Home Physical Sciences Experimental investigation of photon attenuation parameters for different binary alloys
Article
Licensed
Unlicensed Requires Authentication

Experimental investigation of photon attenuation parameters for different binary alloys

  • Mohammed I. Sayyed EMAIL logo , Ferdi Akman and Mustafa Recep Kaçal
Published/Copyright: January 7, 2019

Abstract

Recently, technologists try to develop novel gamma radiation shielding materials instead of traditional materials such as lead and concrete with improved performance in gamma radiation shielding in medical applications and nuclear reactors. For this purpose, alloys such as stainless steel (SS) and carbon steel (CS) attracted much attention, these days. Preliminary results on such alloys have shown better attenuation of γ rays as compared to traditional shielding materials. This work aimed to conduct research on different alloy samples to evaluate their radiation attenuation efficiency and their suitability for radiation shielding when utilized in nuclear facilities. The mass attenuation coefficients for eight alloy samples were measured at different photon energies ranging from 80.997 to 1332.501 keV using transmission geometry. From the mass attenuation coefficients, different photon attenuation parameters such as half value layer, mean free path, effective atomic number, and radiation protection efficiency were evaluated. In addition, the equivalent atomic number and the exposure buildup factor were calculated using G-P fitting method for photon energy ranging from 0.015 MeV to 15 MeV at different penetration depth. The results showed that the Zeff values remain almost constant for all samples except W72/Cu28 in which the Zeff for this sample tends to decrease with the energy. The lowest value of half value layer is found for the alloy sample Ta97.5/W2.5 and the highest value is found for the alloy sample In50/Sn50. The Ta97.5/W2.5, Ta90/W10, Ta95/W5 samples demonstrated good radiation attenuation properties.

Acknowledgments

The authors would like to thank the University of Tabuk for the financial support under the research project number S-1439-0091.

References

1. Ambika, M. R., Nagaiah, N., Harish, V., Lokanath, N. K., Sridhar, M. A., Renukappa, N. M., Suman, S. K.: Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 130, 351 (2017).10.1016/j.radphyschem.2016.09.022Search in Google Scholar

2. Tekin, H. O., Sayyed, M. I., Altunsoy, E. E., Manici, T.: Shielding properties and effects of WO3 and photon mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater Biostruct. 12, 861 (2017).Search in Google Scholar

3. Kurudirek, M.: Heavy metal borate glasses: potential use for radiation shielding, J. Alloys Compd. 727, 1227 (2017).10.1016/j.jallcom.2017.08.237Search in Google Scholar

4. Dong, M., Elbashir, B. O. Sayyed, M. I.: Enhancement of gamma ray shielding properties by PbO partial replacement of WO3 in ternary 60TeO2–(40-x)WO3–xPbO glass system. Chalcogenide Lett. 13, 113 (2017).Search in Google Scholar

5. Akman, F., Durak, R., Kaçal, M. R., Bezgin, F.: Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 45(2), 103 (2016).10.1002/xrs.2676Search in Google Scholar

6. Akman, F., Kaçal, M. R., Akman, F., Soylu, M. S.: Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95(10), 1005 (2017).10.1139/cjp-2016-0811Search in Google Scholar

7. Akman, F., Geçibesler, I. H., Sayyed, M. I., Tijani, S. A., Tufekci, A. R., Demirtas, I.: Determination of some useful radiation interaction parameters for waste foods. Nucl. Eng. Technol. 50(6), 944 (2018).10.1016/j.net.2018.05.007Search in Google Scholar

8. Akman, F., Geçibesler, I. H., Demirkol, İ., Çetin, A.: Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can. J. Phys. (2018). https://doi.org/10.1139/cjp-2017-0923.10.1139/cjp-2017-0923Search in Google Scholar

9. Han, I., Aygun, M., Demir, L., Sahin, Y.: Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach. Ann. Nucl. Energy 39, 56 (2012).10.1016/j.anucene.2011.09.008Search in Google Scholar

10. Singh, V. P., Badiger, N. M.: Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301 (2014).10.1016/j.anucene.2013.10.003Search in Google Scholar

11. Singh, V. P., Medhat, M. E., Badiger, N. M.: Gamma-ray shielding effectiveness of some alloys for fusion reactor design. J. Fusion Energ. 33, 555 (2014).10.1007/s10894-014-9704-7Search in Google Scholar

12. Akkurt, I.: Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy 36, 1702 (2009).10.1016/j.anucene.2009.09.005Search in Google Scholar

13. Xia, C., Zhang, X., Liu, S., Chen, B., Tan, C., Zhang, X., Liu, S., Chen, B., Tan, C., Zhang, X., Ma, M., Liu, R.: Thermo-mechanical processing, microstructure and mechanical properties of TiZrB alloy. Mater. Sci. Eng. A 712, 350 (2018).10.1016/j.msea.2017.11.117Search in Google Scholar

14. Sen, I., Tamirisakandala, S., Miracle, D. B., Ramamurty, U.: Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys. Acta Mater. 55, 4983 (2007).10.1016/j.actamat.2007.05.009Search in Google Scholar

15. Lu, J. W., Ge, P., Li, Q., Zhang, W., Huo, W. T., Hu, J. J., Zhang, Y. S., Zhao, Y. Q.: Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy. J. Alloys Compd. 727, 1126 (2017).10.1016/j.jallcom.2017.08.239Search in Google Scholar

