Abstract
To explore the diffusion behavior of 75Se(IV) in Beishan granite (BsG), the influences of temperature, oxygen condition and ionic strength were investigated using the through-diffusion experimental method. The effective diffusion coefficient De of 75Se(IV) in BsG varied from 4.21×10−14 m2/s to 3.19×10−13 m2/s in our experimental conditions, increased with increasing temperature. The formation factor Ff of BsG was calculated to be nearly constant in the range of temperatures investigated, suggesting that the inner structure of BsG had no significant change in the temperature range of 20–55°C. Meanwhile, the De values of 75Se(IV) in BsG under anaerobic condition was significantly larger than that under aerobic condition, which may be attributed to the difference in the sorption characteristics and species distribution of Se and pH values. Moreover, the diffusion of 75Se(IV) was promoted with ionic strength increased from 0.01 M to 0.1 M, and then decreased at 0.5 M, mainly due to the combined effects of reduced double layers with increased ionic strength and increase of the solution viscosity at higher ionic strength.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11075006
Award Identifier / Grant number: U1730245
Funding statement: The project was jointly supported by the National Natural Science Foundation of China (Grant Nos. 11075006, U1730245), Special Foundation for High-level Waste Disposal (2007-840), the Fundamental Research Funds for the Central Universities, Analysis foundation of Peking University (13-18) and the 111 projects.
References
1. Ewing, R. C.: Radioactive waste: less geology in the geological disposal of nuclear waste. Science 286, 415 (1999).10.1126/science.286.5439.415Suche in Google Scholar
2. Chapman, N., Hooper, A.: The disposal of radioactive wastes underground. P. Geologist. Assoc. 123, 46 (2012).10.1016/j.pgeola.2011.10.001Suche in Google Scholar
3. Sizgek, G. D.: Three-dimensional thermal analysis of in-floor type nuclear waste repository for a ceramic waste form. Nucl. Eng. Des. 235, 101 (2005).10.1016/j.nucengdes.2004.09.010Suche in Google Scholar
4. Bennett, D. G., Gens, R.: Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. J. Nucl. Mater. 379, 1 (2008).10.1016/j.jnucmat.2008.06.001Suche in Google Scholar
5. Hökmark, H., Fälth, B.: Thermal dimensioning of the deep repository. TR-03-09, Stockholm, (2003). http://www.skb.com/publication/21133/TR-03-09.pdf.Suche in Google Scholar
6. Cui, Y. J., Tang, A. M.: On the chemo-thermo-hydro-mechanical behaviour of geological and engineered barriers. J. Rock. Mech. Geotech. Eng. 5, 169 (2013).10.1016/j.jrmge.2013.05.001Suche in Google Scholar
7. Klubertanz, G., Folly, M., Hufschmied, P., Frank, E.: Impact of the thermal load on the farfield and galleries of a HLW-repository. Phys. Chem. Earth. 33, S457 (2008).10.1016/j.pce.2008.10.027Suche in Google Scholar
8. Fritz, B., Kam, M., Tardy, Y.: Geochemical simulation of the evolution of granitic rocks and clay minerals submitted to a temperature increase in the vicinity ot a repository for spent nuclear fuel. Université Louis Pasteur de Strasbourg Institut de Géologie, SKB/KRS TR-84-10, (1984). http://www.skb.se/publikation/3184/TR84-10webb.pdf.Suche in Google Scholar
9. Bardakci, T.: Temperature and saturation effects on diffusion of carbon dioxide through topopah spring Tuff: part I. Thermochim. Acta. 180, 125 (1991).10.1016/0040-6031(91)80381-RSuche in Google Scholar
10. Bardakci, T.: The effect of temperature on diffusion of iodine through topopah spring Tuff: part II. Thermochim. Acta. 180, 139 (1991).10.1016/0040-6031(91)80382-SSuche in Google Scholar
11. Chen, T., Sun, M., Li, C., Tian, W., Liu, X., Wang, L., Wang, X., Liu, C.: The influence of temperature on the diffusion of 125I− in Beishan Granite. Radiochim. Acta. 98, 301 (2010).10.1524/ract.2010.1717Suche in Google Scholar
12. Manaka, M.: Comparison of rates of pyrite oxidation by dissolved oxygen in aqueous solution and in compacted bentonite. J. Miner. Petrol. Sci. 104, 59 (2009).10.2465/jmps.071023Suche in Google Scholar
13. Dultz, S., Simonyan, A. V., Pastrana, J., Behrens, H., Plötze, M., Rath, T.: Implications of pore space characteristics on diffusive transport in basalts and granites. Environ. Earth. Sci. 69, 969 (2013).10.1007/s12665-012-1981-8Suche in Google Scholar
14. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161, 854 (2009).10.1016/j.jhazmat.2008.04.044Suche in Google Scholar PubMed
15. Wang, Y. Q., Fan, Q. H., Li, P., Zheng, X. B., Xu, J. Z., Jin, Y. R., Wu, W. S.: The sorption of Eu (III) on calcareous soil: effects of pH, ionic strength, temperature, foreign ions and humic acid. J. Radioanal. Nucl. Chem. 287, 231 (2011).10.1007/s10967-010-0809-9Suche in Google Scholar
16. Guo, Z. J., Chen, Z. Y., Wu, W. S., Liu, C. L., Chen, T., Tian, W. Y., Li, C.: Adsorption of Se (IV) onto Beishan granite. Acta Phys-Chim. Sin. 27, 2222 (2011).10.3866/PKU.WHXB20110918Suche in Google Scholar
17. Papelis, C.: Cation and anion sorption on granite from the Project Shoal Test Area, near Fallon, Nevada, USA. Adv. Environ. Res. 5, 151 (2001).10.1016/S1093-0191(00)00053-8Suche in Google Scholar
18. Grambow, B.: Mobile fission and activation products in nuclear waste disposal. J. Contam. Hydrol. 102, 180 (2008).10.1016/j.jconhyd.2008.10.006Suche in Google Scholar PubMed
19. Tsai, T. L., Lee, C. P., Lin, T. Y., Wei, H. J., Men, L. C.: Evaluation of sorption and diffusion behavior of selenium in crushed granite by through-diffusion column tests. J. Radioanal. Nucl. Ch. 285, 733 (2010).10.1007/s10967-010-0609-2Suche in Google Scholar
20. Iida, Y., Yamaguchi, T., Tanaka, T.: Experimental and modeling study on diffusion of selenium under variable bentonite content and porewater salinity. J. Nucl. Sci. Technol. 48, 1170 (2011).10.1080/18811248.2011.9711805Suche in Google Scholar
21. Lee, C. P., Wei, Y. Y., Tsai, S. C., Teng, S. P., Hsu, C. N.: Diffusion of cesium and selenium in crushed mudrock. J. Radioanal. Nucl. Ch. 279, 761 (2009).10.1007/s10967-008-7355-8Suche in Google Scholar
22. Sato, H., Miyamoto, S.: Diffusion behaviour of selenite and hydroselenide in compacted bentonite. Appl. Clay. Sci. 26, 47 (2004).10.1016/j.clay.2003.10.007Suche in Google Scholar
23. Ikonen, J., Voutilainen, M., Söderlund, M., Jokelainen, L., Siitari-Kauppi, M., Martin, A.: Sorption and diffusion of selenium oxyanions in granitic rock. J. Contam. Hydrol. 192, 203 (2016).10.1016/j.jconhyd.2016.08.003Suche in Google Scholar PubMed
24. Charlet, L., Kang, M., Bardelli, F., Kirsch, R., Gehin, A.; Greneche, J.-M.; Chen, F.: Nanocomposite pyrite–greigite reactivity toward Se (IV)/Se (VI). Environ. Sci. Technol. 46, 4869 (2012).10.1021/es204181qSuche in Google Scholar PubMed
25. Jiang, S. S., He, M., Diao, L. J., Guo, J. R., Wu, S. Y.: Remeasurement of the half-life of 79Se with the projectile X-ray detection method. Chinese Phys. Lett. 18, 746 (2001).10.1088/0256-307X/18/6/311Suche in Google Scholar
26. Scheinost, A. C., Charlet, L.: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ. Sci. Technol. 42, 1984 (2008).10.1021/es071573fSuche in Google Scholar PubMed
27. Wang, J., Su, R., Chen, W., Guo, Y., Jin, Y., Wen, Z., Liu, Y.: Deep geological disposal of high-level radioactive wastes in China. Chinese J. Rock. Mech. Eng. 25, 649 (2006).Suche in Google Scholar
28. Wang, J.: Strategic program for deep geological disposal of high level radioactive waste in China. Uranium Geology. 20, 196 (2004).Suche in Google Scholar
29. Min, M., Luo, X., Wang, J., Jin, Y., Wang, R.: Sorption behavior of U (VI), 234U (VI) and 238U (VI) onto fracture-filling clays in Beishan granite, Gansu: application to selecting the site of high-level radwaste repository in China. Sci. China Ser. D. 48, 1649 (2005).10.1360/03yd0475Suche in Google Scholar
30. Dong, Y. H., Li, G., Li, M.: Numerical modeling of the regional ground water flow in Beishan area, Gansu Province. Chinese Sci. Bull. 54, 3112 (2009).10.1007/s11434-009-0344-7Suche in Google Scholar
31. Yang, X., Ge, X., He, J., Wang, C., Qi, L., Wang, X., Liu, C.: Effects of mineral compositions on matrix diffusion and sorption of (75)Se(IV) in granite. Environ. Sci. Technol. 52, 1320 (2018).10.1021/acs.est.7b05795Suche in Google Scholar PubMed
32. He, J., Ma, B., Kang, M., Wang, C., Nie, Z., Liu, C.: Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J. Hazard. Mater. 324, 564 (2017).10.1016/j.jhazmat.2016.11.027Suche in Google Scholar PubMed
33. Lu, C. J., Liu, C. L., Chen, T., Wang, J., Wang, X. Y., Su, R., Sun, J. Y., Yang, R. X., Zhang, X. S.: Determination of the effective diffusion coefficient for 125I− in Beishan granite. Radiochim. Acta. 96, 111 (2008).10.1524/ract.2008.1469Suche in Google Scholar
34. Li, C., Wang, C. L., Liu, X. Y., Zheng, Z., Wang, L. H., Zhu, Q. Q., Kang, M. L., Chen, T., Liu, C. L.: Effects of ionic strength and humic acid on 99TcO4− sorption and diffusion in Beishan granite. J. Radioanal. Nucl. Ch. 293, 751 (2012).10.1007/s10967-012-1746-6Suche in Google Scholar
35. Liu, C. L., Wang, X. Y., Li, S. S., Wang, Z. M., Gao, H. C., Li, B., Wen, R. Y., Wang, H. F., Tang, L. T., Xin, C. T., Jiang, L.: Diffusion of 99Tc in granite: a small scale laboratory simulation experiment. Radiochim. Acta. 89, 639 (2001).10.1524/ract.2001.89.10.639Suche in Google Scholar
36. Li, C., Liu, X. Y., Chen, T., Tian, W. Y., Zheng, Z., Wang, L. H., Liu, C. L.: The influence of pH on the sorption and diffusion of 99TcO4− in Beishan granite. Radiochim. Acta. 100, 449 (2012).10.1524/ract.2012.1936Suche in Google Scholar
37. Tachi, Y., Ebina, T., Takeda, C., Saito, T., Takahashi, H., Ohuchi, Y., Martin, A.J.: Matrix diffusion and sorption of Cs+, Na+, I− and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition. J. Contam. Hydrol. 179, 10 (2015).10.1016/j.jconhyd.2015.05.003Suche in Google Scholar PubMed
38. Videnská, K., Palágyi, Š., Štamberg, K., Vodičková, H., Havlová, V.: Effect of grain size on the sorption and desorption of SeO42− and SeO32− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J. Radioanal. Nucl. Ch. 298, 547 (2013).10.1007/s10967-013-2429-7Suche in Google Scholar
39. André, M., Malmström, M. E., Neretnieks, I.: Determination of sorption properties of intact rock samples: new methods based on electromigration. J. Contam. Hydrol. 103, 71 (2009).10.1016/j.jconhyd.2008.09.006Suche in Google Scholar PubMed
40. Zhu, J., Wang, X., Chen, T., Liu, C.: Chemical speciation code CHEMSPEC(C++) and its applications. Scientia Sinica Chimica. 42, 856 (2012).10.1360/032011-775Suche in Google Scholar
41. Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J. Hazard. Mater. 150, 279 (2008).10.1016/j.jhazmat.2007.04.098Suche in Google Scholar PubMed
42. Zhang, P., Sparks, D. L.: Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environ. Sci. Technol. 24, 1848 (1990).10.1021/es00082a010Suche in Google Scholar
43. Peak, D., Saha, U. K., Huang, P. M.: Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic Study. Soil Sci. Soc. Am. J. 70, 192 (2006).10.2136/sssaj2005.0054Suche in Google Scholar
44. Fernández-Martínez, A., Charlet, L.: Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Bio. 8, 81 (2009).10.1007/s11157-009-9145-3Suche in Google Scholar
45. Tachi, Y., Shibutani, T., Sato, H., Yui, M.: Sorption and diffusion behavior of selenium in tuff. J. Contam. Hydrol. 35, 77 (1998).10.1016/S0169-7722(98)00117-XSuche in Google Scholar
46. Jan, Y. L., Wang, T. H., Li, M. H., Tsai, S. C., Wei, Y. Y., Teng, S. P.: Adsorption of Se species on crushed granite: a direct linkage with its internal iron-related minerals. Appl. Radiat. Isotopes. 66, 14 (2008).10.1016/j.apradiso.2007.08.007Suche in Google Scholar
47. González Sánchez, F., Van Loon, L. R., Gimmi, T., Jakob, A., Glaus, M. A., Diamond, L. W.: Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl. Geochem. 23, 3840 (2008).10.1016/j.apgeochem.2008.08.008Suche in Google Scholar
48. Simonyan, A. V., Behrens, H., Dultz, S.: Diffusive transport of water in porous feldspars from granitic saprolites: in situ experiments using FTIR spectroscopy. Geochim. Cosmochim. Ac. 73, 7019 (2009).10.1016/j.gca.2009.08.031Suche in Google Scholar
49. Wang, C., Yang, X., Li, C., Liu, C.: The sorption interactions of humic acid onto Beishan granite. Colloid. Surface. A. 484, 37 (2015).10.1016/j.colsurfa.2015.07.045Suche in Google Scholar
50. Van Loon, L. R., Glaus, M. A., Muller, W.: Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl. Geochem. 22, 2536 (2007).10.1016/j.apgeochem.2007.07.008Suche in Google Scholar
51. Harvey, K. B.: Measurement of diffusive properties of intact rock. Whiteshell Laboratories. AECL-11439, COG-95-456-I, (1996). https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/072/28072995.pdf.Suche in Google Scholar
52. Li, C., Zheng, Z., Liu, X. Y., Chen, T., Tian, W. Y., Wang, L. H., Wang, C. L., Liu, C. L.: The diffusion of Tc-99 in Beishan granite-temperature effect. World J. Nucl. Sci. Technol. 03, 33 (2013).10.4236/wjnst.2013.31006Suche in Google Scholar
53. Mills, R., Lobo, V. M. M.: Self-Diffusion in electrolyte solutions: a critical examination of data compiled from the literature. Elsevier, New York (1989).Suche in Google Scholar
54. Dean, J. A., Lange’s handbook of chemistry (1985). 13th ed., McGraw-Hill, New York.Suche in Google Scholar
55. Liu, J., Löfgren, M., Neretnieks, I.: Data and uncertainty assessment-matrix diffusivity and porosity in situ. Royal Institute of Technology. ISSN 1402-3091, SKB Rapport R-06-111, (2006). http://www.skb.se/publication/1335866/R-06-111.pdf.Suche in Google Scholar
56. deLlano, A. Y., Bidoglio, G., Avogadro, A., Gibson, P. N., Romero, P. R.: Redox reactions and transport of selenium through fractured granite. J. Contam. Hydrol. 21, 129 (1996).10.1016/0169-7722(95)00038-0Suche in Google Scholar
57. Jan, Y. L., Wang, T. H., Li, M. H., Tsai, S. C., Wei, Y. Y., Hsu, C. N., Teng, S. P.: Evaluating adsorption ability of granite to radioselenium by chemical sequential extraction. J. Radioanal. Nucl. Ch. 273, 299 (2007).10.1007/s10967-007-6856-1Suche in Google Scholar
58. Carbol, P., Engkvist, I.: SKB R-97-13 (1997). Svensk Karnbranslehantering AB, Stockholm.Suche in Google Scholar
59. Filius, J. D., Lumsdon, D. G., Meeussen, J. C. L., Hiemstra, T., Van Riemsdijk, W. H.: Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Ac. 64, 51 (2000).10.1016/S0016-7037(99)00176-3Suche in Google Scholar
60. Kozaki, T., Liu, J. H., Sato, S.: Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentration. Phys. Chem. Earth. 33, 957 (2008).10.1016/j.pce.2008.05.007Suche in Google Scholar
61. Tachi, Y., Yotsuji, K.: Diffusion and sorption of Cs+, Na+, I− and HTO in compacted sodium montmorillonite as a function of porewater salinity: integrated sorption and diffusion model. Geochim. Cosmochim. Ac. 132, 75 (2014).10.1016/j.gca.2014.02.004Suche in Google Scholar
62. Wigger, C., Van Loon, L. R.: Importance of interlayer equivalent pores for anion diffusion in clay-rich sedimentary rocks. Environ. Sci. Technol. 51, 1998 (2017).10.1021/acs.est.6b03781Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Development of nuclear chemistry at Mainz and Darmstadt
- Extraction behavior of rutherfordium as a cationic fluoride complex with a TTA chelate extractant from HF/HNO3 acidic solutions
- Measurements of activation cross sections by cyclic activation method for (n,2n) reaction on 144Sm isotope around 14 MeV neutron energy
- The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects
- Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil
- Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions
- Evaluation of radiation absorption capacity of some soil samples
Artikel in diesem Heft
- Frontmatter
- Development of nuclear chemistry at Mainz and Darmstadt
- Extraction behavior of rutherfordium as a cationic fluoride complex with a TTA chelate extractant from HF/HNO3 acidic solutions
- Measurements of activation cross sections by cyclic activation method for (n,2n) reaction on 144Sm isotope around 14 MeV neutron energy
- The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects
- Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil
- Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions
- Evaluation of radiation absorption capacity of some soil samples