Startseite Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique

  • Aleksandr N. Vasiliev , Nidhu L. Banik , Rémi Marsac , Stepan N. Kalmykov und Christian M. Marquardt EMAIL logo
Veröffentlicht/Copyright: 21. Mai 2019

Abstract

Natural clay rocks like Opalinus (OPA) and Callovo-Oxfordian (COx) clay rock are considered as potential host rocks for deep geological disposal of nuclear waste. However, small organic molecules such as propionate and lactate exist in clay rock pore water and might enhance Np mobility through a complexation process. Therefore, reliable complex formation data are required in the frame of the Safety Case for a nuclear waste repository. A solvent extraction technique was applied for the determination of NpO2+ complexation with propionate and lactate. Extraction was conducted from isoamyl alcohol solution containing 10−3 M TTA and 5 · 10−4 M 1,10-phenanthroline. Experiments were performed in 0.5–2.6 m NaCl solutions at temperatures ranging from 22 to 60 °C. Formation of 1:1 Np(V) complexes for propionate and lactate was found under the studied conditions. The SIT approach was applied to calculate equilibrium constants β°(T) at zero ionic strength from the experimental data. Log β°(T) is found linearly correlated to 1/T for propionate and lactate, evidencing that heat capacity change is near 0. Molal reaction enthalpy and entropy (ΔrHm and ΔrSm) could therefore be derived from the integrated van’t Hoff equation. Data for log β° (298.15 K) are in agreement with literature values for propionate and lactate. Np(V) speciation was calculated for concentrations of acetate, propionate and lactate measured in clay pore waters of COx. In addition, the two site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model was applied to quantitatively describe the influence of Np(V) complexation on its uptake on Na-illite, a relevant clay mineral of OPA and COx.


Dedicated to: The memory of Professor Günter Herrmann.


Acknowledgements

Günter Herrmann was my (C.M. Marquardt) doctoral thesis supervisor. In those days he gave me the opportunity to work in the framework of a R&D Programme of the European Commission on Management of Radioactive Waste and Storage. The here presented work shows that this scientific issue is still up-to-date and that I remained true to this branch of science to date. This work has been supported by the German Federal Ministry of Economic Affairs and Energy (BMWi) under Contract No. 02E10961 and German Academic Exchange Service (DAAD). Bundesministerium für Wirtschaft und Technologie.

References

1. Kim, J. I.: Chemical behaviour of transuranic elements in natural aquatic systems, In: A. J. Freeman (Ed.), Handbook on the Physics and Chemistry of the Actinides (1986), Elsevier Science Publishers, B. V., Amsterdam, p. 413.Suche in Google Scholar

2. Choppin, G. R., Rao, L. F.: Complexation of pentavalent and hexavalent actinides by fluoride. Radiochim. Acta 37, 143 (1984).10.1524/ract.1984.37.3.143Suche in Google Scholar

3. Forbes, T. Z., Wallace, C., Burns, P. C.: Neptunyl compounds: polyhedron geometries, bond-valence parameters, and structural hierarchy. Can. Mineral. 46, 1623 (2008).10.3749/canmin.46.6.1623Suche in Google Scholar

4. ONDRAF/NIRAS, SAFIR 2: Safety assessment and feasibility interim report, NIROND-2001-06 E, ONDRAF/NIRAS, Brussels/Belgium (2001).Suche in Google Scholar

5. OECD: Safety of geological disposal of high-level and longlived radioactive waste in France – an international peer review of the “Dossier 2005 Argile” concerning disposal in the Callovo-Oxfordian formation, NEA No. 6178, OECD Organization for economic cooperation and development (2006).Suche in Google Scholar

6. Hoth, P., Wirth, H., Reinhold, K., Bräuer, V., Krull, P., Feldrappe, H.: Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands – Untersuchung und Bewertung von Tongesteinsformationen, BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover/Germany (2007).Suche in Google Scholar

7. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl. Geochem. 22, 1537 (2007).10.1016/j.apgeochem.2007.04.001Suche in Google Scholar

8. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Appl. Geochem. 22, 2926 (2007).10.1016/j.apgeochem.2007.09.001Suche in Google Scholar

9. Geological disposal of radioactive waste: technological implications for retrievability, IAEA nuclear energy series, NW-T-1.19, ISSN 1995-7807, International Atomic Energy Agency, Vienna, Austria (2009).Suche in Google Scholar

10. Askarieh, M. M., Hansford, M. I., Staunton, S., Rees, L. V. C.: Complexation of Np (V) in aqueous solutions (No. DOE-HMIP-RR-92.018). Department of the Environment, London, UK (1992).Suche in Google Scholar

11. Vasiliev, A. N., Banik, N. L., Marsac, R., Froehlich, D. R., Rothe, J., Kalmykov, S. N., Marquardt, C. M.: Np(V) complexation with propionate in 0.5–4 M NaCl solutions at 20–85 °C. Dalton Trans. 44, 3837 (2015).10.1039/C4DT03688CSuche in Google Scholar PubMed

12. Moore, R. C., Borkowski, M., Bronikowski, M. G., Chen, J., Pokrovsky, O. S., Xia, Y., Choppin, G. R.: Thermodynamic modeling of actinide complexation with acetate and lactate at high ionic strength. J. Sol. Chem. 28, 521 (1999).10.1023/A:1022678814904Suche in Google Scholar

13. Tochiyama, O., Inoue, Y., Narita, S.: Complex formation of Np(V) with various carboxylates. Radiochim. Acta 58, 129 (1992).10.1524/ract.1992.5859.1.129Suche in Google Scholar

14. Eberle, S. H., Schaefer, J. B.: Stabilitätskonstanten der Komplexe des Neptunyl(V)-lons mit α-Hydroxykarbonsäuren. J. Inorg. Nucl. Chem. 31, 1523 (1969).10.1016/0022-1902(69)80272-1Suche in Google Scholar

15. Carbonaro, R. F., Di Toro, D. M.: Linear free energy relationships for metal-ligand complexation. Geochim. Cosmochim. Acta 71, 3958 (2007).10.1016/j.gca.2007.06.005Suche in Google Scholar

16. Claret, F., Schaefer, T., Rabung, T., Wolf, M., Bauer, A., Buckau, G.: Differences in properties and Cm(III) complexation behavior of isolated humic and fulvic acid derived from Opalinus clay and Callovo-Oxfordian argillite. Appl. Geochem. 20, 1158 (2005).10.1016/j.apgeochem.2005.01.008Suche in Google Scholar

17. Sjoblom, R., Hindman, J. C.: Spectrophotometry of neptunium in perchloric acid solutions. J. Am. Chem. Soc. 73, 1744 (1951).10.1021/ja01148a091Suche in Google Scholar

18. Marsac, R., Banik, N. L., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Schild, D., Rothe, J., Diascorn, A., Kupcik, T., Schäfer, T., Geckeis, H.: Neptunium redox speciation at the illite surface. Geochim. Cosmochim. Acta 152, 39 (2015).10.1016/j.gca.2014.12.021Suche in Google Scholar

19. Inoue, Y., Tochiyama, O.: Solvent extraction of neptunium(V) by thenoyltrifluoroacetone and 1,10-phenanthroline or tri-n-octylphosphine oxide. Radiochim. Acta 31, 193 (1982).10.1524/ract.1982.31.34.193Suche in Google Scholar

20. Choppin, G. R., Chen, J.-F.: Complexation of Am(III) by oxalate in NaClO4 media. Radiochim. Acta 74, 105 (1996).10.1524/ract.1996.74.special-issue.105Suche in Google Scholar

21. Choppin, G. R., Erten, H. N., Xia Y.-X.: Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim. Acta 74, 123 (1996).10.1524/ract.1996.74.special-issue.123Suche in Google Scholar

22. Rao, L., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Bernardo, P., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10–85 °C). Geochim. Cosmochim. Acta 68, 4821 (2004).10.1016/j.gca.2004.06.007Suche in Google Scholar

23. Maya, L.: Hydrolysis and carbonate complexation of dioxoneptunium(V) in 1.0 M NaClO4 at 25 °C. Inorg. Chem. 22, 2093 (1983).10.1021/ic00156a031Suche in Google Scholar

24. Wruck, D. A., Palmer, C. E. A., Silva, R. J.: A study of americium(III) carbonate complexation at elevated temperatures by pulsed laser photoacoustic spectroscopy. Radiochim. Acta 85, 21 (1999).10.1524/ract.1999.85.12.21Suche in Google Scholar

25. Götz, C., Geipel, G., Bernhard, G.: The influence of the temperature on the carbonate complexation of uranium(VI) – a spectroscopic study. J. Radioanal. Nucl. Chem. 287, 961 (2011).10.1007/s10967-010-0854-4Suche in Google Scholar

26. Altmaier, M., Metz, V., Neck, V., Müller, R., Fanghänel, T.: Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25 °C. Geochim. Cosmochim. Acta 67, 3595 (2003).10.1016/S0016-7037(03)00165-0Suche in Google Scholar

27. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., Singh, R. M.: Hydrogen ion buffers for biological research. Biochemistry 5, 467 (1966).10.1021/bi00866a011Suche in Google Scholar PubMed

28. Zolotov, Y. A., Alimarin, I. P.: Investigation of the chemistry of pentavalent neptunium. J. Inorg. Nucl. Chem. 25, 691 (1963).10.1016/0022-1902(63)80159-1Suche in Google Scholar

29. Rao, L., Tian, G., Srinivasan, T. G., Zanonato, P., Di Bernardo, P.: Spectrophotometric and calorimetric studies of Np(V) complexation with acetate at various temperatures from T=283 to 343 K. J. Sol. Chem. 39, 1888 (2010).10.1007/s10953-010-9592-zSuche in Google Scholar

30. Bromley, L. A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313 (1973).10.1002/aic.690190216Suche in Google Scholar

31. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H.: Chemical thermodynamics Vol. 5. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD, NEA-TDB, North Holland, Amsterdam (2003).Suche in Google Scholar

32. Tian, G., Martin, L. R., Rao, L.: Complexation of lactate with neodymium(III) and europium(III) at variable temperatures. Inorg. Chem. 49, 10598 (2010).10.1021/ic101592hSuche in Google Scholar PubMed

33. Choppin, G. R.: Inner vs outer sphere complexation of f-elements. J. Alloys Compd. 249, 9 (1997).10.1016/S0925-8388(96)02833-2Suche in Google Scholar

34. Neck, V., Fanghänel, Th., Rudolph, K., Kim, J. I.: Thermodynamics of neptunium(V) in concentrated salt solutions: chloride complexation and ion interaction (Pitzer) parameters for the NpO2 ion. Radiochim. Acta 69, 39 (1995).10.1524/ract.1995.69.1.39Suche in Google Scholar

35. Froehlich, D. R., Skerencak-Frech, A., Morkos, M.-L. K., Panak, P. J.: A spectroscopic study of Cm (III) complexation with propionate in saline solutions at variable temperatures. New J. Chem. 37, 1520 (2013).10.1039/c3nj00109aSuche in Google Scholar

36. Silva, R. J., Bidoglio, G., Rand, M. H., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical thermodynamics Vol. 2, Chemical thermodynamics of americium. OECD, NEA-TDB, North Holland, Amsterdam (1995).Suche in Google Scholar

37. Jiang, J., Rao, L., Di Bernardo, P., Zanonato, P. L., Bismondo, A.: Complexation of uranium(VI) with acetate at variable temperatures. J. Chem. Soc. Dalton Trans. 8, 1832 (2002).10.1039/b106642kSuche in Google Scholar

38. Ahrland, S.: How to distinguish between inner and outer sphere complexes in aqueous solution. Thermodynamic and other criteria. Coord. Chem. Rev. 8, 21 (1972).10.1016/S0010-8545(00)80047-8Suche in Google Scholar

39. Fröhlich, D. R., Skerencak-Frech, A., Kaplan, U., Koke, C., Rossberg, A., Panak, P. J.: An EXAFS spectroscopic study of Am(III) complexation with lactate. J. Synchrotron. Radiat. 22, 1469 (2015).10.1107/S1600577515017853Suche in Google Scholar PubMed

40. Barkleit, A., Kretzschmar, J., Tsushima, S., Acker, M.: Americium(III) and europium(III) complex formation with lactate at elevated temperatures studied by spectroscopy. Dalton Trans. 43, 11221 (2014).10.1039/C4DT00440JSuche in Google Scholar PubMed

41. Choppin, G. R., Friedman, Jr. H. G.: Complexes of trivalent lanthanide ions. III. Bidentate chelates. Inorg. Chem. 5, 1599 (1966).10.1021/ic50043a029Suche in Google Scholar

42. Parkhurst, D. L., Appelo, C. A. J.: User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculation. Water-resources Investigation Report, 99-4259, USGS, Denver, Colorado (1999).Suche in Google Scholar

43. Bradbury, M. H., Baeyens, B.: Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus clay, a “bottom-up” approach. Appl. Clay Sci. 52, 2 (2011).10.1016/j.clay.2011.01.022Suche in Google Scholar

44. Marsac, R., Banik, N. L., Lützenkirchen, J., Catrouillet, C., Marquardt, C. M., Johannesson, K. H.: Modeling metal ion-humic substances complexation in highly saline conditions. Appl. Geochem. 79, 52 (2017).10.1016/j.apgeochem.2017.02.004Suche in Google Scholar

45. Marsac, R., Banik, N. L., Lützenkirchen, J., Diascorn, A., Bender, K., Marquardt, C. M., Geckeis, H.: Sorption and redox speciation of plutonium on illite under saline conditions. J. Colloid Interface Sci. 485, 59 (2017).10.1016/j.jcis.2016.09.013Suche in Google Scholar PubMed

46. Banik, N. L., Marsac, R., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Rothe, J., Bender, K., Geckeis, H.: Neptunium sorption and redox speciation at the illite surface under highly saline conditions. Geochim. Cosmochim. Acta 215, 421 (2017).10.1016/j.gca.2017.08.008Suche in Google Scholar

47. Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part II: Actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).10.1016/j.gca.2008.11.016Suche in Google Scholar

48. Gaines, G. I., Thomas, H. C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Phys. Chem. 21, 714 (1953).10.1063/1.1698996Suche in Google Scholar

49. Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part I: titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 73, 990 (2009).10.1016/j.gca.2008.11.017Suche in Google Scholar

50. Fröhlich, D. R., Amayri, S., Drebert, J., Reich, T.: Influence of temperature and background electrolyte on the sorption of neptunium(V) on Opalinus clay. Appl. Clay Sci. 69, 43 (2012).10.1016/j.clay.2012.08.004Suche in Google Scholar

Received: 2019-01-17
Accepted: 2019-04-01
Published Online: 2019-05-21
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3107/html?lang=de
Button zum nach oben scrollen