Home Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution
Article
Licensed
Unlicensed Requires Authentication

Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution

  • Brandon Perrin ORCID logo , Laurent Venault ORCID logo EMAIL logo , Emilie Broussard , Johan Vandenborre ORCID logo , Guillaume Blain , Massoud Fattahi and Sergey Nikitenko ORCID logo
Published/Copyright: May 2, 2022

Abstract

The study of the formation of radiolytic products, such as molecular hydrogen and nitrous acid, is of primary importance in the reprocessing of spent nuclear fuel and the storage of aqueous solutions containing radioactive materials. The radiolytic yields of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solutions containing plutonium have been experimentally investigated. The results have shown that the yields of radiolytic products depends on the nitric acid concentration as well as the oxidation state of plutonium. However, the influence of plutonium oxidation state on radiolytic yields is less notable as the nitric acid concentration increases. Molecular hydrogen production decreases with increasing nitric acid concentration while nitrous acid and nitrous oxide productions increase. While radiolytic yields from plutonium(IV) nitric acid solutions have been previously investigated, this study provides radiolytic yields from alpha radiolysis of plutonium(III) and plutonium(VI) nitric acid solutions for molecular hydrogen, nitrous acid and nitrous oxide. These information provide insight into the role played by plutonium redox behaviour on the formation of radiolytic products.


Corresponding author: Laurent Venault, CEA, DES, ISEC, DMRC, Université de Montpellier, Bagnols-sur-Ceze 30207, France, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the CEA RCHIM/RTA programme (cross-cutting basic research programme). In this way, the authors would like to thank X. Averty and Ph. Moisy. The authors would also like to thank J. Vermeulen for supporting the lab experiments performed in Atalante facility. The authors would finally like to thank Ph. Moisy, P. Estevenon and V. Fiegel for valuable discussions.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Garaix, G., Venault, L., Costagliola, A., Maurin, J., Guigue, M., Omnee, R., Blain, G., Vandenborre, J., Fattahi, M., Vigier, N., Moisy, P. Alpha radiolysis of nitric acid and sodium nitrate with 4He2+ beam of 13.5 MeV energy. Radiat. Phys. Chem. 2015, 106, 394, https://doi.org/10.1016/j.radphyschem.2014.08.008.Search in Google Scholar

2. Jiang, P. Y., Nagaishi, R., Yotsuyanagi, T., Katsumura, Y., Ishigure, K. γ-Radiolysis study of concentrated nitric acid solutions. J. Chem. Soc. Faraday Trans. 1994, 90, 93, https://doi.org/10.1039/ft9949000093.Search in Google Scholar

3. Matthews, R. W., Mahlman, H. A., Sworski, T. J. Elementary processes in the radiolysis of aqueous nitric acid solutions: determination of both GOH and GNO3. J. Phys. Chem. 1972, 76, 2680, https://doi.org/10.1021/j100663a007.Search in Google Scholar

4. Mezyk, S. P., Cullen, T. D., Elias, G., Mincher, B. J. Aqueous nitric acid radiation effects on solvent extraction process chemistry. Nucl. Energy Environ. 2010, 1046, 193, https://doi.org/10.1021/bk-2010-1046.ch016.Search in Google Scholar

5. Nagaishi, R. A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem. 2001, 60, 369, https://doi.org/10.1016/s0969-806x(00)00410-2.Search in Google Scholar

6. Pastina, B., Laverne, J. A. Hydrogen peroxide production in the radiolysis of water with heavy ions. J. Phys. Chem. 1999, 103, 1592, https://doi.org/10.1021/jp984433o.Search in Google Scholar

7. Horne, G. P., Pimblott, S. M., Laverne, J. A. Inhibition of radiolytic molecular hydrogen formation by quenching of excited state water. J. Phys. Chem. B 2017, 121, 5385, https://doi.org/10.1021/acs.jpcb.7b02775.Search in Google Scholar PubMed

8. Crumière, F., Vandenborre, J., Essehli, R., Blain, G., Barbet, J., Fattahi, M. LET effects on the hydrogen production induced by the radiolysis of pure water. Radiat. Phys. Chem. 2013, 82, 74.10.1016/j.radphyschem.2012.07.010Search in Google Scholar

9. Kazanjian, A. R., Miner, F. J., Brown, A. K., Hagan, P. G., Berry, J. W. Radiolysis of nitric acid solutions : L.E.T. effects. Trans. Faraday Soc. 1970, 66, 2192. https://doi.org/10.1039/tf9706602192.Search in Google Scholar

10. Miner, F. J., Kazanjian, A. R., Brown, A. K., Hagan, P. G., Berry, J. W. Radiation chemistry of nitric acid solutions. Tech. Rep. RFP 1969, 1299; https://doi.org/10.2172/4805752.Search in Google Scholar

11. Gregson, C. R., Horne, G. P., Orr, R. M., Pimblott, S. M., Sims, H. E., Taylor, R. J., Webb, K. J. Molecular hydrogen yields from the α-self-radiolysis of nitric acid solutions containing plutonium or americium. J. Phys. Chem. B 2018, 122, 2627, https://doi.org/10.1021/acs.jpcb.7b12267.Search in Google Scholar

12. Kazanjian, A. R., Horrell, D. R. Radiolytically generated gases in plutonium-nitric acid solutions. Radiat. Eff. 1972, 13, 277, https://doi.org/10.1080/00337577208231191.Search in Google Scholar

13. Pikaev, A. K., Shilov, V. P., Gogolev, A. V. Radiation chemistry of aqueous solutions of actinides. Russ. Chem. Rev. 1997, 66, 763, https://doi.org/10.1070/rc1997v066n09abeh000284.Search in Google Scholar

14. Burns, W. G., Lyon, C. E., Marsh, W. R. The self radiolysis of nitric acid solutions of Pu(IV) nitrate. Eur. Appl. Res. Rept.-Nucl. Sci. Technol. 1981, 3, 653.Search in Google Scholar

15. Sheppard, J. C. Alpha radiolysis of plutonium(IV)-nitric acid solutions. Tech. Rep. BNWL 1968, 751; https://doi.org/10.2172/4505234.Search in Google Scholar

16. Bibler, N. E. Curium-244 α-radiolysis of nitric acid. Oxygen production from direct radiolysis of nitrate ions. J. Phys. Chem. 1974, 78, 211, https://doi.org/10.1021/j100596a003.Search in Google Scholar

17. Savel’ev, Y. I., Ershova, Z. V., Vladimirova, M. V. Alpha-radiolysis of aqueous solutions of nitric acid. Radiokhimiya 1967, 9, 225.Search in Google Scholar

18. Dukes, E. K. Kinetics and mechanisms for the oxidation of trivalent plutonium by nitrous acid. J. Am. Chem. Soc. 1960, 82, 9, https://doi.org/10.1021/ja01486a003.Search in Google Scholar

19. Bhattacharyya, P. K., Veeraraghavan, R. Reaction between nitrous acid and hydrogen peroxide in perchloric acid medium. Int. J. Chem. Kinet. 1977, 9, 629, https://doi.org/10.1002/kin.550090411.Search in Google Scholar

20. Anbar, M., Taube, H. Interaction of nitrous acid with hydrogen peroxide and with water. J. Am. Chem. Soc. 1954, 76, 6243, https://doi.org/10.1021/ja01653a007.Search in Google Scholar

21. Bhattacharyya, P. K., Saini, R. D. Radiolytic yields G(HNO2) and G(H2O2) in the aqueous nitric acid system. Int. J. Radiat. Phys. Chem. 1973, 5, 91, https://doi.org/10.1016/0020-7055(73)90031-4.Search in Google Scholar

22. Mahlman, H. A., Schweitzer, G. K. Radiation-induced nitrite formation from concentrated nitrate solutions. J. Inorg. Nucl. Chem. 1958, 5, 213, https://doi.org/10.1016/0022-1902(58)80132-3.Search in Google Scholar

23. Head, D., Walker, D. C. Nitrous oxide as a scavenger in the radiolysis of water. Nature 1965, 207, 517, https://doi.org/10.1038/207517a0.Search in Google Scholar

24. Park, Y. T., Kim, K. W., Song, N. W., Kim, D. Nitrous oxide as a radical scavenger. J. Org. Chem. 1998, 63, 4494, https://doi.org/10.1021/jo971559t.Search in Google Scholar

25. Andreychuk, N. N., Frolov, A. A., Rotmanov, K. V., Vasiliev, V. Y. Plutonium(III) oxidation under α-irradiation in nitric acid solutions. J. Radioanal. Nucl. Chem. 1990, 143, 427, https://doi.org/10.1007/bf02039611.Search in Google Scholar

26. Mahfud, L., Ronze, D., Wehrer, A., Zoulalian, A. Réduction de l’acide nitreux par une solution aqueuse d’urée ou d’acide sulfamique en vue du traitement des NOx d’un effluent gazeux. Chem. Eng. 1998, 70, 85, https://doi.org/10.1016/s1385-8947(98)80013-2.Search in Google Scholar

27. Hughes, M. N. Kinetic study of the reaction between nitrous acid and sulphamic acid. J. Chem. Soc. A 1967, 902, https://doi.org/10.1039/j19670000902.Search in Google Scholar

28. Hagan, P. G., Miner, F. J. Spectrophotometric determination of plutonium III, IV, and VI in nitric acid solutions. Tech. Rep. RFP 1969, 294, 1391, https://doi.org/10.2172/4760889.Search in Google Scholar

29. Kuno, Y., Hina, T., Masui, J. Radiolytically generated hydrogen and oxygen from plutonium nitrate solutions. J. Nucl. Sci. Technol. 1993, 30, 919, https://doi.org/10.1080/18811248.1993.9734566.Search in Google Scholar

30. Musat, R., Marignier, J. L., Le Naour, C., Denisov, S., Venault, L., Moisy, Ph., Mostafavi, M. Pulse radiolysis study on the reactivity of NO3 radical toward uranous(IV), hydrazinium nitrate and hydroxyl ammonium nitrate at room temperature and at 45°C. Phys. Chem. Chem. Phys. 2020, 22, 5188, https://doi.org/10.1039/c9cp07034f.Search in Google Scholar PubMed

31. Eisenberg, G. M. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. - Anal. Ed. 1943, 15, 327, https://doi.org/10.1021/i560117a011.Search in Google Scholar

32. Maillard, C., Adnet, J. M. Plutonium(IV) peroxide formation in nitric medium and kinetics Pu(VI) reduction by hydrogen peroxide. Radiochim. Acta 2001, 89, 485, https://doi.org/10.1524/ract.2001.89.8.485.Search in Google Scholar

33. Horne, G. P., Gregson, C. R., Sims, H. E., Orr, R. M., Taylor, R. J., Pimblott, S. M. Plutonium and Americium Alpha radiolysis of nitric acid solutions. J. Phys. Chem. B 2017, 121, 883, https://doi.org/10.1021/acs.jpcb.6b12061.Search in Google Scholar PubMed

34. Pastina, B., LaVerne, J. A. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. 2001, 105, 9316, https://doi.org/10.1021/jp012245j.Search in Google Scholar

35. Garaix, G., Horne, G. P., Venault, L., Moisy, P., Pimblott, S. M., Marignier, J. L., Mostafavi, M. Decay mechanism of NO3• radical in highly concentrated nitrate and nitric acidic solutions in the absence and presence of hydrazine. J. Phys. Chem. B 2016, 120, 5008, https://doi.org/10.1021/acs.jpcb.6b02915.Search in Google Scholar PubMed

36. Garaix, G. Radiolyse alpha de solutions aqueuses d’acide nitrique; Thèse de l’Université Montpellier - CEA Marcoule, 2014.Search in Google Scholar

37. Pikaev, A. K., Pirogova, G. N., Kosareva, I. M., Gogolev, A. V., Shilov, V. P. Radiation-chemical aspects of radioactive waste management. High Energy Chem. 2003, 37, 60, https://doi.org/10.1023/a:1022876130099.10.1023/A:1022876130099Search in Google Scholar

38. Hughes, M. N., Lusty, J. R., Wallis, H. L. Kinetics and mechanism of the sulphamic acid-nitric acid reaction : evidence for consecutive reactions. J. Chem. Soc., Dalton Trans. 1978, 530, https://doi.org/10.1039/dt9780000530.Search in Google Scholar

39. Dzelzkalns, L. S., Bonner, F. T. Reaction between nitric and sulfamic acids in aqueous solution. Inorg. Chem. 1978, 17, 3710, https://doi.org/10.1021/ic50190a080.Search in Google Scholar

40. Vladimirova, M. V. Radiation chemistry of actinides. J. Radioanal. Nucl. Chem. 1990, 143, 445–454, https://doi.org/10.1007/bf02039613.Search in Google Scholar

41. Liu, Z., Fang, Z., Wang, L., He, H., Lin, M. Z. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source. Nucl. Sci. Tech. 2017, 28, 1, https://doi.org/10.1007/s41365-017-0200-4.Search in Google Scholar

Received: 2021-12-12
Revised: 2022-04-07
Accepted: 2022-04-10
Published Online: 2022-05-02
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1136/html?lang=en
Scroll to top button