Home Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands

  • Patrik Weßling EMAIL logo , Michael Trumm , Thomas Sittel , Andreas Geist and Petra J. Panak
Published/Copyright: April 26, 2022

Abstract

(2R,2′S)-2,2′-oxybis-(N,N-didecylpropanamide) (cis-mTDDGA) and (2R,2′R)-2,2′-oxybis-(N,N-didecylpropanamide) (trans-mTDDGA) were studied using time-resolved laser fluorescence spectroscopy (TRLFS), vibronic side-band spectroscopy (VSBS) and density functional theory calculations (DFT) to find reasons for their different extraction properties. Stability constants of the respective Cm(III) and Eu(III) complexes show cis-mTDDGA to be the superior ligand which is in agreement with results from extraction experiments. cis-mTDDGA extracts Cm(III) and Eu(III) as 1:3 complexes. In case of trans-mTDDGA, 1:2 complexes of the form [M(trans-mTDDGA)21-NO3)(H2O)2]2+ (M = Cm, Eu) are extracted additionally to the 1:3 complexes. VSBS and DFT confirm the presence of inner-sphere nitrate in the 1:2 complex.


Corresponding author: Patrik Weßling, Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; and Heidelberg University, Institute for Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany, E-mail:

Funding source: European Research Council http://dx.doi.org/10.13039/501100000781

Award Identifier / Grant number: 755171

Funding source: German Federal Ministry for Research and Education

Award Identifier / Grant number: 02NUK059A

Award Identifier / Grant number: 02NUK059C

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (project GENIORS, grant agreement no. 755171) and the German Federal Ministry for Research and Education (grant agreement no. 02NUK059A, 02NUK059C).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3/n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91. https://doi.org/10.1081/sei-100001376.Search in Google Scholar

2. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751. https://doi.org/10.1021/cr200002f.Search in Google Scholar PubMed

3. Whittaker, D., Geist, A., Modolo, G., Taylor, R., Sarsfield, M., Wilden, A. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solvent Extr. Ion Exch. 2018, 36, 223. https://doi.org/10.1080/07366299.2018.1464269.Search in Google Scholar

4. Taylor, R., Ed. Reprocessing and Recycling of Spent Nuclear Fuel; Woodhead Publishing: Cambridge, UK, 2015.Search in Google Scholar

5. Bhattacharyya, A., Mohapatra, P. K. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N, O’ donor ligands: a review. Radiochim. Acta 2019, 107, 931. https://doi.org/10.1515/ract-2018-3064.Search in Google Scholar

6. Baron, P., Cornet, S. M., Collins, E. D., DeAngelis, G., Del Cul, G., Fedorov, Y., Glatz, J. P., Ignatiev, V., Inoue, T., Khaperskaya, A., Kim, I. T., Kormilitsyn, M., Koyama, T., Law, J. D., Lee, H. S., Minato, K., Morita, Y., Uhlíř, J., Warin, D., Taylor, R. J. A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments. Prog. Nucl. Energy 2019, 117, 103091. https://doi.org/10.1016/j.pnucene.2019.103091.Search in Google Scholar

7. Geist, A., Adnet, J.-M., Bourg, S., Ekberg, C., Galán, H., Guilbaud, P., Miguirditchian, M., Modolo, G., Rhodes, C., Taylor, R. An overview of solvent extraction processes developed in Europe for advanced nuclear fuel recycling, part 1 – heterogeneous recycling. Separ. Sci. Technol. 2021, 56, 1866. https://doi.org/10.1080/01496395.2020.1795680.Search in Google Scholar

8. Wilden, A., Kreft, F., Schneider, D., Paparigas, Z., Modolo, G., Lumetta, G. J., Gelis, A. V., Law, J. D., Geist, A. Counter current actinide lanthanide separation process (ALSEP) demonstration test with a simulated PUREX raffinate in centrifugal contactors on the laboratory scale. Appl. Sci. 2020, 10, 7217. https://doi.org/10.3390/app10207217.Search in Google Scholar

9. OECD-NEA. Homogeneous Versus Heterogeneous Recycling of Transuranics in Fast Nuclear Reactors, in NEA No. 7077; Nuclear Energy Agency (NEA): Paris, 2012.Search in Google Scholar

10. Miguirditchian, M., Chareyre, L., Hérès, X., Hill, C., Baron, P., Masson, M. GANEX: adaptation of the DIAMEX-SANEX process for the group actinide separation. In Proceedings of the International Conference on GLOBAL 2007 (Advanced Nuclear Fuel Cycles and Systems), Boise, Idaho, USA, 9–13 September, 2007.Search in Google Scholar

11. Miguirditchian, M., Roussel, H., Chareyre, L., Baron, P., Espinoux, D., Calor, J.-N., Viallesoubranne, C., Lorrain, B., Masson, M. HA demonstration in the Atalante facility of the GANEX 2nd cycle for the grouped TRU extraction. In Proceedings of the International Conference on GLOBAL 2009 (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives), Paris, France, 6–11 September, 2009.Search in Google Scholar

12. Carrott, M., Geist, A., Hérès, X., Lange, S., Malmbeck, R., Miguirditchian, M., Modolo, G., Wilden, A., Taylor, R. Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the “EURO-GANEX” process. Hydrometallurgy 2015, 152, 139. https://doi.org/10.1016/j.hydromet.2014.12.019.Search in Google Scholar

13. Carrott, M., Bell, K., Brown, J., Geist, A., Gregson, C., Hérès, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Müllich, U., Sarsfield, M., Wilden, A., Taylor, R. Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr. Ion Exch. 2014, 32, 447. https://doi.org/10.1080/07366299.2014.896580.Search in Google Scholar

14. Malmbeck, R., Magnusson, D., Bourg, S., Carrott, M., Geist, A., Hérès, X., Miguirditchian, M., Modolo, G., Müllich, U., Sorel, C., Taylor, R., Wilden, A. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process. Radiochim. Acta 2019, 107, 917. https://doi.org/10.1515/ract-2018-3089.Search in Google Scholar

15. Wilden, A., Modolo, G., Lange, S., Sadowski, F., Beele, B. B., Skerencak-Frech, A., Panak, P. J., Iqbal, M., Verboom, W., Geist, A., Bosbach, D. Modified diglycolamides for the An(III) + Ln(III) co-separation: evaluation by solvent extraction and time-resolved laser fluorescence spectroscopy. Solvent Extr. Ion Exch. 2014, 32, 119. https://doi.org/10.1080/07366299.2013.833791.Search in Google Scholar

16. Klaß, L., Wilden, A., Kreft, F., Wagner, C., Geist, A., Panak, P. J., Herdzik-Koniecko, I., Narbutt, J., Modolo, G. Evaluation of the hydrophilic complexant N,N,N’,N’-tetraethyldiglycolamide (TEDGA) and its methyl-substituted analogues in the selective Am(III) separation. Solvent Extr. Ion Exch. 2019, 37, 297.10.1080/07366299.2019.1651039Search in Google Scholar

17. Malmbeck, R., Magnusson, D., Geist, A. Modified diglycolamides for grouped actinide separation. J. Radioanal. Nucl. Chem. 2017, 314, 2531. https://doi.org/10.1007/s10967-017-5614-2.Search in Google Scholar

18. Wilden, A., Kowalski, P. M., Klaß, L., Kraus, B., Kreft, F., Modolo, G., Li, Y., Rothe, J., Dardenne, K., Geist, A., Leoncini, A., Huskens, J., Verboom, W. Unprecedented inversion of selectivity and extraordinary difference in the complexation of trivalent f-elements by diastereomers of a methylated diglycolamide. Chem. Eur J. 2019, 25, 5507. https://doi.org/10.1002/chem.201806161.Search in Google Scholar PubMed

19. Verlinden, B., Wilden, A., Van Hecke, K., Egberink, R. J. M., Huskens, J., Verboom, W., Hupert, M., Weßling, P., Geist, A., Panak, P. J., Hermans, R., Verwerft, M., Modolo, G., Binnemanns, K., Cardineals, T. Solvent Extr. Ion Exch. (submitted).Search in Google Scholar

20. Iqbal, M., Huskens, J., Verboom, W., Sypula, M., Synthesis, M. G. Supramol. Chem. 2010, 22, 827. https://doi.org/10.1080/10610278.2010.506553.Search in Google Scholar

21. Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

22. Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

23. TURBOMOLE V7.0. A Development of University of Karlsruhe and Forschungszentrum KarlsruheGmbH; TURBOMOLE GmbH, 1989–2007. Since 2007 http://www.turbomole.com.Search in Google Scholar

24. Küchle, W., Dolg, M., Stoll, H., Preuss, H. Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 1994, 100, 7535.10.1063/1.466847Search in Google Scholar

25. Ishimori, K., Watanabe, M., Kimura, T., Yaita, T., Yamada, T., Kataoka, Y., Shinoda, S., Tsukube, H. Novel separation system of trivalent actinides – combined effects of substituted tris(2-pyridylmethyl)amine ligand and hydrophobic counter-anion. Chem. Lett. 2005, 34, 1112. https://doi.org/10.1246/cl.2005.1112.Search in Google Scholar

26. Lemaire, M., Guy, A., Chomel, R., Foos, J. Dicyclohexano-18-crown-6 ether: a new selective extractant for nuclear fuel reprocessing. J. Chem. Soc., Chem. Commun. 1991, 1152. https://doi.org/10.1039/c39910001152.Search in Google Scholar

27. Tsaryuk, V. I., Savchenko, V. D., Aryutkina, N. L., Chenskaya, T. B. Vibronic spectra of europium nitrate hexahydrate. J. Appl. Spectrosc. 1994, 60, 185. https://doi.org/10.1007/bf02606351.Search in Google Scholar

28. Tsaryuk, V. I., Savchenko, V. D., Zolin, V. F., Kudryashova, V. A. Vibronic interaction in europium nitrates Eu(NO3)3·4SOR2. Spectrochim. Acta 2000, 56, 1149. https://doi.org/10.1016/s1386-1425(99)00213-9.Search in Google Scholar

29. Steppert, M., Cisarova, I., Fanghänel, T., Geist, A., Lindqvist-Reis, P., Panak, P., Stepnicka, P., Trumm, S., Walther, C. Complexation of europium(III) by bis(dialkyltriazinyl)bipyridines in 1-octanol. Inorg. Chem. 2012, 51, 591. https://doi.org/10.1021/ic202119x.Search in Google Scholar

30. Chodos, S. L., Satten, R. A. Model calculation of vibronic sidebands in Cs2UBr6. J. Chem. Phys. 1975, 62, 2411. https://doi.org/10.1063/1.430767.Search in Google Scholar

31. Iben, I. E., Stavola, M., Macgregor, R. B., Zhang, X. Y., Friedman, J. M. Gd3+ vibronic side band spectroscopy. New optical probe of Ca2+ binding sites applied to biological macromolecules. Biophys. J. 1991, 59, 1040. https://doi.org/10.1016/s0006-3495(91)82319-0.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1134).


Received: 2021-12-08
Accepted: 2022-03-25
Published Online: 2022-04-26
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1134/html?lang=en
Scroll to top button