16. Xia, C. Q., Zhang, Z. G., Feng, Z. H., Pan, B., Zhang, X. Y., Ma, M. Z., Liu, R. P.: Effect of zirconium content on the microstructure and corrosion behavior of Ti-6Al-4V-xZr alloys. Corros. Sci. 112, 687 (2016).10.1016/j.corsci.2016.09.012Search in Google Scholar

17. Chen, X., Ning, F., Hou, J., Le, Q., Tang, Y.: Dual-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 magnesium alloy. Ultrason. Sonochem. 40, 433 (2018).10.1016/j.ultsonch.2017.07.027Search in Google Scholar PubMed

18. Han, I., Demir, L.: Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies. Nucl. Instrum. Methods Phys. Res. B 267, 3 (2009).10.1016/j.nimb.2008.10.004Search in Google Scholar

19. Yılmaz, D., Boydaş, E., Cömert, E.: Determination of mass attenuation coefficients and effective atomic numbers for compounds of the 3d transition elements. Radiat. Phys. Chem. 125, 65 (2016).10.1016/j.radphyschem.2016.03.014Search in Google Scholar

20. Limkitjaroenporn, P., Kaewkhao, J., Asavavisithchai, S.: Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering. Ann. Nucl. Energy 53, 64 (2013).10.1016/j.anucene.2012.08.020Search in Google Scholar

21. Singh, V. P., Badiger, N. M.: Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels. Radioprotection 48, 431 (2013).10.1051/radiopro/2013067Search in Google Scholar

22. Sayyed, M. I.: Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111 (2016).10.1016/j.jallcom.2016.07.153Search in Google Scholar

23. Sayyed, M. I., Qashou, S. I., Khattari, Z. Y.: Radiation shielding competence of newly developed TeO2-WO3 glasses. J. Alloys Compd. 696, 632 (2017).10.1016/j.jallcom.2016.11.160Search in Google Scholar

24. M. I. Sayyed, Half value layer, mean free path and exposure buildup factorfor tellurite glasses with different oxide compositions. J. Alloys Compd. 695, 3191 (2017).10.1016/j.jallcom.2016.11.318Search in Google Scholar

25. Murty, V. R. K.: Effective atomic numbers for W/Cu alloy for total photon attenuation. Radiat. Phys. Chem. 71, 667 (2004).10.1016/j.radphyschem.2004.04.046Search in Google Scholar

26. Sharma, R., Sharma, J. K., Kaur, T., Singh, T., Sharma, J., Singh, P. S.: Experimental investigation of effective atomic numbers for some binary alloys. Nucl. Eng. Technol. 49, 1571 (2017).10.1016/j.net.2017.06.007Search in Google Scholar

27. Tellili, B., Elmahroug, Y., Souga, C.: Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 49, 1758 (2017).10.1016/j.net.2017.08.020Search in Google Scholar

28. Shamshad, L., Rooh, G., Limkitjaroenporn, P., Srisittipokakun, N., Chaiphaksa, W., Kim, H. J., Kaewkhao, J.: A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energ. 97, 53 (2017).10.1016/j.pnucene.2016.12.014Search in Google Scholar

29. Mann, H. S., Brar, G. S., Mann, K. S., Mudahar, G. S.: Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nucl. Eng. Technol. 48(5), 1230 (2016).10.1016/j.net.2016.04.001Search in Google Scholar

30. Sayyed, M. I., El-Mallawany, R.: Shielding properties of (100-x) TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 201, 50 (2017).10.1016/j.matchemphys.2017.08.035Search in Google Scholar

31. Akman, F., Durak, R., Turhan, M. F., Kaçal, M. R.: Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. App. Rad. Iso. 101, 107 (2015).10.1016/j.apradiso.2015.04.001Search in Google Scholar

32. El-Kateb, A. H., Rizk, R. A. M., Abdul-Kader, A. M.: Determination of atomic cross-sections and effective atomic numbers for some alloys. Ann. Nucl. Energy 27, 1333 (2000).10.1016/S0306-4549(99)00121-8Search in Google Scholar

33. Kumar, A.: Gamma ray shielding properties of PbO-Li2O-B2O3 glasses, Radiation Radiat. Phys. Chem. 136, 50 (2017).10.1016/j.radphyschem.2017.03.023Search in Google Scholar

34. Sayyed, M. I., Al-Zaatreh, M. Y., Dong, M. G., Zaid, M. H. M., Matori, K. A., Tekin, H. O.: A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding. Results Phys. 7, 2528 (2017).10.1016/j.rinp.2017.07.028Search in Google Scholar

35. Singh, S. S., Singh, T., Kaur, P.: Variation of energy absorption build-up factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy 35, 1093 (2008).10.1016/j.anucene.2007.10.007Search in Google Scholar

36. Manjunatha, H. C., Rudraswamy, B.: Computation of exposure build-up factors in teeth. Radiat. Phys. Chem. 80, 14 (2011).10.1016/j.radphyschem.2010.09.004Search in Google Scholar

37. Singh, V. P., Badiger, N. M., Korkut, T.: Gamma exposure buildup factors and neutron total cross section of ceramic hosts for high level radioactive wastes. Prog. Nucl. Energ. 104, 107 (2018).10.1016/j.pnucene.2014.10.007Search in Google Scholar

Received: 2018-11-01
Accepted: 2018-11-30
Published Online: 2019-01-07
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3079/pdf?lang=en
Scroll to top button