Abstract
Many scientists who are members of the Japan Society of Nuclear and Radiochemical Sciences have been involved in academic activities in response to the Fukushima Daiichi Nuclear Power Plant accident. Projects had been implemented that include determining radionuclides in environmental samples, identifying the distribution of radionuclides by large-scale soil monitoring, tracing radionuclide discharge time series, clarifying environmental dynamics of radionuclides, etc. For the last 10 years, these results have been shared and discussed in annual workshops partly sponsored by the society. This review summarizes the studies yielding these results, and they include reconstruction of the 131I distribution on soil by long-lived 129I analysis, reconstruction of the radioactive plume transport, identification of biological resuspension sources, discovery and characterization of cesium particles, and parameterization of the environmental behavior of radiocesium for dose assessment.
Acknowledgement
Ms. Mayumi Kitamura helped in editing the manuscript, and the authors thank her for this.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Komura, K., Yamamoto, M., Muroyama, T., Murata, Y., Nakanishi, T., Hoshi, M., Takada, J., Ishikawa, M., Takeoka, S., Kitagawa, K., Suga, S., Endo, S., Tosaki, N., Mitsugashira, T., Hara, M., Hashimoto, T., Takano, M., Yanagawa, Y., Tsuboi, T., Ichimasa, M., Ichimasa, Y., Imura, H., Sasajima, E., Seki, R., Saito, Y., Kondo, M., Kojima, S., Muramatsu, Y., Yoshida, S., Shibata, S., Yonehara, H., Watanabe, Y., Kimura, S., Shiraishi, K., Ban-nai, T., Sahoo, S. K., Igarashi, Y., Aoyama, M., Hirose, K., Uehiro, T., Doi, T., Tanaka, A., Matsuzawa, T. The JCO criticality accident at Tokai-mura, Japan: an overview of the sampling campaign and preliminary results. J. Environ. Radioact. 2000, 50, 3–14; https://doi.org/10.1016/s0265-931x(00)00054-0.Search in Google Scholar
2. Tanaka, S.-I. Summary of the JCO criticality accident in Tokai-mura and a dose assessment. J. Radiat. Res. 2001, 42, S1–S9; https://doi.org/10.1269/jrr.42.s1.Search in Google Scholar PubMed
3. Igarashi, Y., Kajino, M., Zaizen, Y., Adachi, K., Mikami, M. Atmospheric radioactivity over Tsukuba, Japan: a summary of three years of observations after the FDNPP accident. Prog. Earth Planet. Sci. 2015, 2, 44; https://doi.org/10.1186/s40645-015-0066-1.Search in Google Scholar
4. Miyamoto, Y., Yasuda, K., Magara, M. Size distribution of radioactive particles collected at Tokai, Japan, six days after the nuclear accident. J. Environ. Radioact. 2014, 132, 1–7; https://doi.org/10.1016/j.jenvrad.2014.01.010.Search in Google Scholar PubMed
5. Doi, T., Masumoto, K., Toyoda, A., Tanaka, A., Shibata, Y., Hirose, K. Anthropogenic radionuclides in the atmosphere observed at Tsukuba: characteristics of the radionuclides derived from Fukushima. J. Environ. Radioact. 2013, 122, 55–62; https://doi.org/10.1016/j.jenvrad.2013.02.001.Search in Google Scholar PubMed
6. Uwamino, Y., Ishioka, J., Matsumura, H., Saito, K. Gamma survey in Fukushima prefecture right after the accident at Fukushima Nuclear Power Plant. Prog. Nucl. Sci. Technol. 2014, 4, 23–26; https://doi.org/10.15669/pnst.4.23.Search in Google Scholar
7. Amano, H., Akiyama, M., Chunlei, B., Kawamura, T., Kishimoto, T., Kuroda, T., Muroi, T., Odaira, T., Ohta, Y., Takeda, K., Watanabe, Y., Morimoto, T. Radiation measurements in the Chiba Metropolitan area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident. J. Environ. Radioact. 2012, 111, 42–52; https://doi.org/10.1016/j.jenvrad.2011.10.019.Search in Google Scholar PubMed
8. Ishii, N., Tagami, K., Takata, H., Fujita, K., Kawaguchi, I., Watanabe, Y., Uchida, S. Deposition in Chiba Prefecture, Japan, of Fukushima Daiichi Nuclear Power Plant fallout. Health Phys. 2013, 104, 189–194; https://doi.org/10.1097/hp.0b013e3182764b1b.Search in Google Scholar PubMed
9. Haba, H., Kanaya, J., Mukai, H., Kambara, T., Kase, M. One-year monitoring of airborne radionuclides in Wako, Japan, after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Geochem. J. 2012, 46, 271–278; https://doi.org/10.2343/geochemj.2.0213.Search in Google Scholar
10. Kokaji, L., Shinohara, N. Radiochemical verification technologies for the detection of nuclear explosions – recent developments in radionuclide monitoring with the Comprehensive Nuclear-Test-Ban Treaty. J. Nucl. Radiochem. Sci. 2014, 14, R1–R9; https://doi.org/10.14494/jnrs.14.r1.Search in Google Scholar
11. Asai, M., Kaneya, Y., Sato, T. K., Ooe, K., Sato, N., Toyoshima, A. Efficiency calibration of Ge detector for 131I and 134Cs in soil samples and a simplified calculation of cascade summing corrections for volume source. J. Nucl. Radiochem. Sci. 2012, 12, 5–10; https://doi.org/10.14494/jnrs.12.5.Search in Google Scholar
12. IAEA. Emergency Response Proficiency Test for Japanese Laboratories: Determination of Selected Radionuclides in Water, Soil, Vegetation and Aerosol Filters. (International Atomic Energy Agency, Vienna; 2013). IAEA/AQ/29; IAEA: Vienna, 2020.Search in Google Scholar
13. Minai, Y., Iwamoto, H. Development of certified environmental reference materials for radioactivities, 2015. https://www.jst.go.jp/sentan/hyouka/h26jigo/4_26minai.html (accessed Jan 4, 2022).Search in Google Scholar
14. Minai, Y., Miura, T., Yonezawa, C., Iwamoto, H., Shibukawa, M., Takagai, Y., Furukawa, M., Arakawa, F., Okada, Y., Kakita, K., Kojima, I., Hirai, S. Certified reference materials of agricultural products and foods bearing radioactivity from the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 2016, 307, 2421–2426; https://doi.org/10.1007/s10967-015-4445-2.Search in Google Scholar
15. Miura, T., Minai, Y., Yonezawa, C., Kakita, K., Kojima, I., Okada, Y., Uematsu, Y., Okada, A., Hirai, S. Preparation and certification of certified reference materials of fish meat and ashed bone for determination of 90Sr and radiocesium after Fukushima Daiichi Nuclear Power Plant. J. Radioanal. Nucl. Chem. 2018, 318, 347–352; https://doi.org/10.1007/s10967-018-6028-5.Search in Google Scholar
16. Miura, T., Hachinohe, M., Yunoki, A., Hamamatsu, S., Unno, Y. Validation of measurement comparability of NaI(Tl) scintillation detectors for radioactive cesium in brown rice sample by interlaboratory comparison. J. Radioanal. Nucl. Chem. 2020, 326, 1225–1231; https://doi.org/10.1007/s10967-020-07373-5.Search in Google Scholar
17. Shinohara, A., Saito, T. “3. Japan Geoscience Union and Japan Society of Nuclear and Radiochemical Sciences Cooperative Project” in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station. Housha Kagaku News (JNRS News J.) 2011, 24, 20–25 (in Japanese).Search in Google Scholar
18. Shinohara, A. Fukushima Soil Project and JNRS Society Initiatives, proceedings of the 13th workshop on environmental radioactivity. KEK Proc. 2012, 2012-6, 25–33 (in Japanese).Search in Google Scholar
19. Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S., Otsuka, T., Onda, Y., Hoshi, M., Ikeuchi, Y., Takahashi, F., Kinouchi, N., Saegusa, J., Seki, A., Takemiya, H., Shibata, T. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015, 139, 308–319; https://doi.org/10.1016/j.jenvrad.2014.02.014.Search in Google Scholar PubMed
20. Sakaba, N. The launch of the project. Radioisotopes 2013, 62, 774–780; https://doi.org/10.3769/radioisotopes.62.774.Search in Google Scholar
21. Kita, K., Kasahara, R., Watanabe, A., Tsuruta, H., Uematsu, M., Higaki, S., Yoshida, N., Toyoda, S., Yamada, K., Shinohara, A., Mikami, M., Igarashi, Y., Onda, Y., Sueki, K., Takigawa, M., Japan Geochemical Society of Japan = Japan Geosciences Union = Japan Society of Nuclear and Radiochemical Sciences Collaborative Emergency Sampling Team Atmosphere Research Group and Analysis Research Group: 2.2. “Wide-area observation of atmospheric radioactive materials and the effect of re-scattering from soil” in Kondo, H. Satomura, Y., Takemura, T., Yamazawa, H. and Watanabe, A. edits., 2011 Autumn Meeting Special Session “Current Status and Issues of Radiochemical Transport Models” report. Tenki 2012, 59, 240–241 (in Japanese).Search in Google Scholar
22. Watanabe, A., Kajino, M., Ninomiya, K., Nagahashi, Y., Shinohara, A. Eight-year variations in atmospheric radiocesium in Fukushima city. Atmos. Chem. Phys. 2022, 22, 675–692; https://doi.org/10.5194/acp-22-675-2022.Search in Google Scholar
23. Kinase, T., Kita, K., Igarashi, Y., Adachi, K., Ninomiya, K., Shinohara, A., Okochi, H., Ogata, H., Ishizuka, M., Toyoda, S., Yamada, K., Yoshida, N., Zaizen, Y., Mikami, M., Demizu, H., Onda, Y. The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan. Prog. Earth Planet. Sci. 2018, 5, 12; https://doi.org/10.1186/s40645-018-0171-z.Search in Google Scholar
24. Igaraashi, Y. New academic area research (research area proposal type) “interdisciplinary research on the environmental dynamics of radionuclides released by the Fukushima nuclear accident and its rise. Housha Kagaku News (JNRS News J.) 2013, 27, 28–34 (in Japanese).Search in Google Scholar
25. Onda, Y., Taniguchi, K., Yoshimura, K., Kato, H., Takahashi, J., Wakiyama, Y., Coppin, F., Smith, H. Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems. Nat. Rev. Earth Environ. 2020, 1, 644–660; https://doi.org/10.1038/s43017-020-0099-x.Search in Google Scholar
26. KEK News. “A place for research presentations and information sharing that makes it easy for various people to participate”-efforts of the “workshop on environmental radioactivity”, 2017. https://www.kek.jp/ja/newsroom/2017/12/15/1400/ (accessed Dec 27, 2021).Search in Google Scholar
27. Workshop on Environmental Radioactivity. Summary of studies on environmental radioactivity effects from the accident at the TEPCO Fukushima Daiichi Nuclear Power Plant in the five years since the accident. KEK Rep. 2017, 2016-3 (in Japanese).Search in Google Scholar
28. Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., Yoshida, S., Kubota, Y., Fuma, S., Ihara, S. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci. Rep. 2012, 2, 304; https://doi.org/10.1038/srep00304.Search in Google Scholar PubMed PubMed Central
29. Zheng, J., Aono, T., Uchida, S., Zhang, J., Honda, M. C. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident. Geochem. J. 2012, 46, 361–369; https://doi.org/10.2343/geochemj.2.0209.Search in Google Scholar
30. Bu, W. T., Zheng, J., Aono, T., Wu, J. W., Tagami, K., Uchida, S., Guo, Q. J., Yamada, M. Pu distribution in seawater in the near coastal area off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident. J. Nucl. Radiochem. Sci. 2015, 15, 1–6; https://doi.org/10.14494/jnrs.15.1_1.Search in Google Scholar
31. IAEA. The Fukushima Daiichi Accident, Technical Volume 4/5, “Radiological Consequences”. TI/PUB/1710; IAEA: Vienna, 2015.Search in Google Scholar
32. Koarai, K., Kino, Y., Takahashi, A., Suzuki, T., Shimizu, Y., Chiba, M., Osaka, K., Sasaki, K., Fukuda, T., Isogai, E., Yamashiro, H., Oka, T., Sekine, T., Fukumoto, M., Shinoda, H. 90Sr in teeth of cattle abandoned in evacuation zone: record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident. Sci. Rep. 2016, 6, 24077; https://doi.org/10.1038/srep24077.Search in Google Scholar PubMed PubMed Central
33. Zhang, Z., Ninomiya, K., Takahashi, N., Saito, T., Kita, K., Yamaguchi, Y., Shinohara, A. Rapid isolation method for radioactive Strontium using Empore™ Strontium Rad Disk. J. Nucl. Radiochem. Sci. 2016, 16, 15–21; https://doi.org/10.14494/jnrs.16.15.Search in Google Scholar
34. Zhang, Z., Ninomiya, K., Yamaguchi, Y., Kita, K., Tsuruta, H., Igarashi, Y., Shinohara, A. Atmospheric activity concentration of 90Sr and 137Cs after the Fukushima Daiichi nuclear accident. Environ. Sci. Technol. 2018, 52, 9917–9925; https://doi.org/10.1021/acs.est.8b01697.Search in Google Scholar PubMed
35. Tagami, K., Uchida, S., Ishii, N., Zheng, J. Estimation of Te-132 distribution in Fukushima prefecture at the early stage of the Fukushima Daiichi nuclear power plant reactor failures. Environ. Sci. Technol. 2013, 47, 5007–5012; https://doi.org/10.1021/es304730b.Search in Google Scholar PubMed
36. Miyazawa, N., Uesugi, M., Yokoyama, A. Preparation of a carrier free 124Sb tracer produced in the Sn (p,n) reaction. Radiochim. Acta 2021, 109, 453–458; https://doi.org/10.1515/ract-2020-0105.Search in Google Scholar
37. Muramatsu, Y. “4. Cooperation with Fukushima Prefecture related to the radioactive contamination problem of agricultural products”, in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station”. Housha Kagaku News (JNRS News J.) 2011, 24, 25–27 (in Japanese).Search in Google Scholar
38. Ohtsuki, T. “5. Radioactive material countermeasure test at Fukushima Prefectural Agricultural Research Center Fruit Tree Research Institute, etc., in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station”. Housha Kagaku News (JNRS News J.) 2011, 24, 28 (in Japanese).Search in Google Scholar
39. Takamiya, K. Featured article 4. JNRS Society Initiatives “Fukushima nuclear accident countermeasure project progress report”. Housha Kagaku News (JNRS News J.) 2012, 25, 36–38 (in Japanese).Search in Google Scholar
40. Miyake, Y., Matsuzaki, H., Fujiwara, T., Saito, T., Yamagata, T., Honda, M., Muramatsu, Y. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem. J. 2012, 46, 327–333; https://doi.org/10.2343/geochemj.2.0210.Search in Google Scholar
41. Muramatsu, Y., Matsuzaki, H., Toyama, C., Ohno, T. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). J. Environ. Radioact. 2015, 139, 344–350; https://doi.org/10.1016/j.jenvrad.2014.05.007.Search in Google Scholar PubMed
42. Ebihara, M., Oura, Y., Shirai, N., Nagakawa, Y., Sakurai, N., Haba, H., Matsuzaki, H., Tsuruta, H., Moriguchi, Y. A new approach for reconstructing the 131I-spreading due to the 2011 Fukushima nuclear accident by means of measuring 129I in airborne particulate matter. J. Environ. Radioact. 2019, 208–209, 106000; https://doi.org/10.1016/j.jenvrad.2019.106000.Search in Google Scholar PubMed
43. Oura, Y., Ebihara, M., Tsuruta, H., Nakajima, T., Ohara, T., Ishimoto, M., Sawahata, H., Katsumura, Y., Nitta, W. A database of hourly atmospheric concentrations of radiocesium (134Cs and 137Cs) in suspended particulate matter collected in March 2011 at 99 air pollution monitoring stations in Eastern Japan. J. Nucl. Radiochem. Sci. 2015, 15, 1–12; https://doi.org/10.14494/jnrs.15.2_1.Search in Google Scholar
44. Tsuruta, H., Oura, Y., Ebihara, M., Moriguchi, Y., Ohara, T., Nakajima, T. Spatio-temporal distribution of atmospheric radiocesium in Eastern Japan just after the TEPCO Fukushima Daiichi Nuclear Power Plant accident—analysis of used filter-tapes of SPM monitors in air quality monitoring stations. Earozoru Kenkyu 2017, 32, 244–254 (in Japanese).Search in Google Scholar
45. Igarashi, Y., Kita, K., Maki, T., Kinase, T., Hayashi, N., Hosaka, K., Adachi, K., Kajino, M., Ishizuka, M., Sekiyama, T. T., Zaizen, Y., Takenaka, C., Ninomiya, K., Okochi, H., Sorimachi, A. Fungal spore involvement in the resuspension of radiocaesium in summer. Sci. Rep. 2019, 9, 1954; https://doi.org/10.1038/s41598-018-37698-x.Search in Google Scholar PubMed PubMed Central
46. Kita, K., Igarashi, Y., Kinase, T., Hayashi, N., Ishizuka, M., Adachi, K., Koitabashi, M., Sekiyama, T. T., Onda, Y. Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan. Sci. Rep. 2020, 10, 15330; https://doi.org/10.1038/s41598-020-72029-z.Search in Google Scholar PubMed PubMed Central
47. Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T., Ikemori, F. Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ. Sci. Technol. 2012, 46, 5720–5726; https://doi.org/10.1021/es204667h.Search in Google Scholar PubMed
48. Adachi, K., Kajino, M., Zaizen, Y., Igarashi, Y. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep. 2013, 3, 2554; https://doi.org/10.1038/srep02554.Search in Google Scholar PubMed PubMed Central
49. Abe, Y., Iizawa, Y., Terada, Y., Adachi, K., Igarashi, Y., Nakai, I. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem. 2014, 86, 8521–8525; https://doi.org/10.1021/ac501998d.Search in Google Scholar PubMed
50. Satou, Y., Sueki, K., Sasa, K., Yoshikawa, H., Nakama, S., Minowa, H., Abe, Y., Nakai, I., Ono, T., Adachi, K., Igarashi, Y. Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem. J. 2018, 52, 137–143; https://doi.org/10.2343/geochemj.2.0514.Search in Google Scholar
51. Yamaguchi, N., Kogure, T., Mukai, H., Kotone, A. H., Mitome, M., Hara, T., Fujiwara, H. Structures of radioactive Cs-bearing microparticles in non-spherical forms collected in Fukushima. Geochem. J. 2018, 52, 123–136; https://doi.org/10.2343/geochemj.2.0483.Search in Google Scholar
52. Igarashi, J., Zheng, J., Zhang, Z., Ninomiya, K., Satou, Y., Fukuda, M., Ni, Y., Aono, T., Shinohara, A. First determination of Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident. Sci. Rep. 2019, 9, 11807; https://doi.org/10.1038/s41598-019-48210-4.Search in Google Scholar PubMed PubMed Central
53. Higaki, S., Kurihara, Y., Yoshida, H., Takahashi, Y., Shinohara, N. Discovery of non-spherical heterogeneous radiocesium-bearing particles not derived from Unit 1 of the Fukushima Dai-ichi Nuclear Power Plant, in residences five years after the accident. J. Environ. Radioact. 2017, 177, 65–70; https://doi.org/10.1016/j.jenvrad.2017.06.006.Search in Google Scholar PubMed
54. Igarashi, Y., Kogure, T., Kurihara, Y., Miura, H., Okumura, T., Satou, Y., Takahashi, Y., Yamaguchi, N. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-Ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019, 205–206, 101–118; https://doi.org/10.1016/j.jenvrad.2019.04.011.Search in Google Scholar PubMed
55. Higaki, S., Kurihara, Y., Takahashi, Y. Discovery of radiocesium-bearing particles in masks worn by members of the public in Fukushima in Spring 2013. Health Phys. 2020, 118, 656–663; https://doi.org/10.1097/hp.0000000000001148.Search in Google Scholar PubMed
56. Fan, Q., Tanaka, K., Sakaguchi, A., Kondo, H., Watanabe, N., Takahashi, Y. Factors controlling radiocesium distribution in river sediments: field and laboratory studies after the Fukushima Dai-ichi Nuclear Power Plant accident. Appl. Geochem. 2014, 48, 93–103; https://doi.org/10.1016/j.apgeochem.2014.07.012.Search in Google Scholar
57. Sakaguchi, A., Tanaka, K., Iwatani, H., Chiga, H., Fan, Q., Onda, Y., Takahashi, Y. Size distribution studies of 137Cs in river water in the Abukuma riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015, 139, 379–389; https://doi.org/10.1016/j.jenvrad.2014.05.011.Search in Google Scholar PubMed
58. Takahashi, Y., Sakaguchi, A., Fan, Q., Tanaka, K., Miura, H., Kurihara, Y. In Book: Difference in the Solid-Water Distributions of Radiocesium in Rivers in Fukushima and Chernobyl; Kato, K. A. K., Kalmykov, S., Eds. Springer: Singapore, 2020; pp. 115–150.10.1007/978-981-15-0679-6_5Search in Google Scholar
59. Miura, H., Ishimaru, T., Ito, Y., Kurihara, Y., Otosaka, S., Sakaguchi, A., Misumi, K., Tsumune, D., Kubo, A., Higaki, S., Kanda, J., Takahashi, Y. First isolation and analysis of caesium-bearing microparticles from marine samples in the Pacific coastal area near Fukushima Prefecture. Sci. Rep. 2021, 11, 5664; https://doi.org/10.1038/s41598-021-85085-w.Search in Google Scholar PubMed PubMed Central
60. Suzuki, K., Watanabe, S., Yuasa, Y., Yamashita, Y., Arai, H., Tanaka, H., Kuge, T., Mori, M., Tsunoda, K. I., Nohara, S., Iwasaki, Y., Minai, Y., Okada, Y., Nagao, S. Radiocesium dynamics in the aquatic ecosystem of Lake Onuma on Mt. Akagi following the Fukushima Dai-ichi Nuclear Power Plant accident. Sci. Total Environ. 2018, 622–623, 1153–1164; https://doi.org/10.1016/j.scitotenv.2017.12.017.Search in Google Scholar PubMed
61. Tagami, K., Ishii, N., Uchida, S. Obtaining concentration ratio of 137Cs in edible biota (excluding fish) in marine and freshwater environments by literature survey -comparison of concentration ratio data before and after the Fukushima Nuclear Power Plant accident-. Housha Kagaku 2019, 40, 3–13 (in Japanese).Search in Google Scholar
62. IAEA. Environmental Transfer of Radionuclides in Japan Following the Accident at the Fukushima Daiichi Nuclear Power Plant.IAEA-TECDOC-1927; IAEA: Vienna, 2020.Search in Google Scholar
63. Tagami, K. Use of environmental transfer data to understand the fates of radionuclides in the environments and the future. Radioisotopes 2019, 68, 805–814 (in Japanese); https://doi.org/10.3769/radioisotopes.68.805.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences