Abstract
A method has been developed for quantification of trace rare earth (Ce, Dy, Er, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb and Yb) impurities in alumina and aluminum by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation. The matrix separation was achieved by selective precipitation of trace elements. Due to its refractory nature a microwave digestion method was developed and optimized for the quantitative dissolution of Al2O3. The analytical methodology was validated by recovery studies with standard addition as well as with an independent γ-spectrometry technique using 152,154Eu tracers. The observed recovery in the synthetic samples was in the range of 93–100% with precision within 6.1–11.6 (%RSD), while the same in the case of radio tracer technique were found to be >98% and <2% (RSD), respectively. The method detection limit was found within 0.5–8.3 μg kg−1, respectively. The procedure is simple, organic waste free and suitable for routine analysis.
References
1. Fadhel, A. A. S., Ahmed, A. M., Nasr, H. A. Q.: Alumina ceramic for dental applications: a review article. Am. J. Mater. Res. 1(1), 26 (2014).Suche in Google Scholar
2. Silva, M. V., Stainer, D., Al-Qureshi, H. A., Hotza, O. R. K. M. D.: Alumina-based ceramics for Armor application: mechanical characterization and ballistic testing. J. Ceram. 2014, 1 (2014).10.1155/2014/618154Suche in Google Scholar
3. Liao, G., Keying, H., Liusheng, L., Jiang, M.: Study on application of alumina in high-purity and a lusite based refractory. J. Miner. Mater. Charact. Eng. 3(2), 81 (2004).10.4236/jmmce.2004.32009Suche in Google Scholar
4. Davis, K.: Material review: alumina (Al2O3). School Dr. Stud.,Europen Union J. 2, 109 (2010).Suche in Google Scholar
5. Buchmeiser, M. R.: New synthetic ways for the preparation of high-performance liquid chromatography supports. J. Chromatogr. A 918, 233 (2001).10.1016/S0021-9673(00)00129-1Suche in Google Scholar PubMed
6. Furukawa, G. T., Douglas, T. B., McCoskey, R. E., Ginnings, D. C.: Thermal properties of alumina oxide from 0° to 1200°K. J. Res. Natl. Stand. 57(2), 67 (1956).10.6028/jres.057.008Suche in Google Scholar
7. Geller, R. F., Yavorsky, P. J.: Melting point of alpha-alumina. J. Res. Natl. Stand. 34, 395 (1945).10.6028/jres.034.021Suche in Google Scholar
8. Tangboriboon, N., Uttanawanit, N., Longtone, M., Wongpinthong, P., Sirivat, A., Kunanuruksapong, R.: Electrical and electrorheological properties of alumina/natural rubber (STR XL) composites. Materials 3, 656 (2010).10.3390/ma3010656Suche in Google Scholar
9. Park, M. K., Kim, H. N., Baek, S. S., Kang, E. S., Baek, Y. K., Kim, D. K.: Dielectric properties of alumina ceramics in the microwave frequency at high temperature, Trans Tech Publications, Switezerland. Solid State Phenomena 124, 743 (2007).10.4028/www.scientific.net/SSP.124-126.743Suche in Google Scholar
10. Kaczmar, J. W., Granat, K., Kurzawa, A., Grodzka, E.: Physical properties of copper based MMC strengthened with alumina. Arch. Foundry Eng. 14(2), 85 (2014).10.2478/afe-2014-0042Suche in Google Scholar
11. Habasi, F.: A historical perspective: Bayer’s Process for alumina production. Bull. Hist. Chem. 17/18, 15 (1995).Suche in Google Scholar
12. Olaremu, A. G.: Sequential leaching for the production of alumina from Nigerian clay. Int. J. Eng. Techn. Manage. Appl. Sci. 3(7), 103 (2015).Suche in Google Scholar
13. Hosseini, S. A., Niaei, A., Salari, D.: Production of γ-Al2O3 from Kaolin. J. Phys. Chem. 1, 23 (2011).10.4236/ojpc.2011.12004Suche in Google Scholar
14. Simon, N. J.: Cryogenic properties of inorganic insulation materials for ITER magnets. A Review: NISTIR 5030 December 1994.10.2172/761710Suche in Google Scholar
15. Moreno, C., Sedano, L. A., McCarthy, K. J., Hodgson, E. R.: Hydrogenic species transport model for ceramic alumina used in ITER ICRH H&CD & diagnostics systems. Fusion Eng. Des. 82, 2647 (2007).10.1016/j.fusengdes.2007.05.028Suche in Google Scholar
16. DOE-HDBK-1017/2-93. DOE Fundamentals Handbook. Material Science Volume 2 of 2. U.S. Department of Energy, Washington, D.C. (1993). Available at: https://www.standards.doe.gov/standards-documents/1000/1017-BHdbk-1993-V2.Suche in Google Scholar
17. Piatti, G., Fiorini, P., Schiller, P.: High purity aluminium alloys for experimental fusion reactors. Nucl. Eng. Des. 1, 137 (1984).10.1016/0167-899X(84)90036-3Suche in Google Scholar
18. Dietrich, G. A.: Aluminium alloy Selection and Application (1998), Published by The Aluminium Association, Inc., Washington. www.calm-aluminium.com.au/Documents/Aluminium-Alloys.pdf.Suche in Google Scholar
19. Rambabu, P., Prasad, N. E., Kutumbarao, V. V., Wanhill, R. J. H.: Chapter 2: aluminium alloys for aerospace application. In: N. Eswara Prasad, R. J. H. Wanhill (Eds.), Aerospace Materials and Material Technologies, Indian Institute of Metals Series, 1, 29 (2017). DOI 10.1007/978-981-10-2134-3_2.10.1007/978-981-10-2134-3_2Suche in Google Scholar
20. Gonzalez, M., Hodgson, E. R.: Radiation resistance bolometers with Al2O3 and AlN substrates, anodized aluminium support frames, and improved electrical contacts. Fusion Eng. Des. 84, 829 (2009).10.1016/j.fusengdes.2009.01.002Suche in Google Scholar
21. IAEA-TECDOC-1637. Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water, International Atomic Energy Agency Vienna, (2009). http://www.iaea.org/books.Suche in Google Scholar
22. Thummler, F., Lilienthal, H. E., Nazare, S.: UAl2-Al instead of UAl3-Al in fuel-element plates for advanced test reactors. Powder Metall. 12(23), 1 (1969).10.1179/pom.1969.12.23.001Suche in Google Scholar
23. Hou, P. Y.: Impurity effect on alumina scale growth. J. Am. Ceram. Soc. 86(4), 660 (2003).10.1111/j.1151-2916.2003.tb03355.xSuche in Google Scholar
24. Higuchi, T., Shiiyama, K., Izumi, Y., Howlader, M. M. R., Kutsuwada, M., Kinoshita, C.: Effect of specimen thickness and impurity on conductivity of alumina under electron irradiation. J. Nucl. Mater. 307–311, 1250 (2002).10.1016/S0022-3115(02)00979-0Suche in Google Scholar
25. Yoo, J. H., Nam, J. C., Baik, S.: Quantitative evaluation of glass-forming impurities in alumina: equivalent silica concentration (ESC). J. Am. Cerm. Soc. 82(8), 2233 (1999).10.1111/j.1151-2916.1999.tb02067.xSuche in Google Scholar
26. Corte, F. D., Simonits, A.: Ko-measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J. Radioanal. Nucl. Chem. 133, 43 (1989).10.1007/BF02039970Suche in Google Scholar
27. Nagar, B. K., Saha, A., Deb, S. B., Saxena, M. K.: Quantification of trace and ultra trace elements in uranium-silicide (U3Si2) fuel employing inductively coupled plasma mass spectrometry. Atom. Spectrosc. 35(5), 187 (2014).10.46770/AS.2014.05.001Suche in Google Scholar
28. American Society for Testing and Materials. Report: ASTM C753-04 (2009), Standard specification for nuclear grade sinterable uranium dioxide powder. https://cds.cern.ch/record/1482908?ln=en.Suche in Google Scholar
29. Caicedo-Martinez, C. E., Koroleva, E. V., Tompson, G. E., Skeldon, P., Shimizu, K., Hoellrigl, G., Campbell, C., McAlpine, E.: Influence of impurities in aluminium on surface treatment. Corros. Sci. 44, 2611 (2002).10.1016/S0010-938X(02)00041-0Suche in Google Scholar
30. Guitar, M. A., Ramos-Moore, E., Mucklich, F.: The influence of impurities on the formation of protective aluminium oxides on RuAl thin films. J. Alloys Compd. 594, 165 (2014).10.1016/j.jallcom.2014.01.137Suche in Google Scholar
31. Ducere, J. M., Rouhani, M. D., Rossi, C., Esteve, A.: Role of impurities, defects and their complexes on the trapping of hydrogen in bulk aluminium and the Al(111) surface. Comput. Mater. Sci. 126, 272 (2017).10.1016/j.commatsci.2016.09.047Suche in Google Scholar
32. Auchet, J., Terzieff, P.: The effect of Ti, V and Cr impurities on the transport properties of liquid aluminium. J. Alloys Compd. 261, 295 (1997).10.1016/S0925-8388(97)00207-7Suche in Google Scholar
33. Kerness, N. D., Hossain, T. Z., Mc Guire, S. C.: Impurity study of alumina and aluminium nitride ceramics: microelectronics packaging applications. Appl. Radiat. Isot. 48(1), 5 (1997).10.1016/S0969-8043(96)00127-3Suche in Google Scholar
34. Shinde, A. D., Acharya, R., Reddy, A. V. R.: Trace element determination in high-purity aluminium clad samples by ko-based internal monostandard instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 299, 1287 (2014).10.1007/s10967-013-2856-5Suche in Google Scholar
35. Shibata, S., Tanaka, S., Suzuki, T., Umezawa, H., Lo, J. G., Yeh, S. J.: Determination of impurities in aluminium metals by proton activation. Int. J. Appl. Radiat. Isot. 30, 563 (1979).10.1016/0020-708X(79)90171-6Suche in Google Scholar
36. de Mattos, J. C. P., Rodrigues, L. F., de Mores Flores, E. M., Krivan, V.: Determination of trace impurities in aluminium nitride by direct solid sampling graphite furnace atomic absorption spectrometry. Spectrochem. Acta B 66, 637 (2011).10.1016/j.sab.2011.07.002Suche in Google Scholar
37. Hong-kun, L., Ming, L., Zhi-jiang, C., Run-hua, L.: Quantitative analysis of impurities in aluminium alloys by laser-induced breakdown spectroscopy without internal calibration. Trans. Nonferrous Met. Soc. China 18, 222 (2008).10.1016/S1003-6326(08)60040-0Suche in Google Scholar
38. Yonga, C.: ICP-AES determination of 15 kind of impurity elements in the vanadium-aluminium alloy, International Conference on Advances in Engineering 2011. Procedia Eng. 24, 447 (2011).10.1016/j.proeng.2011.11.2674Suche in Google Scholar
39. Lee, J., Kim, Y.: Chemical dissolution of iridium powder using alkali fusion followed by high-temprature leaching. Mater. Trans. 52(110), 2067 (2011).10.2320/matertrans.M2011202Suche in Google Scholar
40. Frederico, G. P., Rainerio, E. J., Tatiana, D. S. P.: Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Anal. Lett. 45, 1537 (2012).10.1080/00032719.2012.677778Suche in Google Scholar
41. Nagar, B. K., Saxena, M. K., Tomar, B. S.: Development of analytical method for quantification of trace metallic impurities in U-Mo alloy employing time-of-flight-based ICP-MS. Atom. Spectrosc. 38(5), 37 (2017).10.46770/AS.2017.05.001Suche in Google Scholar
42. Gayer, K. H., Thompson, L. C., Zajicek, O. T.: The solubility of aluminium hydroxides in acidic and basic media at 25 °C. Can. J. Chem. 36, 1268 (1958).10.1139/v58-184Suche in Google Scholar
43. Clifford, C. M., Frederic, V.: Solubility product relations in the rare earth hydrous hydroxide. Anal. Chim. Acta. 20, 415 (1959).10.1016/0003-2670(59)80090-8Suche in Google Scholar
44. Freslon, N., Bayon, G., Birot, D., Bollinger, C., Barrat, J. A.: Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in sea water using Tm addition and Mg(OH)2 co-precipitation. Talanta 85(1), 582 (2011).10.1016/j.talanta.2011.04.023Suche in Google Scholar PubMed
45. Lum, T. S., Leung, K. S. Y.: Strategies to overcome spectral interference in ICP-MS detection. J. Anal. Atom. Spectrom. 31, 1078 (2016).10.1039/C5JA00497GSuche in Google Scholar
46. Raut, N. M., Haung, L. S., Agrawal, S. K., Lin, K. C.: Mathematical correction for polyatomic isobaric spectral interferences in determination of lanthanides by inductively coupled plasma mass spectrometry. J. Chin. Chem. Soc. 52, 589 (2005).10.1002/jccs.200500087Suche in Google Scholar
47. Belter, M., Sajnog, A., Barlkiewtcz, D.: Over a century of detection and quantification capabilities in analytical chemistry–historical overview and trends. Talanta 129, 606 (2014).10.1016/j.talanta.2014.05.018Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects