdf
Scroll to top button