Abstract
As the utilizing of porphyrins and metalloporphyrins in high dose dosimetry becomes more prevalent, research on structural effects of these molecules on dosimetric characteristics and physicochemical properties of their film dosimeters becomes more and more essential. The present study emphasizes dosimetry (measuring radiolytic bleaching of two novel film dosimeters with spectrophotometric methods against 60Co γ-rays exposure in dose range of 0–100 kGy) and evaluating substituent effects on the radiation response of the film dosimeters (role of organic groups and changing the metal core of porphyrins). With casting of solutions of polycarbonate (PC) containing 0.5 wt.% 5,10,15,20-Tetrakis(2,4,6-trimethoxyphenyl) porphyrin (TTMPP) and 5,10,15,20-Tetraphenyl-21H,23H-porphine manganese (III) chloride (Mn-TPP), two novel radiochromic films with the thickness of 20 μm were fabricated. The presence of porphyrin fragments has been observed in the UV–Vis spectra after γ radiation. Due to the changes of the metal core and substituents of the dye ring, meaningful shifts of maximum absorbance of Soret bands of porphyrins and different radiation response of film-dosimeters were observed. The results were compared with the other polycarbonate/porphyrin film dosimeters. The results indicate that the radiation-induced decoloration of PC/Porphyrin films can be reliably tuned and used in high dose dosimetry.
References
1. ISO/ASTM 51261: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar
2. Kantz, A. D., Humpherys, K. C.: Quality assurance for radiation processing. Radiat. Phys. Chem. 14, 575 (1977).10.1016/0146-5724(79)90092-XSearch in Google Scholar
3. McLaughlin, W., Gaughran, E., Goudie, A.: Sterilization by Ionizing Radiation, Multiscience, Montreal, Quebec (1974), p. 219.Search in Google Scholar
4. IAEA: Dosimetry for Food Irradiation, Technical Reports Series Number 409, Austria, Vienna (2002).Search in Google Scholar
5. Kovács, A., Baranyai, M., Wojnárovits, L., Slezsák, I., McLaughlin, W. L., Miller, A., Moussa, A.: Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light. Radiat. Phys. Chem. 57, 711 (2000).10.1016/S0969-806X(99)00501-0Search in Google Scholar
6. Bhatti, I. A., Adeel, S., Taj, H.: Application of Vat Green 1 dye on γ ray treated cellulosic fabric. Radiat. Phys. Chem. 102, 124 (2014).10.1016/j.radphyschem.2014.04.015Search in Google Scholar
7. Feizi, S., Ziaie, F., Ghandi, M.: Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing. Radiochim. Acta 103, 149 (2015).10.1515/ract-2014-2265Search in Google Scholar
8. Feizi, S., Ziaie, F., Ghandi, M.: Using polycarbonate dyed with dansyl chloride for dosimetry in radiation processing. Radiochim. Acta 103, 605 (2015).10.1515/ract-2015-0001Search in Google Scholar
9. ISO/ASTM 51275: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar
10. McLaughlin, W., Miller, A., Fidan, S., Pejtersen, K., Batsberg Pedersen, W.: Radiochromic plastic films for accurate measurement of radiation absorbed dose and dose distributions. Radiat. Phys. Chem. 10, 119 (1977).10.1016/0146-5724(77)90017-6Search in Google Scholar
11. Buenfil-Burgos, A., Uribe, R., De La Piedad, A., McLaughlin, W., Miller, A.: Thin plastic radiochromic dye films as ionizing radiation dosimeters. Radiat. Phys. Chem. 22, 325 (1983).10.1016/0146-5724(83)90037-7Search in Google Scholar
12. Miller, A., Batsberg, W., Karman, W.: A new radiochromic thin-film dosimeter system. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 31, 491 (1988).10.1016/1359-0197(88)90216-0Search in Google Scholar
13. Frame, P. W.: A history of radiation detection instrumentation. Health Phy. 87, 111 (2004).10.1097/00004032-200408000-00001Search in Google Scholar PubMed
14. Mai, H. H., Solomon, H. M., Taguchi, M., Kojima, T.: Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters. Radiat. Phys. Chem. 77, 457 (2008).10.1016/j.radphyschem.2007.06.012Search in Google Scholar
15. ISO/ASTM 51650: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar
16. McLaughlin, W. L., Ba, W.-Z., Chappas, W. J.: Cellulose diacetate film dosimeters. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 31, 481 (1988).10.1016/1359-0197(88)90215-9Search in Google Scholar
17. Tamura, N., Tanaka, R., Mitomo, S., Matsuda, K., Nagai, S.: Properties of cellulose triacetate dose meter. Radiat. Phys. Chem. 18, 947 (1981).10.1016/0146-5724(81)90285-5Search in Google Scholar
18. Chu, R., Lewis, D., O’Hara, K., Buckland, B., Dinelle, F., Van Dyk, G.: Gafchromic dosimetry media: a new high dose, thin film routine dosimeter and dose mapping tool. Radiat. Phys. Chem. 35, 767 (1990).10.1016/1359-0197(90)90313-7Search in Google Scholar
19. Khan, H. M., Ahmad, G., Sattar, A., Durrani, S.: Radiation dosimetry using clear PMMA and PVC in the range of 5–45 kGy. J. Radioanal. Nucl. Chem. 125, 127 (1988).10.1007/BF02041757Search in Google Scholar
20. Miller, A., Liqing, X.: Properties of Commercial PVC Films with Respect to Electron Dosimetry, Risø National Laboratory, Roskilde, Denmark (1985).Search in Google Scholar
21. Ilic-Popovic, J.: The Use of Pilyvinyl-Chloride Film for Electron Beam Dosimetry, Risø National Laboratory, Roskilde, Denmark (1966).Search in Google Scholar
22. Mai, H. H., Duong, N. D., Kojima, T.: Dyed polyvinyl chloride films for use as high-dose routine dosimeters in radiation processing. Radiat. Phys. Chem. 69, 439 (2004).10.1016/j.radphyschem.2003.08.006Search in Google Scholar
23. Kattan, M., al Kassiri, H., Daher, Y.: Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry. Appl. Radiat. Isot. 69, 377 (2011).10.1016/j.apradiso.2010.11.006Search in Google Scholar PubMed
24. Ueno, K.: Development of a plastic dosimeter for industrial use with high doses. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 31, 467 (1988).10.1016/1359-0197(88)90213-5Search in Google Scholar
25. Kattan, M., Daher, Y.: The use of polyvinyl chloride films dyed with methyl red in radiation dosimetry. Int. J. Radiat. Res. 14, 4 (2016).10.18869/acadpub.ijrr.14.3.263Search in Google Scholar
26. Khan, H. M., Ahmad, G.: Spectrophotometric analysis of blue polymethylmethacrylate as high-dose dosimeter. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 35, 732 (1990).10.1016/1359-0197(90)90306-3Search in Google Scholar
27. Lewis, D., Devic, S.: Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med. Phys. 42, 5692 (2015).10.1118/1.4929563Search in Google Scholar PubMed
28. Chang, L., Ho, S.-Y., Lee, T.-F., Yeh, S.-A., Ding, H.-J., Chen, P.-Y.: Calibration of EBT2 film using a red-channel PDD method in combination with a modified three-channel technique. Med. Phys. 42, 5838 (2015).10.1118/1.4930253Search in Google Scholar PubMed
29. Andrés, C., del Castillo, A., Tortosa, R., Alonso, D., Barquero, R.: A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med. Phys. 37, 6271 (2010).10.1118/1.3512792Search in Google Scholar
30. Poppinga, D., Schoenfeld, A. A., Doerner, K. J., Blanck, O., Harder, D., Poppe, B.: A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry. Med. Phys. 41, 021707 (2014).10.1118/1.4861098Search in Google Scholar PubMed
31. Devic, S., Tomic, N., Lewis, D.: Reference radiochromic film dosimetry: review of technical aspects. Phys. Med. 32, 541 (2016).10.1016/j.ejmp.2016.02.008Search in Google Scholar PubMed
32. Tamponi, M., Bona, R., Poggiu, A., Marini, P.: A new form of the calibration curve in radiochromic dosimetry. Properties and results. Med. Phys. 43, 4435 (2016).10.1118/1.4954208Search in Google Scholar
33. Skyt, P. S., Jensen, G. V., Wahlstedt, I., Baltzer Petersen, J. B., Muren, L. P., Pedersen, J. S., Balling, P.: Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter. RSC Advances 4, 9152 (2014).10.1039/c3ra46605aSearch in Google Scholar
34. Al Zahrany, A. A., Rabaeh, K. A., Basfar, A. A.: Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter. Radiat. Phys. Chem. 80, 1263 (2011).10.1016/j.radphyschem.2011.06.001Search in Google Scholar
35. Masayuki, M., Hidenori, U., Shinzo, M.: Optical humidity sensor with a fast response time using dye-adsorbed langmuir-blodgett films. Jpn. J. Appl. Phys. 31, L1202 (1992).10.1143/JJAP.31.L1202Search in Google Scholar
36. Imahori, H., Kashiwagi, Y., Endo, Y., Hanada, T., Nishimura, Y., Yamazaki, I., Araki, Y., Ito, O., Fukuzumi, S.: Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20, 73 (2004).10.1021/la035435pSearch in Google Scholar PubMed
37. Delmarre, D., Bied-Charreton, C. Grafting of cobalt porphyrins in sol–gel matrices: application to the detection of amines. Sens. Actuators B Chem. 62, 136 (2000).10.1016/S0925-4005(99)00383-4Search in Google Scholar
38. Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot. 112, 13 (2016).10.1016/j.apradiso.2016.03.003Search in Google Scholar PubMed
39. Fazaeli, Y., Jalilian, A. R., Amini, M. M., Ardaneh, K., Rahiminejad, A., Bolourinovin, F., Moradkhani, S., Majdabadi, A.: Development of a 68Ga-fluorinated porphyrin complex as a possible PET imaging agent. Nucl. Med. Mol. Imaging 46, 20 (2012).10.1007/s13139-011-0109-5Search in Google Scholar PubMed PubMed Central
40. Fazaeli, Y., Jalilian, A. R., Feizi, S., Shadanpour, N.: Development of a radiothallium (III) labeld porphyrin complex as a potential imaging agent. Radiochim. Acta 101, 795 (2013).10.1524/ract.2013.2092Search in Google Scholar
41. Vahidfar, N., Jalilian, A. R., Fazaeli, Y., Bahrami-Samani, A., Beiki, D., Khalaj, A.: Development and evaluation of a 166holmium labelled porphyrin complex as a possible therapeutic agent. J. Radioanal. Nucl. Chem. 295, 979 (2013).10.1007/s10967-012-2034-1Search in Google Scholar
42. Aboudzadeh, M., Fazaeli, Y., Khodaverdi, H., Afarideh, H.: Production, nano-purification, radiolabeling and biodistribution study of [140Nd] 5,10,15,20-tetraphenylporphyrin complex as a possible imaging agent. J. Radioanal. Nucl. Chem. 295, 105 (2013).10.1007/s10967-012-1826-7Search in Google Scholar
43. Fazaeli, Y., Shanehsazzadeh, S., Lahooti, A., Feizi, S., Jalilian, A.: Preclinical dosimetric estimation of [111In] 5, 10, 15, 20-tetra phenyl porphyrin complex as a possible imaging/PDT agent. Radiochim. Acta 104, 327 (2016).10.1515/ract-2015-2444Search in Google Scholar
44. Feizi, S.: Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry. Radiochim. Acta 105, 657 (2017).10.1515/ract-2016-2754Search in Google Scholar
45. Abdel-Fattah, A., Said, F., Ebraheem, S., El-Kelany, M., El Miligy, A.: Dyed acrylic-acid grafted polypropylene films for high-dose radiation dosimetry. Radiat. Phys. Chem. 54, 271 (1999).10.1016/S0969-806X(98)00259-XSearch in Google Scholar
46. Khan, H., Ahmad, G., Sattar, A.: Effects of humidity and light on dosimetric properties of clear polymethylmethacrylate. J. Radioanal. Nucl. Chem. 135, 237 (1989).10.1007/BF02164581Search in Google Scholar
47. Khan, H. M., Farahani, M., William L., M.: A radiochromic folm dosimeter for γ radiation in the absorbed-dose range 0.1–10 kGy. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 38, 395 (1991).10.1016/1359-0197(91)90114-HSearch in Google Scholar
48. McLaughlin, W. L., Puhl, J. M., Miller, A.: Temperature and relative humidity dependence of radiochromic film dosimeter response to γ and electron radiation. Radiat. Phys. Chem. 46, 1227 (1995).10.1016/0969-806X(95)00359-6Search in Google Scholar
49. Noorin Eftekhar, S., Feizi, S., Dehaghi Shahram, M.: Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect. Radiochim. Acta 106, 695 (2018).10.1515/ract-2017-2839Search in Google Scholar
50. Patel, N. J., Chen, Y., Joshi, P., Pera, P., Baumann, H., Missert, J. R., Ohkubo, K., Fukuzumi, S., Nani, R. R., Schnermann, M. J., Chen, P., Zhu, J., Kadish, K. M., Pandey, R. K.: Effect of metalation on porphyrin-based bifunctional agents in tumor imaging and photodynamic therapy. Bioconjugate Chem. 27, 667 (2016).10.1021/acs.bioconjchem.5b00656Search in Google Scholar PubMed PubMed Central
51. Jadhav, S., Yim, C.-B., Rajander, J., Grönroos, T. J., Solin, O., Virta, P.: Solid-supported porphyrins useful for the synthesis of conjugates with oligomeric biomolecules. Bioconjugate Chem. 27, 1023 (2016).10.1021/acs.bioconjchem.6b00051Search in Google Scholar PubMed
52. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., Korsakoff, L.: A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 32, 476 (1967).10.1021/jo01288a053Search in Google Scholar
53. Walker, F. A., Simonis, U.: Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., USA (2006).Search in Google Scholar
54. ASTM E1026-95: American Society for Testing and Materials, West Conshohocken, PA, USA (2003).Search in Google Scholar
55. Hunter, C. A., Sanders, J. K. M.: The nature of .pi.-.pi. interactions. J. Am. Chem. Soc. 112, 5525 (1990).10.1021/ja00170a016Search in Google Scholar
56. Faria de Sales, N., Mansur, H. S.: Influence of subphase parameters on the nanostructures of 5,10,15,20-tetraphenyl-21H,23H-porphine films at air-water interface. J. Nanosci. Nanotechnol. 9, 688 (2009).10.1166/jnn.2009.C004Search in Google Scholar PubMed
57. ASTM E1707: American Society for Testing and Materials, West Conshohocken, PA, USA (1995), vol. 100.Search in Google Scholar
58. Duan, C. H., Ma, H. M., Chen, X., Zhang, L. N., Zhang, N., Li, H., Du, B., Wei, Q.: Synthesis and spectroscopic properties of tetra-(dimethylaminophenyl) porphyrin and its metal complexes. Guang Pu Xue Yu Guang Pu Fen Xi 27, 2566 (2007).Search in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects
Articles in the same Issue
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects