Home On the volatility of protactinium in chlorinating and brominating gas media
Article
Licensed
Unlicensed Requires Authentication

On the volatility of protactinium in chlorinating and brominating gas media

  • Heinz W. Gäggeler , Bernd Eichler , Dieter T. Jost and Robert Eichler EMAIL logo
Published/Copyright: April 21, 2022

Abstract

A multi-target recoil chamber technique was applied to study online chemical properties of protactinium in chlorinating and brominating gas media using 226Pa (T 1/2 = 1.8 min) decaying by alpha emission (74%) and β+/EC decay (26%). A 58 MeV proton beam passing 15 × 50 μg/cm2 thick 232Th targets enabled production of 226Pa formed in the reaction 232Th(p,7n). Isothermal gas chromatography in quartz columns allowed for the determination of adsorption enthalpies of oxohalides and pure halides of Pa5+ compounds. On the basis of empirical correlations, these adsorption enthalpies (ΔH0 ads) could be converted to sublimation enthalpies (ΔH0 subl). Resulting values for the assumed compounds PaCl5, PaOCl3, PaBr5, and PaOBr3 were 113 ± 15, 329 ± 16, 165 ± 5 and 235 ± 17 kJ/mol, respectively. These values are rather similar to known ΔH0 subl data for group-5 elements Nb, Ta and Db in support of the assumption that Pa is a pseudo-group 5 element.


Corresponding author: R. Eichler, Labor für Radiochemie, Paul Scherrer Institut, 5232 Villigen, Switzerland, E-mail:

Acknowledgments

The authors are indebted to the crew of the PSI-Philips cyclotron for providing intense and stable proton beams throughout the entire experiment. Supply of the Th targets by the target laboratory of GSI Darmstadt is highly appreciated.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hahn, O., Meitner, L. Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer. Phys. Z. 1918, 19, 208–212.Search in Google Scholar

2. Soddy, F., Cranston, J. A. The parent of actinium. Proc. R. Soc. A 1918, 94, 384–404.10.1098/rspa.1918.0025Search in Google Scholar

3. Grosse, A. V. Die Konzentrierung und Isolierung des Elements 91 — Protactinium. Naturwissenschaften 1927, 15, 766–767; https://doi.org/10.1007/bf01504977.Search in Google Scholar

4. Oak Ridge, Natl. Lab. Proc. Protactinium Chem. Symp., Gatlinburg, Tenn., 25–26 April 1963. US Report TID, Oak Ridge Natl. Lab: Oak Ridge, 1964.Search in Google Scholar

5. Boussières, G., Muxart, R., Eds. Physico-Chimie du Protactinium. Centre National de la Recherche Scientifique Orsay: Paris, 1966; July 2–8, 1965.Search in Google Scholar

6. Born, H.-J., Ed. Tagungsbericht 3. Int. Pa-Konf., Schloss Elmau, 15–18 April 1969; German Report BMBW-FBK-71-17, Technical University Munich: Munich, 1971.Search in Google Scholar

7. Naubert, P., Gottwald, T., Studer, D., Wendt, K. Excited atomic energy levels in protactinium by resonance ionisation spectroscopy. Phys. Rev. A 2018, 98, 022505.10.1103/PhysRevA.98.022505Search in Google Scholar

8. Le Naour, C., Roques, J., Den Auwer, C., Moisy, P., Aupiais, J. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety. Radiochim. Acta 2019, 107, 979–991; https://doi.org/10.1515/ract-2019-3119.Search in Google Scholar

9. Siberchicot, B., Aupiais, J., Le Naour, Cl. Quantum molecular dynamics investigations of protactinium (V) fluoro and oxofluoro complexes in solution. Radiochim. Acta 2021, 109, 673–680; https://doi.org/10.1515/ract-2020-0076.Search in Google Scholar

10. Wilson, R. E., De Sio, S., Vallet, V. Protactinium and the intersection of actinide and transition metal chemistry. Nat. Commun. 2018, 9, 622; https://doi.org/10.1038/s41467-018-02972-z.Search in Google Scholar PubMed PubMed Central

11. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., Schultz, M. K. A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. 2016, 307, 59–67; https://doi.org/10.1007/s10967-015-4124-3.Search in Google Scholar

12. Malmbeck, R., Banik, N. L. Purification and accurate concentration determination of 231Pa. J. Radioanal. Nucl. Chem. 2021, 328, 870–887; https://doi.org/10.1007/s10967-021-07699-8.Search in Google Scholar

13. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, M. F., Birnbaum, E. R., John, K. D., Fassbender, M. E. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim. Acta 2016, 104, 291–304; https://doi.org/10.1515/ract-2015-2486.Search in Google Scholar

14. Le Naour, C., Maloubier, M., Aupiais, J. The speciation of protactinium since its discovery: a nightmare or a path of resilience. Radiochim. Acta 2022. 110, 481–493.10.1515/ract-2021-1126Search in Google Scholar

15. Meitner, L., Strassmann, F., Hahn, O. Künstliche Umwandlungsprozesse bei Bestrahlung des Thoriums mit Neutronen; Auftreten isomerer Reihen durch Abspaltung von α-Strahlen. Z. Phys. 1938, 109, 538–552; https://doi.org/10.1007/bf01340332.Search in Google Scholar

16. Seaborg, G. T. The transuranium elements. Science 1946, 104, 379–386. 2704; https://doi.org/10.1126/science.104.2704.379.Search in Google Scholar PubMed

17. Silva, R. J., Nitsche, H. Actinide environmental chemistry. Radiochim. Acta 1995, 70/71, 377–396; https://doi.org/10.1524/ract.1995.7071.s1.377.Search in Google Scholar

18. Kirby, K. W. The Radiochemistry of Protactinium. U.S. Report NAS-NS-3016, Subcommittee on Radiochemistry; National Academy of Sciences, National Research Council: Washington, DC, 1959.Search in Google Scholar

19. Keller, C. The chemistry of protactinium. Angew. Chem. Int. Ed. 1966, 5, 23–35; https://doi.org/10.1002/anie.196600231.Search in Google Scholar

20. Brown, D. J. Protactinium(V) chlorides. Chem. Soc. A 1966, 874–878; https://doi.org/10.1039/j19660000874.Search in Google Scholar

21. Brown, D., Smith, A. J. The Crystal Structure of Potassium Heptafluoroprotactinate(V). Chem. Com. (London) 1965, 554–555; https://doi.org/10.1039/c19650000554.Search in Google Scholar

22. Bagnall, K. W., Brown, D., Easey, J. F. Preparation, crystallographic properties, and infrared spectra of quadrivalent oxyhalides of thorium, protactinium, uranium, and neptunium. J. Chem. Soc. A 1968, 288–289; https://doi.org/10.1039/j19680000288.Search in Google Scholar

23. Fuger, J., Brown, D. Thermodynamics of the actinoid elements. Part V.l enthalpies and Gibbs energies of formation of some protactinium-(IV) and -(V) halides. Dalton Trans. 1975, 2256–2263; https://doi.org/10.1039/dt9750002256.Search in Google Scholar

24. Shibutani, T., Shibutani, S. Database development of chemical thermodynamics of protactinium for performance assessment of HLW geological disposal system PNC technical report. PNC TN8410 98-052, 1998.Search in Google Scholar

25. Konings, R. J., Benes, O., Kovacs, A., Manara, D., Sedmidudsky, D., Gorokhov, L., Iorish, V. S., Yungman, V., Shenyavskaya, E., Osina, E. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. J. Phys. Chem. Ref. Data 2014, 43, 013101; https://doi.org/10.1063/1.4825256.Search in Google Scholar

26. Myasoedov, B. F., Kirby, H. W. Tananaev: Protactinium I.G. The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: Dordrecht, 2006. ISBN 1-4020-3555-1, pp. 161–252.10.1007/1-4020-3598-5_4Search in Google Scholar

27. Wagman, D. D., and others The NBS Tables of Chemical Thermodynamic Properties; National Bureau of Standards: Washington, 1982.Search in Google Scholar

28. Krestov, K. A. Thermochemistry of Compounds of the Rare Earth Elements and Actinides; Atomizdat: Moscow, 1972.Search in Google Scholar

29. Karapetjanz, N. Ch., Karapetjanz, M. L. Fundamental Thermodynamic Constants of Inorganic and Organic Compounds; Chimia: Moscow, 1968.Search in Google Scholar

30. Weigel, F., Hoffmann, G., Ter Meer, N. Der Dampfdruck des Protactinium(V)-chlorides. Radiochim. Acta 1962, 1, 2–4.Search in Google Scholar

31. Brown, D., Jones, P. J. Some protactinium(IV) halides, their complexes and hexahalogeno-salts. Chem. Comm. 1966, 9, 279–280; https://doi.org/10.1039/c19660000279.Search in Google Scholar

32. Brown, D., Jones, P. J. Protactinium(V) chlorides. J. Chem. Soc. A 1966, 874–878; https://doi.org/10.1039/j19660000874.Search in Google Scholar

33. Brown, D., Jones, P. J. Protactinium(V) bromides. J. Chem. Soc. A 1966, 262–264; https://doi.org/10.1039/j19660000262.Search in Google Scholar

34. Brown, D., Petcher, T. J., Smith, A. J. Crystal structures of some protactinium bromides. Nature 1968, 217, 237–238; https://doi.org/10.1038/217737a0.Search in Google Scholar

35. Gäggeler, H. W., Jost, D. T., Baltensperger, U., Weber, A., Kovacs, A., Vermeulen, D., Türler, A. OLGA II, an on-line gas chemistry apparatus for applications in heavy element research. Nucl. Instrum. Methods Phys. Res. A 1991, 309, 201–208.10.1016/0168-9002(91)90103-WSearch in Google Scholar

36. Hall, H. L., Nurmia, M. J., Hoffman, D. C. A multiple target gas-jet system for light-ion bombardments of heavy targets. Nucl. Instrum. Methods Phys. Res. A 1989, 276, 649–651; https://doi.org/10.1016/0168-9002(89)90600-1.Search in Google Scholar

37. Northcliffe, L. C., Schilling, R. F. Range and stopping-power tables for heavy ions. Nucl. Data Tables A 1970, 7, 233–463; https://doi.org/10.1016/s0092-640x(70)80016-x.Search in Google Scholar

38. Becker, H. U., Kratz, J. V., Gäggeler, H., Baltensperger, U., Jost, D., Kovacs, A., Weber, A., Schädel, M., Brüchle, W., Jäger, E., Schimpf, E. MoO3 as a New Cluster Material for a Gas-Jet; Paul Scherrer Institut, Labor für Radiochemie, 1992; pp 14, Annual report 1991.Search in Google Scholar

39. Jost, D. T., Vermeulen, D. The data acquisition of OLGA II, an application of the PSI tandem system. In Proc. 7th Conf. “REAL TIME 91”. Jülich, June 1991; IEEE Trans. Nucl. Sci.; IEEE: Piscataway Township, New Jersey, USA, 1991; pp. 186–191.10.1109/23.277480Search in Google Scholar

40. Belkova, Yu. A., Novikov, N. V., Teplova, Ya. A. Charge distributions and energy losses of ions in solids. Nucl. Instrum. Methods Phys. Res. B 2015, 343, 110–115; https://doi.org/10.1016/j.nimb.2014.11.016.Search in Google Scholar

41. Zvara, I. Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim. Acta 1985, 38, 95–101; https://doi.org/10.1524/ract.1985.38.2.95.Search in Google Scholar

42. Gäggeler, H. W., Türler, A. Gas-phase chemistry of superheavy elements. In The Chemistry of Superheavy Elements; Schädel, M., Shaughnessy, D., Eds.; Springer: Berlin Heidelberg, 2013, 2nd ed. ISBN 078-3-642-37465-4, pp. 415–483.10.1007/978-3-642-37466-1_8Search in Google Scholar

43. Merinis, J., Legoux, Y., Boussieres, G. Volatilisation de chlorures d’elements cis-et transuraniens dans un tube a gradient de temperature. Radiochem. Radioanal. Lett. 1970, 3, 255–261.Search in Google Scholar

44. Merinis, J., Boussieres, G. Étude de la migration de radioéléments dans un tube à gradient de température. Radiochim. Acta 1969, 12, 140–152; https://doi.org/10.1524/ract.1969.12.3.140.Search in Google Scholar

45. Chiera, N. M., Sato, T. K., Tomitsuka, T., Asai, M., Suzuki, H., Tokoi, K., Toyoshima, A., Tsukada, K., Nagame, Y. Formation and thermochemical properties of oxychlorides of niobium (Nb) and tantalum (Ta): towards the gas-phase investigation of dubnium (Db)oxychloride. Inorg. Chim. Acta. 2019, 486, 361–366; https://doi.org/10.1016/j.ica.2018.10.032.Search in Google Scholar

46. Gäggeler, H. W., Jost, D. T., Kovacs, J., Scherer, U. W., Weber, A., Vermeulen, D., Türler, A., Gregorich, K. E., Henderson, R. A., Czerwinski, K. R., Kadkhodayan, B., Lee, D. M., Nurmia, M., Kratz, J. V., Gober, M., Zimmermann, H. P., Schädel, M., Brüchle, W., Schimpf, E., Zvara, I. Gas phase chromatography experiments with bromides of tantalum and element 105. Radiochim. Acta 1992, 57, 93–100.10.1524/ract.1992.57.23.93Search in Google Scholar

47. Türler, A., Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 2013, 113, 1237–1312.10.1021/cr3002438Search in Google Scholar PubMed

48. Qin, Z., Liu, M. S., Fan, F. L., Huang, W. X., Yan, X. L., Bai, J., Wu, X. L., Lei, F. A., Ding, H. J., Ma, F., Li, G. S., Zhou, H. B., Guo, J. S. On-line gas chromatographic studies of Nb, Ta, and Db Bromides. Radiochim. Acta 2012, 100, 285–289.10.1524/ract.2012.1924Search in Google Scholar

49. Eichler, R., Eichler, B. Thermochemical data from the gas-phase adsorption and methods of their estimations. In The Chemistry of Superheavy Elements; Schädel, M., Shaughnessy, D., Eds.; Springer: Berlin Heidelberg, 2014, 2nd ed. ISBN 078-3-642-37465-4, pp. 375–413; https://doi.org/10.1007/978-3-642-37466-1_7.Search in Google Scholar

50. Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; Wiley-VCH Verlag GmbH: Weinheim, 1995.10.1002/9783527619825Search in Google Scholar

51. Guillaumont, R., Fanghänel, T., Fuger, J., Mompean, F. J., Grenthe, I., Neck, V., Palmer, D. A., Ra, M. H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; OECD Nuclear Energy Agency: Data Base, Issy-les- Maulineaux, France, 2003.Search in Google Scholar

52. Dean, J. A., Lange, N. A. Lange`s Handbook of Chemistry, 15th ed.; McGraw-Hill anc. US New York, 1999.Search in Google Scholar

53. Efimov, A. I. Eigenschaften anorganischer Verbindungen; Verlag Chemie: Leningrad, 1983.Search in Google Scholar

54. Pershina, V., Sepp, W.-D., Fricke, B., Rosen, A. Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides. J. Chem. Phys. 1992, 96, 8367–8378; https://doi.org/10.1063/1.462290.Search in Google Scholar

55. Müller, U. Anorganische Strukturchemie, 6. Auflage; Vieweg-Teubner-Verlag: Wiesbaden, 2008.Search in Google Scholar

56. Eichler, B. The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides). Radiochim. Acta 1996, 72, 19–26; https://doi.org/10.1524/ract.1996.72.1.19.Search in Google Scholar

57. Chiera, N. M., Sato, T. K., Eichler, R., Tomitsuka, T., Assai, M., Adachi, S., Dressler, R., Hirose, K., Inoue, H., Ito, Y., Kashihara, A., Makij, H., Nishio, K., Sakama, M., Shirai, K., Suzuki, H., Tokoi, K., Tsukuda, K., Watanabe, E., Nagame, Y. Formation and thermochemical properties of a volatile dubnium compound, DbOCl3. Angew. Chem. Int. Ed. 2021, 60, 17871–17874; https://doi.org/10.1002/anie.202102808.Search in Google Scholar PubMed PubMed Central

Received: 2021-11-24
Accepted: 2022-02-18
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1128/html?lang=en
Scroll to top button