Abstract
The three-dimensional (3D) carbonaceous nanofiber and Ni-Al layered double hydroxide (CNF/LDH) nanocomposite was successfully prepared by a facile one-step hydrothermal methodology. Characterization of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), XRD, and Fourier transformed infrared spectroscopy (FTIR) provided a demonstration that the modified CNF/LDH nanocomposite possessed abundant functional groups, for instance, metal-oxygen surface bonding sites (Ni–O as well as Al–O) and free-metal surface bonding sites (C–O, C–O–C, as well as O–C=O). The elimination of representative radionuclide (i.e. U(VI)) on the CNF/LDH nanocomposite from aqueous solutions was explored as a key function of pH, ionic strength, contact time, reaction temperature as well as radionuclide preliminary concentrations with the use of the batch methodology. As revealed by the findings, the sorption of radionuclides on CNF/LDH nanocomposite adhered to the pseudo-second-order kinetic model as well as Langmuir model. The maximum elimination capacity of U(VI) amounted to be 0.7 mmol/g. The independent of ionic strength shed light on the fact that inner-sphere surface complexation mainly overpowered radionuclide uptake by the CNF/LDH nanocomposite, which was further verified through the combination of FTIR and XPS spectral analyses. The abovementioned analyses shed light on the fact that the CNF/LDH nanocomposite can be regarded as a latent material to preconcentration radionuclides for environmental remediation.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21876048
Award Identifier / Grant number: 21607042
Award Identifier / Grant number: 11705032
Funding statement: This work was supported by the National Natural Science Foundation of China (21876048, 21607042, 11705032, Funder Id: http://dx.doi.org/10.13039/501100011002), the Fundamental Research Funds for the Central Universities (2018MS114, 2018ZD11) and Guangxi Natural Science Foundation of China (2017GXNSFBA198175).
References
1. Chen, L., Bai, Z., Zhu, L., Zhang, L., Cai, Y., Li, Y., Liu, W., Wang, Y., Chen, L., Diwu, J., Wang, J., Chai, Z., Wang, S.: Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl. Mater. Inter. 9, 32446 (2017).10.1021/acsami.7b12396Search in Google Scholar PubMed
2. Wang, X., Chen, Z., Wang, X.: Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions. Sci. China Chem. 58, 1766 (2015).10.1007/s11426-015-5435-5Search in Google Scholar
3. Zhuang, Z. Y., Chen, H., Lin, Z.: Mn2O3 hollow spheres synthesized based on an ion-exchange strategy from amorphous calcium carbonate for highly efficient trace-level uranyl extraction. Environ. Sci. Nano 3, 1254 (2016).10.1039/C6EN00411CSearch in Google Scholar
4. Xie, J., Wang, Y., Liu, W., Yin, X., Chen, L., Zou, Y., Diwu, J., Chai, Z., Albrecht-Schmitt, T. E., Liu, G., Wang, S.: Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem. Int. Ed. 56, 7500 (2017).10.1002/anie.201700919Search in Google Scholar PubMed
5. Yu, S., Yin, L., Pang, H., Wu, Y., Wang, X., Zhang, P., Hu, B., Chen, Z., Wang, X.: Constructing sphere-like cobalt-molybdenum-nickel ternary hydroxide and calcined ternary oxide nanocomposites for efficient removal of U(VI) from aqueous solutions. Chem. Eng. J. 352, 360 (2018).10.1016/j.cej.2018.07.033Search in Google Scholar
6. Wang, Y., Yin, X., Liu, W., Xie, J., Chen, J., Silver, M. A., Sheng, D., Chen, L., Diwu, J., Liu, N., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Emergence of Uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem. Int. Ed. 57, 7883 (2018).10.1002/anie.201802865Search in Google Scholar PubMed
7. Wang, X., Yu, S., Chen, Z., Zhao, Y., Jin, J., Wang, X.: Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation. Sci. China Chem. 60, 1149 (2017).10.1007/s11426-017-9039-2Search in Google Scholar
8. Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., Wang, X.: Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J. 333, 343 (2018).10.1016/j.cej.2017.09.163Search in Google Scholar
9. Yu, S., Wang, X., Yang, S., Sheng, G., Alsaedi, A., Hayat, T., Wang, X.: Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci. China Chem. 60, 170 (2016).10.1007/s11426-016-0317-3Search in Google Scholar
10. Zheng, S., Yang, Y., Zhou H.: The effect of different HITRAN databases on the accuracy of the SNB and SNBCK calculations. Int. J. Heat. Mass. Tran. 129, 1232 (2019).10.1016/j.ijheatmasstransfer.2018.10.067Search in Google Scholar
11. Yu, S., Wang, X., Chen, Z., Tan, X., Wang, H., Hu, J., Alsaedi, A., Alharbi, N. S., Guo, W., Wang, X.: Interaction mechanism of radionickel on Na-montmorillonite: Influences of pH, electrolyte cations, humic acid and temperature. Chem. Eng. J. 302, 77 (2016).10.1016/j.cej.2016.05.043Search in Google Scholar
12. Liu, H., Zhu, Y., Xu, B., Li, P., Sun, Y., Chen, T.: Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. J. Hazard. Mater. 322, 488 (2017).10.1016/j.jhazmat.2016.10.015Search in Google Scholar PubMed
13. Chen, Z., Wang, J., Pu, Z., Zhao, Y., Jia, D., Chen, H., Wen, T., Hu, B., Alsaedi, A., Hayat, T., Wang, X.: Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater. Chem. Eng. J. 320, 448 (2017).10.1016/j.cej.2017.03.074Search in Google Scholar
14. Yao, W., Wu, Y., Pang, H., Wang, X., Yu, S., Wang, X.: In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Sci. China Chem. 61, 812 (2018).10.1007/s11426-017-9225-5Search in Google Scholar
15. Liu, J., Zhao, C. S., Yuan, G. Y., Li, F. Z., Yang, J. J., Liao, J. L., Yang, Y. Y., Liu, N.: Adsorption behavior of U(VI) on doped polyaniline: the effects of carbonate and its complexes. Radiochim. Acta 106, 437 (2018).10.1515/ract-2017-2865Search in Google Scholar
16. Wang, X., Li, J., Dai, S., Hayat, T., Alsaedi, A., Wang, X.: Interactions of Eu(III) and 243Am(III) with humic acid-bound γ-Al2O3 studied using batch and kinetic dissociation techniques. Chem. Eng. J. 273, 588 (2015).10.1016/j.cej.2015.03.099Search in Google Scholar
17. Cao, Q., Huang, F., Zhuang, Z. Y., Lin, Z.: A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water. Nanoscale 4, 2423 (2012).10.1039/c2nr11993eSearch in Google Scholar PubMed
18. Wang, X., Fan, Q., Yu, S., Chen, Z., Ai, Y., Sun, Y., Hobiny, A., Alsaedi, A., Wang, X.: High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem. Eng. J. 287, 448 (2016).10.1016/j.cej.2015.11.066Search in Google Scholar
19. Yu, S., Wang, J., Song, S., Sun, K., Li, J., Wang, X., Chen, Z., Wang, X.: One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci. China Chem. 60, 415 (2017).10.1007/s11426-016-0420-8Search in Google Scholar
20. Wang, P., Yin, L., Wang, J., Xu, C., Liang, Y., Yao, W., Wang, X., Yu, S., Chen, J., Sun, Y., Wang, X.: Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chem. Eng. J. 326, 863 (2017).10.1016/j.cej.2017.06.034Search in Google Scholar
21. Sheng, G., Tang, Y., Linghu, W., Wang, L., Li, J., Li, H., Wang, X., Huang, Y.: Enhanced immobilization of ReO4− by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: Implications for TcO4− sequestration. Appl. Catal. B: Environ. 192, 268 (2016).10.1016/j.apcatb.2016.04.001Search in Google Scholar
22. Sheng, G., Yang, P., Tang, Y., Hu, Q., Li, H., Ren, X., Hu, B., Wang, X., Huang, Y.: New insights into the primary roles of diatomite in the enhanced sequestration of UO22+ by zerovalent iron nanoparticles: An advanced approach utilizing XPS and EXAFS. Appl. Catal. B: Environ. 193, 189 (2016).10.1016/j.apcatb.2016.04.035Search in Google Scholar
23. Liu, H., Li, M., Chen, T., Chen, C., Alharbi, N. S., Hayat, T., Chen, D., Zhang, Q., Sun, Y.: New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of u(vi) from aqueous solutions. Environ. Sci. Technol. 51, 9227 (2017).10.1021/acs.est.7b02431Search in Google Scholar PubMed
24. Zhang, N., Yuan, L. Y., Guo, W. L., Luo, S. Z., Chai, Z. F., Shi, W. Q.: Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Appl. Mater. Inter. 9, 25216 (2017).10.1021/acsami.7b04192Search in Google Scholar PubMed
25. Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Hayat, T., Wang, X.: Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322 (2018).10.1039/C7CS00543ASearch in Google Scholar PubMed
26. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: a combined batch, x-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911 (2017).10.1021/acs.est.6b06305Search in Google Scholar PubMed
27. Liu, W., Huang, F., Wang, Y., Zou, T., Zheng, J., Lin, Z.: Recycling Mg(OH)2 nanoadsorbent during treating the low concentration of CrVI. Environ. Sci. Technol. 45, 1955 (2011).10.1021/es1035199Search in Google Scholar PubMed
28. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z., Zhen, J., Lin, Z., Wang, C.: Treatment of CrVI-containing Mg(OH)2 nanowaste. Angew. Chem. Int. Edit. 47, 5619 (2008).10.1002/anie.200800172Search in Google Scholar PubMed
29. Li, Y., Yang, Z., Wang, Y., Bai, Z., Zheng, T., Dai, X., Liu, S., Gui, D., Liu, W., Chen, M., Chen, L., Diwu, J., Zhu, L., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 8, 1354 (2017).10.1038/s41467-017-01208-wSearch in Google Scholar PubMed PubMed Central
30. Chen, P., Liang, H. W., Lv, X. H., Zhu, H. Z., Yao, H. B., Yu, S. H.: Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration. ACS Nano 5, 5928 (2011).10.1021/nn201719gSearch in Google Scholar PubMed
31. Mahmoud, M. R., Othman, S. H.: Efficient decontamination of naturally occurring radionuclide from aqueous carbonate solutions by ion flotation process. Radiochim. Acta 106, 465 (2018).10.1515/ract-2017-2823Search in Google Scholar
32. Ding, C., Cheng, W., Wang, X., Wu, Z. Y., Sun, Y., Chen, C., Wang, X., Yu, S. H.: Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. J. Hazard. Mater. 313, 253 (2016).10.1016/j.jhazmat.2016.04.002Search in Google Scholar PubMed
33. Yu, S., Liu, Y., Ai, Y., Wang, X., Zhang, R., Chen, Z., Chen, Z., Zhao, G., Wang, X.: Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions, Environ. Pollut. 242, 1 (2018).10.1016/j.envpol.2018.06.031Search in Google Scholar PubMed
34. Sun, Y., Wang, X., Ding, C., Cheng, W., Chen, C., Hayat, T., Alsaedi, A., Hu, J., Wang, X.: Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain. Chem. Eng. 4, 4608 (2016).10.1021/acssuschemeng.6b00738Search in Google Scholar
35. Sun, Y., Lu, S., Wang, X., Xu, C., Li, J., Chen, C., Chen, J., Hayat, T., Alsaedi, A., Alharbi, N. S., Wang, X.: Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environ. Sci. Technol. 51, 12274 (2017).10.1021/acs.est.7b02745Search in Google Scholar PubMed
36. Yu, S. J., Wang, X. X., Chen, Z. S., Wang, J., Wang, S. H., Hayat, T., Wang, X. K.: Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 321, 111 (2017).10.1016/j.jhazmat.2016.09.009Search in Google Scholar PubMed
37. Zou, Y., Wang, X., Wu, F., Yu, S., Hu, Y., Song, W., Liu, Y., Wang, H., Hayat, T., Wang, X.: Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain. Chem. Eng. 5, 1173 (2017).10.1021/acssuschemeng.6b02550Search in Google Scholar
38. Zou, Y., Wang, P., Yao, W., Wang, X., Liu, Y., Yang, D., Wang, L., Hou, J., Alsaedi, A., Hayat, T., Wang, X.: Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chem. Eng. J. 330, 573 (2017).10.1016/j.cej.2017.07.135Search in Google Scholar
39. Zou, Y., Liu, Y., Wang, X., Sheng, G., Wang, S., Ai, Y., Ji, Y., Liu, Y., Hayat, T., Wang, X.: Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended x-ray absorption fine structure technique and density functional theory calculation. ACS Sustain. Chem. Eng. 5, (2017) 3583–3595.10.1021/acssuschemeng.7b00439Search in Google Scholar
40. Wang, X., Yu, S., Wu, Y., Pang, H., Yu, S., Chen, Z., Hou, J., Alsaedi, A., Hayat, T., Wang, S.: The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chem. Eng. J. 342, 321 (2018).10.1016/j.cej.2018.02.102Search in Google Scholar
