Home Physical Sciences The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects
Article
Licensed
Unlicensed Requires Authentication

The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects

  • Chunli Wang , Xiaoyu Yang , Jiangang He , Fangxin Wei , Zhong Zheng and Chunli Liu EMAIL logo
Published/Copyright: August 31, 2018

Abstract

To explore the diffusion behavior of 75Se(IV) in Beishan granite (BsG), the influences of temperature, oxygen condition and ionic strength were investigated using the through-diffusion experimental method. The effective diffusion coefficient De of 75Se(IV) in BsG varied from 4.21×10−14 m2/s to 3.19×10−13 m2/s in our experimental conditions, increased with increasing temperature. The formation factor Ff of BsG was calculated to be nearly constant in the range of temperatures investigated, suggesting that the inner structure of BsG had no significant change in the temperature range of 20–55°C. Meanwhile, the De values of 75Se(IV) in BsG under anaerobic condition was significantly larger than that under aerobic condition, which may be attributed to the difference in the sorption characteristics and species distribution of Se and pH values. Moreover, the diffusion of 75Se(IV) was promoted with ionic strength increased from 0.01 M to 0.1 M, and then decreased at 0.5 M, mainly due to the combined effects of reduced double layers with increased ionic strength and increase of the solution viscosity at higher ionic strength.

Award Identifier / Grant number: 11075006

Award Identifier / Grant number: U1730245

Funding statement: The project was jointly supported by the National Natural Science Foundation of China (Grant Nos. 11075006, U1730245), Special Foundation for High-level Waste Disposal (2007-840), the Fundamental Research Funds for the Central Universities, Analysis foundation of Peking University (13-18) and the 111 projects.

References

1. Ewing, R. C.: Radioactive waste: less geology in the geological disposal of nuclear waste. Science 286, 415 (1999).10.1126/science.286.5439.415Search in Google Scholar

2. Chapman, N., Hooper, A.: The disposal of radioactive wastes underground. P. Geologist. Assoc. 123, 46 (2012).10.1016/j.pgeola.2011.10.001Search in Google Scholar

3. Sizgek, G. D.: Three-dimensional thermal analysis of in-floor type nuclear waste repository for a ceramic waste form. Nucl. Eng. Des. 235, 101 (2005).10.1016/j.nucengdes.2004.09.010Search in Google Scholar

4. Bennett, D. G., Gens, R.: Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. J. Nucl. Mater. 379, 1 (2008).10.1016/j.jnucmat.2008.06.001Search in Google Scholar

5. Hökmark, H., Fälth, B.: Thermal dimensioning of the deep repository. TR-03-09, Stockholm, (2003). http://www.skb.com/publication/21133/TR-03-09.pdf.Search in Google Scholar

6. Cui, Y. J., Tang, A. M.: On the chemo-thermo-hydro-mechanical behaviour of geological and engineered barriers. J. Rock. Mech. Geotech. Eng. 5, 169 (2013).10.1016/j.jrmge.2013.05.001Search in Google Scholar

7. Klubertanz, G., Folly, M., Hufschmied, P., Frank, E.: Impact of the thermal load on the farfield and galleries of a HLW-repository. Phys. Chem. Earth. 33, S457 (2008).10.1016/j.pce.2008.10.027Search in Google Scholar

8. Fritz, B., Kam, M., Tardy, Y.: Geochemical simulation of the evolution of granitic rocks and clay minerals submitted to a temperature increase in the vicinity ot a repository for spent nuclear fuel. Université Louis Pasteur de Strasbourg Institut de Géologie, SKB/KRS TR-84-10, (1984). http://www.skb.se/publikation/3184/TR84-10webb.pdf.Search in Google Scholar

9. Bardakci, T.: Temperature and saturation effects on diffusion of carbon dioxide through topopah spring Tuff: part I. Thermochim. Acta. 180, 125 (1991).10.1016/0040-6031(91)80381-RSearch in Google Scholar

10. Bardakci, T.: The effect of temperature on diffusion of iodine through topopah spring Tuff: part II. Thermochim. Acta. 180, 139 (1991).10.1016/0040-6031(91)80382-SSearch in Google Scholar

11. Chen, T., Sun, M., Li, C., Tian, W., Liu, X., Wang, L., Wang, X., Liu, C.: The influence of temperature on the diffusion of 125I in Beishan Granite. Radiochim. Acta. 98, 301 (2010).10.1524/ract.2010.1717Search in Google Scholar

12. Manaka, M.: Comparison of rates of pyrite oxidation by dissolved oxygen in aqueous solution and in compacted bentonite. J. Miner. Petrol. Sci. 104, 59 (2009).10.2465/jmps.071023Search in Google Scholar

13. Dultz, S., Simonyan, A. V., Pastrana, J., Behrens, H., Plötze, M., Rath, T.: Implications of pore space characteristics on diffusive transport in basalts and granites. Environ. Earth. Sci. 69, 969 (2013).10.1007/s12665-012-1981-8Search in Google Scholar

14. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161, 854 (2009).10.1016/j.jhazmat.2008.04.044Search in Google Scholar PubMed

15. Wang, Y. Q., Fan, Q. H., Li, P., Zheng, X. B., Xu, J. Z., Jin, Y. R., Wu, W. S.: The sorption of Eu (III) on calcareous soil: effects of pH, ionic strength, temperature, foreign ions and humic acid. J. Radioanal. Nucl. Chem. 287, 231 (2011).10.1007/s10967-010-0809-9Search in Google Scholar

16. Guo, Z. J., Chen, Z. Y., Wu, W. S., Liu, C. L., Chen, T., Tian, W. Y., Li, C.: Adsorption of Se (IV) onto Beishan granite. Acta Phys-Chim. Sin. 27, 2222 (2011).10.3866/PKU.WHXB20110918Search in Google Scholar

17. Papelis, C.: Cation and anion sorption on granite from the Project Shoal Test Area, near Fallon, Nevada, USA. Adv. Environ. Res. 5, 151 (2001).10.1016/S1093-0191(00)00053-8Search in Google Scholar

18. Grambow, B.: Mobile fission and activation products in nuclear waste disposal. J. Contam. Hydrol. 102, 180 (2008).10.1016/j.jconhyd.2008.10.006Search in Google Scholar PubMed

19. Tsai, T. L., Lee, C. P., Lin, T. Y., Wei, H. J., Men, L. C.: Evaluation of sorption and diffusion behavior of selenium in crushed granite by through-diffusion column tests. J. Radioanal. Nucl. Ch. 285, 733 (2010).10.1007/s10967-010-0609-2Search in Google Scholar

20. Iida, Y., Yamaguchi, T., Tanaka, T.: Experimental and modeling study on diffusion of selenium under variable bentonite content and porewater salinity. J. Nucl. Sci. Technol. 48, 1170 (2011).10.1080/18811248.2011.9711805Search in Google Scholar

21. Lee, C. P., Wei, Y. Y., Tsai, S. C., Teng, S. P., Hsu, C. N.: Diffusion of cesium and selenium in crushed mudrock. J. Radioanal. Nucl. Ch. 279, 761 (2009).10.1007/s10967-008-7355-8Search in Google Scholar

22. Sato, H., Miyamoto, S.: Diffusion behaviour of selenite and hydroselenide in compacted bentonite. Appl. Clay. Sci. 26, 47 (2004).10.1016/j.clay.2003.10.007Search in Google Scholar

23. Ikonen, J., Voutilainen, M., Söderlund, M., Jokelainen, L., Siitari-Kauppi, M., Martin, A.: Sorption and diffusion of selenium oxyanions in granitic rock. J. Contam. Hydrol. 192, 203 (2016).10.1016/j.jconhyd.2016.08.003Search in Google Scholar PubMed

24. Charlet, L., Kang, M., Bardelli, F., Kirsch, R., Gehin, A.; Greneche, J.-M.; Chen, F.: Nanocomposite pyrite–greigite reactivity toward Se (IV)/Se (VI). Environ. Sci. Technol. 46, 4869 (2012).10.1021/es204181qSearch in Google Scholar PubMed

25. Jiang, S. S., He, M., Diao, L. J., Guo, J. R., Wu, S. Y.: Remeasurement of the half-life of 79Se with the projectile X-ray detection method. Chinese Phys. Lett. 18, 746 (2001).10.1088/0256-307X/18/6/311Search in Google Scholar

26. Scheinost, A. C., Charlet, L.: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ. Sci. Technol. 42, 1984 (2008).10.1021/es071573fSearch in Google Scholar PubMed

27. Wang, J., Su, R., Chen, W., Guo, Y., Jin, Y., Wen, Z., Liu, Y.: Deep geological disposal of high-level radioactive wastes in China. Chinese J. Rock. Mech. Eng. 25, 649 (2006).Search in Google Scholar

28. Wang, J.: Strategic program for deep geological disposal of high level radioactive waste in China. Uranium Geology. 20, 196 (2004).Search in Google Scholar

29. Min, M., Luo, X., Wang, J., Jin, Y., Wang, R.: Sorption behavior of U (VI), 234U (VI) and 238U (VI) onto fracture-filling clays in Beishan granite, Gansu: application to selecting the site of high-level radwaste repository in China. Sci. China Ser. D. 48, 1649 (2005).10.1360/03yd0475Search in Google Scholar

30. Dong, Y. H., Li, G., Li, M.: Numerical modeling of the regional ground water flow in Beishan area, Gansu Province. Chinese Sci. Bull. 54, 3112 (2009).10.1007/s11434-009-0344-7Search in Google Scholar

31. Yang, X., Ge, X., He, J., Wang, C., Qi, L., Wang, X., Liu, C.: Effects of mineral compositions on matrix diffusion and sorption of (75)Se(IV) in granite. Environ. Sci. Technol. 52, 1320 (2018).10.1021/acs.est.7b05795Search in Google Scholar PubMed

32. He, J., Ma, B., Kang, M., Wang, C., Nie, Z., Liu, C.: Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J. Hazard. Mater. 324, 564 (2017).10.1016/j.jhazmat.2016.11.027Search in Google Scholar PubMed

33. Lu, C. J., Liu, C. L., Chen, T., Wang, J., Wang, X. Y., Su, R., Sun, J. Y., Yang, R. X., Zhang, X. S.: Determination of the effective diffusion coefficient for 125I in Beishan granite. Radiochim. Acta. 96, 111 (2008).10.1524/ract.2008.1469Search in Google Scholar

34. Li, C., Wang, C. L., Liu, X. Y., Zheng, Z., Wang, L. H., Zhu, Q. Q., Kang, M. L., Chen, T., Liu, C. L.: Effects of ionic strength and humic acid on 99TcO4 sorption and diffusion in Beishan granite. J. Radioanal. Nucl. Ch. 293, 751 (2012).10.1007/s10967-012-1746-6Search in Google Scholar

35. Liu, C. L., Wang, X. Y., Li, S. S., Wang, Z. M., Gao, H. C., Li, B., Wen, R. Y., Wang, H. F., Tang, L. T., Xin, C. T., Jiang, L.: Diffusion of 99Tc in granite: a small scale laboratory simulation experiment. Radiochim. Acta. 89, 639 (2001).10.1524/ract.2001.89.10.639Search in Google Scholar

36. Li, C., Liu, X. Y., Chen, T., Tian, W. Y., Zheng, Z., Wang, L. H., Liu, C. L.: The influence of pH on the sorption and diffusion of 99TcO4 in Beishan granite. Radiochim. Acta. 100, 449 (2012).10.1524/ract.2012.1936Search in Google Scholar

37. Tachi, Y., Ebina, T., Takeda, C., Saito, T., Takahashi, H., Ohuchi, Y., Martin, A.J.: Matrix diffusion and sorption of Cs+, Na+, I and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition. J. Contam. Hydrol. 179, 10 (2015).10.1016/j.jconhyd.2015.05.003Search in Google Scholar PubMed

38. Videnská, K., Palágyi, Š., Štamberg, K., Vodičková, H., Havlová, V.: Effect of grain size on the sorption and desorption of SeO42− and SeO32− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J. Radioanal. Nucl. Ch. 298, 547 (2013).10.1007/s10967-013-2429-7Search in Google Scholar

39. André, M., Malmström, M. E., Neretnieks, I.: Determination of sorption properties of intact rock samples: new methods based on electromigration. J. Contam. Hydrol. 103, 71 (2009).10.1016/j.jconhyd.2008.09.006Search in Google Scholar PubMed

40. Zhu, J., Wang, X., Chen, T., Liu, C.: Chemical speciation code CHEMSPEC(C++) and its applications. Scientia Sinica Chimica. 42, 856 (2012).10.1360/032011-775Search in Google Scholar

41. Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J. Hazard. Mater. 150, 279 (2008).10.1016/j.jhazmat.2007.04.098Search in Google Scholar PubMed

42. Zhang, P., Sparks, D. L.: Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environ. Sci. Technol. 24, 1848 (1990).10.1021/es00082a010Search in Google Scholar

43. Peak, D., Saha, U. K., Huang, P. M.: Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic Study. Soil Sci. Soc. Am. J. 70, 192 (2006).10.2136/sssaj2005.0054Search in Google Scholar

44. Fernández-Martínez, A., Charlet, L.: Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Bio. 8, 81 (2009).10.1007/s11157-009-9145-3Search in Google Scholar

45. Tachi, Y., Shibutani, T., Sato, H., Yui, M.: Sorption and diffusion behavior of selenium in tuff. J. Contam. Hydrol. 35, 77 (1998).10.1016/S0169-7722(98)00117-XSearch in Google Scholar

46. Jan, Y. L., Wang, T. H., Li, M. H., Tsai, S. C., Wei, Y. Y., Teng, S. P.: Adsorption of Se species on crushed granite: a direct linkage with its internal iron-related minerals. Appl. Radiat. Isotopes. 66, 14 (2008).10.1016/j.apradiso.2007.08.007Search in Google Scholar

47. González Sánchez, F., Van Loon, L. R., Gimmi, T., Jakob, A., Glaus, M. A., Diamond, L. W.: Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl. Geochem. 23, 3840 (2008).10.1016/j.apgeochem.2008.08.008Search in Google Scholar

48. Simonyan, A. V., Behrens, H., Dultz, S.: Diffusive transport of water in porous feldspars from granitic saprolites: in situ experiments using FTIR spectroscopy. Geochim. Cosmochim. Ac. 73, 7019 (2009).10.1016/j.gca.2009.08.031Search in Google Scholar

49. Wang, C., Yang, X., Li, C., Liu, C.: The sorption interactions of humic acid onto Beishan granite. Colloid. Surface. A. 484, 37 (2015).10.1016/j.colsurfa.2015.07.045Search in Google Scholar

50. Van Loon, L. R., Glaus, M. A., Muller, W.: Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl. Geochem. 22, 2536 (2007).10.1016/j.apgeochem.2007.07.008Search in Google Scholar

51. Harvey, K. B.: Measurement of diffusive properties of intact rock. Whiteshell Laboratories. AECL-11439, COG-95-456-I, (1996). https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/072/28072995.pdf.Search in Google Scholar

52. Li, C., Zheng, Z., Liu, X. Y., Chen, T., Tian, W. Y., Wang, L. H., Wang, C. L., Liu, C. L.: The diffusion of Tc-99 in Beishan granite-temperature effect. World J. Nucl. Sci. Technol. 03, 33 (2013).10.4236/wjnst.2013.31006Search in Google Scholar

53. Mills, R., Lobo, V. M. M.: Self-Diffusion in electrolyte solutions: a critical examination of data compiled from the literature. Elsevier, New York (1989).Search in Google Scholar

54. Dean, J. A., Lange’s handbook of chemistry (1985). 13th ed., McGraw-Hill, New York.Search in Google Scholar

55. Liu, J., Löfgren, M., Neretnieks, I.: Data and uncertainty assessment-matrix diffusivity and porosity in situ. Royal Institute of Technology. ISSN 1402-3091, SKB Rapport R-06-111, (2006). http://www.skb.se/publication/1335866/R-06-111.pdf.Search in Google Scholar

56. deLlano, A. Y., Bidoglio, G., Avogadro, A., Gibson, P. N., Romero, P. R.: Redox reactions and transport of selenium through fractured granite. J. Contam. Hydrol. 21, 129 (1996).10.1016/0169-7722(95)00038-0Search in Google Scholar

57. Jan, Y. L., Wang, T. H., Li, M. H., Tsai, S. C., Wei, Y. Y., Hsu, C. N., Teng, S. P.: Evaluating adsorption ability of granite to radioselenium by chemical sequential extraction. J. Radioanal. Nucl. Ch. 273, 299 (2007).10.1007/s10967-007-6856-1Search in Google Scholar

58. Carbol, P., Engkvist, I.: SKB R-97-13 (1997). Svensk Karnbranslehantering AB, Stockholm.Search in Google Scholar

59. Filius, J. D., Lumsdon, D. G., Meeussen, J. C. L., Hiemstra, T., Van Riemsdijk, W. H.: Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Ac. 64, 51 (2000).10.1016/S0016-7037(99)00176-3Search in Google Scholar

60. Kozaki, T., Liu, J. H., Sato, S.: Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentration. Phys. Chem. Earth. 33, 957 (2008).10.1016/j.pce.2008.05.007Search in Google Scholar

61. Tachi, Y., Yotsuji, K.: Diffusion and sorption of Cs+, Na+, I and HTO in compacted sodium montmorillonite as a function of porewater salinity: integrated sorption and diffusion model. Geochim. Cosmochim. Ac. 132, 75 (2014).10.1016/j.gca.2014.02.004Search in Google Scholar

62. Wigger, C., Van Loon, L. R.: Importance of interlayer equivalent pores for anion diffusion in clay-rich sedimentary rocks. Environ. Sci. Technol. 51, 1998 (2017).10.1021/acs.est.6b03781Search in Google Scholar PubMed

Received: 2018-04-13
Accepted: 2018-07-20
Published Online: 2018-08-31
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2969/html
Scroll to top button