41. Qian, H. S., Yu, S. H., Gong, J. Y., Luo, L. B., Fei, L. F.: High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22, 3830 (2006).10.1021/la053021lSearch in Google Scholar PubMed
42. Liang, H. W., Wang, L., Chen, P. Y., Lin, H. T., Chen, L. F., He, D., Yu, S. H.: Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles. Adv. Mater. 22, 4691 (2010).10.1002/adma.201001863Search in Google Scholar PubMed
43. Song, S., Yin, L., Wang, X., Liu, L., Huang, S., Zhang, R., Wen, T., Yu, S., Fu, D., Hayat, T., Wang, X.: Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chem. Eng. J. 338, 579 (2018).10.1016/j.cej.2018.01.055Search in Google Scholar
44. Zou, Y., Wang, X., Ai, Y., Liu, Y., Li, J., Ji, Y., Wang, X.: Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: batch experimental and theoretical calculation study. Environ. Sci. Technol. 50, 3658 (2016).10.1021/acs.est.6b00255Search in Google Scholar PubMed
45. Pang, H., Huang, S., Wu, Y., Yang, D., Wang, X., Yu, S., Chen, Z., Alsaedi, A., Hayat, T., Wang, X.: Efficient elimination of U(VI) by polyethyleneimine decorated fly ash, Inorg. Chem. Front. 5, 2399 (2018).10.1039/C8QI00253CSearch in Google Scholar
46. Wu, Y., Pang, H., Yao, W., Wang, X., Yu, S., Yu, Z., Wang, X.: Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): batch experiments and spectroscopy study. Sci. Bull. 63, 831 (2018).10.1016/j.scib.2018.05.021Search in Google Scholar
47. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918).10.1021/ja02242a004Search in Google Scholar
48. Freundlich, H. M. F.: Uber die adsorption in lusungen. J. Phys. Chem. 57, 385 (1906).10.1515/zpch-1907-5723Search in Google Scholar
49. Wang, X., Liu, Y., Pang, H., Yu, S., Ai, Y., Ma, X., Song, G., Hayat, T., Alsaedi, A., Wang, X.: Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions. Chem. Eng. J. 344, 380 (2018).10.1016/j.cej.2018.03.107Search in Google Scholar
50. Pang, H., Wu, Y., Huang, S., Ding, C., Li, S., Wang, X., Yu, S., Chen, Z., Song, G., Wang, X.: Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorg. Chem. Front. 5, 2657 (2018).10.1039/C8QI00779ASearch in Google Scholar
51. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Identifying the recognition site for selective trapping of 99TcO4− in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873 (2017).10.1021/jacs.7b08632Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3061).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets
- Thorium oxide dissolution in HNO3-HF mixture: kinetics and mechanism
- Highly efficient carbonaceous nanofiber/layered double hydroxide nanocomposites for removal of U(VI) from aqueous solutions
- Effect of solution acidity on the structure of amino acid-bearing uranyl compounds
- A novel method for the determination of uranium and free acidity in nuclear fuel process samples by extraction spectrophotometry
- Experimental investigation of photon attenuation parameters for different binary alloys
- Radiation protective characteristics of some selected tungstates
- New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding
Articles in the same Issue
- Frontmatter
- Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets
- Thorium oxide dissolution in HNO3-HF mixture: kinetics and mechanism
- Highly efficient carbonaceous nanofiber/layered double hydroxide nanocomposites for removal of U(VI) from aqueous solutions
- Effect of solution acidity on the structure of amino acid-bearing uranyl compounds
- A novel method for the determination of uranium and free acidity in nuclear fuel process samples by extraction spectrophotometry
- Experimental investigation of photon attenuation parameters for different binary alloys
- Radiation protective characteristics of some selected tungstates
- New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding